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Abstract: Batch processes, such as fermenters, generally require high levels of 

consistency in their operation to ensure minimal losses of raw materials and product. 

Recent application studies have indicated that multivariate statistical technology can 

provide some support when trying to maintain consistent operation in complex batch 

processes. This paper aims to compare four different approaches to batch process 

monitoring using statistical methods. The comparison is made in terms of their respective 

ability to tolerate normal process variation while detecting abnormal operation of a 

process. The comparison is performed using data sets obtained from one simulated 

bioreactor and two industrial fermentation processes. Copyright © 2007 IFAC 
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1. INTRODUCTION 
 

Batch processes, such as industrial fermenters, are 

used in the manufacturing of high-value products. As 

a result, it is particularly important to detect incipient 

degradation of batch performance in order to recover 

high-value product with minimal losses to raw 

materials, utilities and product. Furthermore, the 

pharmaceutical industry, together with the food and 

beverage industry are obliged to comply with 

increasingly stringent regulatory requirements 

enforced by agencies such as the Food and Drug 

Administration (FDA). For many compounds, these 

agencies demand proof that consistent operation is 

adhered to and without this proof the product cannot 

be sold. 

 

One very popular approach for ensuring the 

consistency of batch process is to adopt methodology 

of the Multivariate Statistical Process Control 

(MSPC) (Nomikos and MacGregor, 1995; Wold, et 

al., 1998). This methodology attempts to capture 

relationships that exist between different process 

variables and condenses this information into a small 

number of important metrics. These relatively few 

metrics can then be easily monitored in real-time in 

order to benchmark process performance and 

highlight potential problems, leading to continuous 

improvement of a manufacturing plant’s reliability 

and profitability. It is worth noting that the 

emergence of powerful computational devices has 

allowed MSPC to emerge as an important new 

process monitoring technology. 

 

However, along with the requirement for detection of 

incipient faults, there is, albeit somewhat implicit, 

requirement to maintain number of false alarms to 

the bare minimum. In fact, from the industrial 

experience of the authors, false alarms have often 

proved to be the crucial obstacle to the realization of 

the effective real-time batch process monitoring 

scheme. During the initial phases of the real-time 

application, frequent occurrences of false alarms 

were considered a serious nuisance for operational 

personnel. As a result, they undermined operators’ 

confidence in the effectiveness of the overall batch 

process monitoring solutions. 

 

Since the emergence of the statistical batch process 

monitoring techniques some 15 years ago 

(MacGregor and Nomikos, 1992) several variants 

and extensions to the original methodology have 

been proposed. In particular, Wold, et al. (1998) 

suggested alternative way of consolidating data from 

multiple batches, thereby resulting in fundamentally 

different statistical process model. Both of these 

approaches are included in this comparison as they 

represent the mainstream of statistical batch process 

monitoring. Additional multivariate method, included 

in this comparison, is a hybrid of the two standard 

multivariate methods, mentioned above. This method 

has already been suggested, most notably by Lee, et 

al. (2004), but has not yet been comprehensively 

compared with the main approaches in terms of false 

alarms sensitivity and fault detection capability using 

multitude of data sets. Alongside these multivariate 

statistical methods, there is also an extension of the 

standard univariate statistical process control to batch 

processes. This method is frequently used by people 

in industry and is readily available in modern 

commercially available software packages. Also, 

design and implementation of the univariate 

statistical process monitoring scheme is much 

simpler when compared to multivariate methods. 

However, quite surprisingly, this relatively simple 

statistical technique has not yet been 

comprehensively and explicitly compared with more 

involving multivariate methods. 

 

There have been several published comparisons 

between different batch process monitoring 

techniques using industrial and simulated data sets 

(Westerhuis, et al., 1999; Gurden, et al., 2001; Van 

Sprang, et al., (2002); Chiang, et al., 2006). 

Preprints Vol.1, June 4-6, 2007, Cancún, Mexico

401



 

     

However, in a great majority of the cases the focus of 

the comparison has been on the ability to detect a 

fault rather than on the sensitivity to false alarms. 

One notable exception is a comparison by Van 

Sprang, et al. (2002) although even they place much 

greater emphasis on the detection of erroneous 

batches rather than the sensitivity of a given scheme 

to normal process variation. Also, the explicit 

comparison between multivariate and univariate 

methodologies has not yet been presented to the best 

of the authors’ knowledge.  

 

This paper presents results from three case studies in 

which both traditional univariate and advanced 

multivariate statistical analyses, namely Principal 

Component Analysis (PCA), have been applied to 

fermentation processes. Two of these studies have 

been conducted using industrial data while the third 

was performed using data from a simulated 

bioreactor. The main focus of this paper is to 

compare four different statistical monitoring 

approaches in terms of their respective ability to 

tolerate normal process operation while detecting 

anomalous process variation. 

 

This paper is organized as follows. Firstly, a brief 

description of different statistical process monitoring 

techniques is provided in section 2. In section 3 

multivariate statistical process monitoring charts are 

reviewed, followed by description of performance 

indices used in the comparison in section 4. Section 5 

describes each of the three data sets used in this 

study. Section 6 contains results of the comparison. 

Finally, section 7 concludes the paper. 

  

 

2. STATISTICAL PROCESS MONITORING 

TECHNIQUES 

 

 

2.1 Univariate Statistical Process Control (USPC) 

 

Univariate statistical process control (USPC) 

considers all the process variables to be independent 

of each other. The mean and standard deviation of 

the trajectory that each variable follows for a set of 

satisfactory batches are determined and these 

statistics are then used to establish quality control 

limits. These control limits in the USPC chart define 

an envelope of satisfactory operation for each 

recorded process variable. Consistent violation of 

these limits during a batch progression would then 

indicate that the conditions of the current batch are 

inconsistent with what is expected for satisfactory 

performance, suggesting that the batch may be of 

poor quality. A drawback with this approach is that it 

ignores any relationships that may exist between 

process variables and that many variables may need 

to be monitored. 

  

2.2 Multivariate Statistical Process Monitoring 

 

Multivariate statistical analysis captures relationships 

that exist between different process variables and 

condenses this information into a small number of 

important metrics. This analysis represents a more 

comprehensive attempt, when compared to USPC, to 

capture the nominal operation of the process in the 

form of a statistical model. 

 

Multivariate statistics relies heavily upon the 

statistical routines referred to as Principal 

Component Analysis (PCA) and Partial Least 

Squares (PLS). In this paper, focus is on the Principal 

Component Analysis, which is generally used to 

develop a statistical model representing satisfactory 

process operation. More specifically, PCA model 

identifies the inter-variable relationships that exist 

during satisfactory process operation. PCA is then 

able to extract the main features of process operation, 

which can be stored in a small number of composite 

variables, commonly referred to as scores. These 

composite variables can then be easily monitored in 

real-time in order to benchmark process performance 

and highlight potential problems, leading to 

continuous improvement of the process operation.  

 

Before reviewing multivariate methods, brief 

introduction to the problem of unfolding original 

batch data is discussed first. When the data is 

collected from I  batches, each characterized by 
measurements of J  process variables at K  

sampling instances, it is natural to arrange data 

matrix into 3-dimensional data matrix, denoted as 
JKI ××

−
ℜ∈X . However, standard multivariate 

statistical methods require ubiquitous 2-dimensional 

data matrix format. Hence, there is a need to re-

arrange the original 3-dimensional data matrix into 

more familiar 2-dimensional format in order to be 

able to apply multivariate methods already developed 

for continuous processes. This procedure is often 

referred to as “unfolding”. However, there are 

several different ways of unfolding batch data. In 

fact, Westerhuis, et al. (1999) review in detail all six 

alternative methods and critically assess their 

implication on the nature of the resulting statistical 

models. In this paper, the focus is on methods based 

on the 2 most frequently used ways of unfolding 

batch data matrix. 

 

Batch-Wise Principal Component Analysis (B-PCA). 

Nomikos and MacGregor (1995) unfold the original 

3-dimensional data matrix into ubiquitous 2-

dimensional format by preserving batch direction: 

 
JKIJKI ×××

−
ℜ∈⇒ℜ∈ XX  (1) 

Note that the standard pre-processing procedure of 

scaling the resulting X  matrix results in the removal 

of mean trajectories of each process variable from the 

data set. This is the crucial feature of this method that 

removes the main source of nonlinearity, thereby 

allowing accurate and yet linear statistical models to 

be developed, as argued by Westerhuis, et al. (1999) 

among others. After the unfolding and scaling 

procedures, standard Principal Component Analysis 

is performed. 
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However, this approach suffers from two main 

drawbacks. Firstly, it requires batches to be of 

similar lengths (i.e. similar durations), which is not 

always the case in process industries. This is because 

varying batch duration causes unfolded data matrix 

to have varying number of columns. Secondly, 

during the real-time application, it is required to 

estimate future portion of process evolution in order 

to evaluate the model at each sampling instant. This 

issue arises because each row of the unfolded data 

matrix contains measurements of all of the process 

variables across all of the sampling instances for a 

given batch. This problem is generally solved using 

crude estimation models suggested by Nomikos and 

MacGregor (1995).  In this case study, all of the 

batches are of equal length and the so-called “current 

deviations approach” is used to estimate future 

portion of the batch progression (Nomikos and 

MacGregor, 1995; Van Sprang, et al., 2002). Briefly, 

the current deviations approach assumes that the 

future measurements will continue to deviate from 

their mean trajectories at the same level as present at 

a current time instant k . 
 

Variable-Wise Principal Component Analysis (V-

PCA). Another popular method was originally 

proposed by Wold, et al. (1998), which unfolds the 

original 3-dimensional data matrix by preserving 

variable direction: 

 
JIKJKI ×××

−
ℜ∈⇒ℜ∈ XX  (2) 

In this case, scaling of the resulting   matrix does not 

remove mean trajectory and therefore, the main 

source of non-linearities remains in the data set. 

After the unfolding and scaling procedures, standard 

Principal Component Analysis is performed. 

 

However, this approach does not suffer from the 

drawbacks of the B-PCA method. In particular, 

varying batch lengths do not render resulting data 

matrix unusable. This is because number of columns 

in the unfolded data matrix is not dependent on the 

number of sampling instances during a batch. Hence, 

this method can be applied to processes that exhibit 

variation in terms of batch duration. Also, during the 

real-time application, there is no requirement to 

estimate future process evolution. This is because 

each row of the unfolded data matrix contains 

measurements of process variables at a single 

sampling instant, as opposed to containing 

measurements across the entire batch duration.  

 

Batch-Variable-Wise Principal Component Analysis 

(B-V-PCA). Batch-Variable-Wise Principal 

Component Analysis (B-V-PCA) was suggested in 

several publications, most notably by Lee, et al. 

(2004). In this case original 3-dimensional data 

matrix is first of all unfolded by preserving batch 

direction, resulting in  . Each column of this matrix is 

scaled, thereupon removing the mean trajectory of 

each process variable. However, unlike B-PCA 

method, this approach then folds auto-scaled data 

matrix back into 3-dimensional format and then re-

unfolds it in the same way as V-PCA method, i.e. by 

preserving variable direction:  . Hence, data matrix 

used for identification/evaluation of B-V-PCA model 

is of the same dimensions as the data matrix used in 

the case of V-PCA method. However, in the case of 

B-V-PCA mean trajectory is removed from each 

process variable, which is not the case with V-PCA 

approach.  

 

It is worth noting that, unlike V-PCA approach, this 

method does require batches to be of equal lengths 

because the scaling procedure is performed on the 

data matrix obtained using “batch-wise unfolding 

approach. However, real-time application of this 

method does not involve estimation of the future 

batch progression because the data used for model 

identification is unfolded such that each row contains 

measurements at a single sampling instant. Hence, B-

V-PCA can be viewed as a hybrid of B-PCA and V-

PCA, attempting to combine their comparative 

advantages and mitigate their disadvantages. 

 

 

3. MULTIVARIATE STATISTICAL 

MONITORING CHARTS 

 

In general, on-line monitoring of batch processes, 

using multivariate statistical methods, is performed 

using two types of control charts: the T
2
 chart to 

monitor deviation of a process from a center-point as 

defined by statistical model and SPE chart to monitor 

process deviation for a statistical model. These 

metrics are calculated at each sampling instant of an 

evolving batch. 

 

One of the most frequently used metrics in 

multivariate statistical process monitoring is the 

composite prediction error of a model, termed 

Squared Prediction Error (SPE). SPE is computed by 

comparing predictions made by statistical model with 

the actual values of process variables. This metric 

provides a single measure of process deviation from 

the statistical model. Hence, the SPE metric is 

expected to have high values during abnormal 

operation and low values when the process operates 

in a satisfactory manner.  

 

Another frequently used metric is the T
2
 statistic. 

This metric is composed of all of the retained scores, 

which are obtained by projection of a data point onto 

the plane defined by means of PCA or PLS analysis. 

This metric represents the main features of the 

process. Hence, the T
2
 metric provides a measure of 

how far away the current operating conditions of the 

plant are from the conditions present in the data that 

was used for statistical model development, 

assuming mismatch between process and a related 

statistical model is minimal. 

 

Confidence intervals and, therefore, control limits of 

the SPE and T
2
 chart are computed using normal 

operating data and assuming that SPE metric and T
2
 

metric are characterized by chi-squared distribution 

and F-distribution, respectively, under normal 
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operating conditions. In this paper, control limits are 

calculated with confidence interval of 99%. 

   

 

4. PERFORMANCE INDICES 

 

Two performance indices are used to evaluate how 

well each approach performs in terms of detecting 

abnormal variation while tolerating normal process 

operation. The two indices are the overall Type I 

error and the overall Type II error. 

 

 

4.1 Type I Error 

 

Formally defined, Type I error, also known as “error 

of the first kind” or “false positive” is the error of 

rejecting a null hypothesis when it represents a 

normal state of nature. In other words, Type I error 

occurs when something that should have been 

accepted as normal was rejected. In terms of batch 

process monitoring, Type I error arises whenever 

normal operating condition is classified as faulty. 

 

In this paper, Type I error is calculated using the 

following formula: 

 

IK

∑
=

alarms false
 Error  I Type  (3) 

where I  is the number of normal operation batches 
and K  is the number of sampling instances during 

each batch. 

 

The following procedure is used to calculate Type I 

error estimate. One batch is removed from the set of 

normal operating batches, i.e. training data set, and a 

statistical model is built on the remaining normal 

operation batches. As this batch is taken from the set 

of normal operation batches, it is assumed to be 

classified as normal by monitoring control charts. 

Therefore, crossing of a control limit in this case is 

assumed to be an instance of a false alarm. 

 

 

4.2 Type II Error 

 

In formal terms, Type II error, also known as “error 

of the second kind” or “false negative”, is the error 

of not rejecting a null hypothesis when the 

alternative hypothesis is the true state of nature. In 

other words, Type II error occurs when something 

that should have been rejected was accepted as 

normal. 

 

In terms of batch process monitoring, Type II error 

occurs whenever faulty process operation is 

classified as normal. 

 

In this paper, Type II error is calculated using the 

formula, given in equation (4). 

 

IK

∑
=

samplesfaulty  undetected
 Error  II Type  (4) 

where “undetected faulty samples” corresponds to 

samples of process variables or metrics for which it 

is known that the fault has taken place and yet this 

process variable or metric remains within its control 

limits. 

 

The ideal case is the one in which both Type I and 

Type II error are equal to zero. However, this is 

hardly ever achieved and the attempt is made instead 

to strike a compromise between conflicting 

objectives. In some situations it may be critical to 

reduce Type II error from 100% down to, say, 50% 

regardless of the Type I error. This situation may 

arise in some critical systems where benefit of the 

fault detection offsets any costs incurred as a result 

of false alarms. In these cases the designer would 

choose the most sensitive approaches to achieve this 

aim. 

 

 

5. DESCRIPTION OF THE DATA 

  

In order to evaluate different approaches for on-line 

process monitoring, the approaches are applied to 

three data sets related to bioscience industry.  

 

 

5.1 Industrial Fermenter No. 1 – Data1  

 
The first case study is conducted on the data set from 

a bioreactor used in pharmaceutical industry. This 

data set consists of 10 normal batches and 1 faulty 

batch. For each batch, 3 process variables are 

continuously measured across 181 sampling 

instances. The faulty batch is characterized by a 

highly subtle incipient fault on one of the critical 

sensors. This data set will from now be referred to as 

Data1. 

 

 

5.2 Industrial Fermenter No. 2 – Data2 

 

The second case study is conducted on the data set 

from a fermenter used in food and beverage industry. 

This data set consists of 20 satisfactory batches and 2 

abnormal batches for which 7 process variables are 

continuously measured at 83 sampling instances. 

Abnormal batches are caused by the underlying, i.e. 

unmeasured, disturbance that is reflected in terms of 

a multitude of process variables. This data set will 

from now be referred to as Data2. 

 

 

5.3 Simulated Bioreactor – Data3 

 

Third case study is performed using simulated 

penicillin production process, which is documented 

in detail by Birol, et al. (2002). Measured process 

variables include: substrate feed-rate, dissolved 

oxygen and CO2  concentrations, reactor temperature 

and volume, flow-rate of cooling water, pH inside the 

reactor and the flow-rate of base/alkaline solution 

into the reactor. Data set corresponding to normal 

process operation comprises 30 batches, each 
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containing measurements of 8 process variables at 

the 157 sampling instances during which substrate 

flows into the bioreactor. Batch-to-batch and within-

batch variation are created by applying filtered 

pseudo-random binary sequence to the substrate 

feed-rate. Three faulty batches are created by 

reducing substrate feed concentration from the 

nominal 600 g/l to540 g/l. This type of fault was 

simulated on 3 batches, each having different 

realization of substrate feed-rate sequence. This data 

set will from now be referred to as Data3. 

 

 

6. RESULTS AND DISCUSSION 

  

Prior to analysis, the number of principal 

components for each method is determined using 

well known cross-validation technique, see (Wold, 

1978). This exercise was performed for each data set 

with the results given in Table 1. 

 

Table 1  Number of retained principal components 

 

 Data1 Data2 Data3 

 

V-PCA 1 3 3 

B-V-PCA 1 2 2 

B-PCA 4 7 8 

     

Type I error of the four compared methods for three 

data sets are presented in Tables 2 and 3. These 

tables express false alarm rates as percentages of the 

overall number of measured samples during normal 

operation batches. Table 2 displays Type I error for 

USPC charts and T
2
 charts, while Table 3 displays 

Type I error for USPC and SPE charts. 

 

Table 2  Type I Error for the USPC charts and T
2
 

charts 

 

 Data1 Data2 Data3 

 

USPC 3.79% 2.73% 0.83% 

V-PCA 3.2% 2.29% 2.78% 

B-V-PCA 3.26% 2.35% 1.06% 

B-PCA 0.11% 0.72% 0.53% 

 

 

Table 3  Type I Error for the USPC and SPE charts 

 

 Data1 Data2 Data3 

 

USPC 3.79% 2.73% 0.83% 

V-PCA 6.08% 5.12% 1.36% 

B-V-PCA 12.87% 9.28% 1.78% 

B-PCA 25.30% 25.48% 4.20% 

 

The first observation is that relative sensitivities of 

the four compared methods to normal process 

variation are consistent across all of the three data 

sets. In particular, T
2 
of the B-PCA method is the 

least sensitive, of all of the monitoring charts, to 

normal process variation. This chart has very small 

values of Type I error for each of the three data sets 

as observed in Table 2. On the other hand, SPE chart 

of the B-PCA method is clearly and consistently by 

far the most susceptible to false alarms, as observed 

in Table 3. Also, T
2 
charts of both V-PCA and B-V-

PCA perform similarly to each other and to the 

USPC charts, while their SPE charts are consistently 

more sensitive to normal process variation when 

compared to USPC charts. Overall, T
2
 charts of all of 

the three multivariate approaches as well as the 

USPC charts are clearly and consistently less 

sensitive to normal process operation, when 

compared to SPE charts. In other words, SPE chart of 

any of the three compared methods is likely to 

generate more false alarms than either the 

corresponding T
2
 chart or USPC chart.  

 

One anomaly in Table 3 is the low value of Type I 

error for the SPE chart corresponding to B-PCA in 

the case of the simulated bioreactor (Data3). The 

main reason for this behavior lies in the fact that the 

simulated bioreactor has a high degree of batch 

repeatability. In fact, dynamics of this process are 

time-invariant, i.e. simulation is not modified on a 

batch-to-batch basis. On the other hand, industrial 

processes generally exhibit continuous changes in 

their dynamic behavior and their repeatability is 

relatively smaller when compared to simulated time-

invariant systems, resulting in a larger number of 

false alarms. 

 

Type II error of the four compared methods for three 

data sets are presented in Tables 4 and 5. These 

tables express number of correct control limit 

violations by process variables or multivariate 

metrics as a percentage of the overall number of 

samples collected throughout the fault duration.  

 

Table 4  Type II Error for the USPC and T
2
  charts. 

 

 Data1 Data2 Data3 

 

USPC 100% 77.53% 81.37% 

V-PCA 100% 57.23% 98.73% 

B-V-PCA 100% 59.04% 92.57% 

B-PCA 100% 72.89% 95.75% 

 

 

Table 5  Type II Error for the USPC and SPE charts 

 

 Data1 Data2 Data3 

 

USPC 100% 77.53% 81.37% 

V-PCA 92.09% 42.17% 66.03% 

B-V-PCA 61.15% 10.24% 1.27% 

B-PCA 39.57% 7.83% 1.06% 

 

 

First of all, the faulty batch in Data1 is not detected 

at all by either USPC or T
2
 charts, as shown in Table 

4 (Type II error=100%). This observation confirms 

incipient nature of the fault. The most successful in 
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detecting this highly subtle fault is SPE chart of the 

B-PCA method. This is somewhat unsurprising since 

this chart is shown in Table 3 to be highly sensitive 

to normal process operation, i.e. having large Type I 

error. On the other hand, faulty batches 

corresponding to Data2 are detected by all of the four 

methods and most clearly by the SPE chart of the B-

PCA method. Faulty batches of Data3 (simulated 

bioreactor) were detect to some extent by USPC and 

V-PCA. The clearest detection of the faults is 

provided by the SPE charts of B-V-PCA and B-PCA 

methods.  

 

Overall, SPE chart of the B-PCA method is by far 

the most sensitive to both normal and abnormal 

process operation. Use of this chart is likely to result 

in many false alarms although it is also likely that 

this chart will be most consistent in terms of fault 

detection. SPE charts of all of the three multivariate 

methods are found to be more sensitive to process 

variation when compared to USPC and T
2
 charts. In 

fact, no clear difference in terms of Type I and Type 

II error is observed between T
2
 and USPC charts. 

Finally, performance of the B-V-PCA, particularly in 

terms of its SPE chart performance, is in between 

performances of V-PCA and B-PCA methods. 

Hence, B-V-PCA can be viewed as conciliation 

between V-PCA and B-PCA methods.  

 

7. CONCLUSIONS 

 

This paper presents results from three case studies in 

which both traditional univariate and advanced 

multivariate statistical analyses, based on the 

Principal Component Analysis, have been applied to 

bioreactors. Two standard multivariate methods are 

included in this comparison. These are the approach 

that preserves batch direction, B-PCA, and the one 

that preserves variable direction, V-PCA, during the 

unfolding procedure. Third multivariate method, B-

V-PCA, is a hybrid of these two approaches. Two of 

the studies are conducted using industrial data while 

the third is performed using data from a simulated 

bioreactor. The main focus of this paper is to 

compare four different statistical monitoring 

approaches in terms of their respective ability to 

tolerate normal process operation while detecting 

anomalous process variation. 

 

Results show that the Squared Prediction Error chart 

of the standard multivariate approach to batch 

process monitoring that unfolds data by preserving 

batch direction is by far the most sensitive of all the 

charts to both normal and abnormal process 

operation. Therefore, this chart needs to be used with 

great caution if frequent false alarms are to be 

avoided. On the other hand, no clear advantage of the 

so-called T
2
 charts when compared to USPC charts is 

observed. Their performances are very similar while 

design and interpretation issues are much simpler in 

the case of the USPC chart. Finally, hybrid approach, 

B-V-PCA, that combines features of the two main 

multivariate methods, namely B-PCA and V-PCA, 

provides compromise in terms of Type I error and 

Type II error between these two standard approaches. 

Therefore, this new hybrid approach may prove to be 

the right compromise between conflicting objectives 

related to maximization of correct fault detection and 

minimization of false alarms, combining advantages 

and mitigating disadvantages of B-PCA and V-PCA.   
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