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Abstract: Based on the data for the experimental measurements of the state on the fungal 
biofilter some process variables: the CO2 concentration and the elimination capacity (CE) 
have been estimated using a differential neural observer scheme via the pressure 
difference data. This scheme is developed in two parts, the first is the dynamical neural 
network structure and the second is compound by the observer structure, this type of 
computational sensor is called soft sensor. The good performance for the estimate states is 
shown by the CE and CO2 dynamical evolutions versus their estimate states on graphical 
way. Copyright © 2007 IFAC
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1. INTRODUCTION 

Treatment of off-gases from industries is an 
important measure to reduce atmospheric emissions 
of volatile organic carbon (VOC). These gases can 
be paraffinic (like methane), alcohols (methanol), 
hydrocarbons of petroleum of low weight molecular 
(benzene, toluene), halogen aromatics (for example, 
clorobencenes) and halogen aliphatic solvents 
(Rittman and McCarty 2001) (Roberge, Gravel et al. 
2001; Ottengraf, Meeters et al. 1986; Rittman and 
McCarty 2001). Off-gases can be cleaned by various 
technologies such as incineration, adsorption, 
chemical scrubbing and biofiltration (Ottengraf 
1987; Moretti and Mukhopadhyay 1993). Biofilters 
are beds packed with biologically active materials, 
such as compost, through which gases are ventilated. 
In the compost, contaminants are absorbed and 
subsequently biodegraded. Biofiltration was found to 
be cost-effective for off-gases with low 
concentrations of VOC (<3g/m3) (van Groenestijn 
and Hesselink 1993; van Groenestijn, van Heininge 
et al. 2001) and an odour reduction of 95 to 99% is 
possible (Hartung, Martinec et al. 2001). A biofilter 
system is typically composed of a blower, 
humidification system, biofilter unit, and in some 
cases, a granular activated-carbon backup. In 
addition to the humidification system, a method 
through a manually controlled spray is usually 
included (Eweis, Ergas et al. 1998). However, 

conventional biofilters, based on compost and 
bacterial activity, face problems with the elimination 
of hydrophobic compounds such as aromatic 
compounds, alkenes and alkanes. Because of the low 
solubility in water, the compounds are poorly 
absorbed by the bacterial biofilms. Besides that, 
biofilter operational stability is often hampered by 
acidification and drying out of the filter bed. To 
overcome these problems, biofilters with fungi on 
inert packing material have been developed (van 
Groenestijn, van Heininge et al. 2001). Fungi are 
more resistant to acid and dry conditions than 
bacteria, which is a helpful property when operating 
biofilters. Moreover, it is hypothesised that the aerial 
mycelia of fungi, which are in direct contact with the 
gas, can take up hydrophobic compounds faster than 
flat aqueous bacterial biofilm surfaces. However the 
main variables on this system can not be determined 
by direct measure, ones of these variables are the 
elimination capacities (CE), which describe the 
amount of pollutant eliminated by microbial activity; 
the CO2 production and the P, the pressure 
difference in a biofiltration system. In other side, the 
applications of the some dynamical systems used to 
described the unmeasured variables on a process 
using the measure variables, this have been 
implemented successfully and it is called observer 
(Luenberger 1964; Tsinias 1990). The immeasurable 
variables can be estimated without a physical sensor 
only based on the data reconstruction. Recently the 
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neural networks application on the identification and 
control process have developed into the 
biotechnology areas (Narendra and Parthasarathy 
1995; Cabrera, Poznyac et al. 2002), the results have 
shown the possibility to design new class of sensor 
based on these methods. 
 The objective of this paper is to describe the 
observer system based on the dynamical neural 
networks to identify the elimination capacity (CE) in 
a P. variotii biofiltration system using the output 
data.  

1.1 Dynamical neural networks.

During the evolution in a bioprocess all its states o 
variables are changed abruptly; the problem to 
identify these variables seems very complicate and 
probably unrealistic. That's why the observation (in 
this case, organics decomposition dynamics) is very 
important for an effective control design. Several 
approaches dealing with state estimation problem are 
widely used in practical applications. Among them 
there are the Lie-algebraic method (Knobloch, Isidori 
et al. 1993), Lyapunov-like observers (Slotine 1984), 
high gain observation (Giccarella, Mora et al. 1993; 
Michalska and Mayne 1995), optimization-based 
observer the reduced-order nonlinear observers 
(Garcia and D’Atellis 1995) and others. 
There are two known types of ANN: static using 
back-propagation technique (Narendra and 
Parthasarathy 1995) and dynamic neural networks 
(DNN) (Poznyak, Sanchez et al. 2001). The first one 
deals with, the so-called, global optimization 
problem trying to adjust the weights of such NN in 
order to minimize an identification error. The second 
approach, exploiting the feedback properties of the 
applied DNN (see Fig.1), permits to avoid many 
problems related to global search extremum 
converting the learning (training) process to an 
adequate feedback design.  If a mathematical model 
is incomplete or partially known, this DNN-approach 
provides an effective instrument to attack a wide 
spectrum of problems such as identification, state 
estimation, trajectories tracking an etc. 
There are known several effective approaches to the 
corresponding feedback design. One of them is 
Variable Structure Approach (VSA) (Utkin 1992). 
Under heavy uncertainty conditions it offers 
significant potential advantages comparing to other 
identification and control techniques: good transient 
behavior, global exponential stability of a small 
estimation error, unmodelled disturbance rejection 
capability, insensitivity to plant nonlinearities or 
parameter variations and remarkable stability and 
performance robustness. The corresponding 
procedures, treated within this theory, usually use so-
called signum-type or switching (sliding mode) 
structures. Despite fruitful research in the variable 
structure control theory, few authors have considered 
the application of the main principles of sliding mode 
approach to the problem of observer design for 
dynamic system (Slotine 1984; Utkin 1992). In this 
study we suggest the DNN observer (DNNO), which 
incorporates switching type term to correct current 

state estimates using only available measurable 
output data. 
     
The design, analysis and control of the 
concentrations on the biofilter have been the 
challenging tasks mostly, because of the inadequacy 
of on-line sensors with fast sampling rate and small 
time delay and the complex nonlinear interactive 
behavior of these concentrations. By these reasons, a 
robust identification technique seems to be attractive 
to avoid these limitations. On the other hand, there is 
not an adequate model for the biofilter which is 
driven with several variables like elimination 
capacity CE and CO2 concentration.  To solve the 
state estimation and parameter identification of these 
reactions without any model usage the following 
steps need to be applied: design a dynamical neural 
system with extra terms to observe the immeasurable 
variables. 

Structure of DNNO with a sliding mode term. The
DNN observer corresponding to the scheme given at 
Figure 1 is covered by the following ordinary 
differential equation: 

1 2

1 2

ˆ
ˆ ˆ ˆ

ˆ ˆ
ˆ ˆ

t
t t t t

t t t t

t t

dx
Ax W x W x u

dt
K y y K sign y y

y Cx

(1) 

    

Here ˆtx  is the state vector of  DNNO representing 
the current estimates of organics concentration, ˆty  is 
the output of  DNN corresponding the estimates of 
the measurable CE concentration,   A, K1 , K2, are
constant matrices adjusted during DNN training, 

.  and .  are standard sigmoid functions, h is a 
data delay constant, C is an output matrix, Wi (i=1,2)
is the output weights tuning by a special on-line 
learning procedure (Poznyak, Sanchez et al. 2001). 
For the considered biofiltration process the state 
components are: x1 is the CO2 concentration variation 
in the biofilter; x2 is the current difference pressure 

p and  x3 is the CE concentration. 

The measurable data is the pressure difference in the 
biofilter output, that is 2ty x . So, in this case the 
output matrix is 0,1,0C . The gain matrix K1

corresponds to a linear (Luenberger) correction term, 
K2 is a sliding mode correction term matrix. The 
adequate learning of DNNO (2) provides a small 
enough upper bound (in an average sense) for the 
state estimation error ˆt t tx x .
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Fig. 1. Block diagram of the Neuro Observer added 
with the correction terms. 

Training DNNO.  To guarantee a small enough state 
estimation error the adequate parameters of DNNO 
(2) should be selected. The stationary parameters A,
K1, K2 may be tuned during the so-called ”training”
process.  The weights Wi (i=1, 2) are quickly 
adjusted on-line by the special differential learning 
law.  In this section we consider in details the 
training procedure.  It may be conducted using the 
data for the experimental measurements in order to 
serve for the correction of the parameters of DNNO 
as well as for adequate selection of the initial 
conditions in the applied learning procedure.   
The weight matrices are updating with a special 
learning law is described by the equation  

0ˆ, , , ,t t t t tW W x u t y W (2) 

This statement is called the “learning law” (it is 
derived in the appendix section) in the DNN 
estimator and that is denoted by 

, , , ; , 1,i j i j i j
t t t tW k S sign W i j n (3) 

where St is any matrix with the condition 1ttr S
and

2
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C C W W W

e y Cx N C C I

(4)

and the matrix P is the positive solution for the 
algebraic Riccati equation given by

0 0 0
T

PA A P PRP Q (5)

 2. MATERIALS AND METHODS. 

2.1 Experimental Considerations 

The experimental data was obtained from the direct 
measures on the P. variotii biofiltration process 
(García-Peña, Hernández et al. 2001), during 60 days 
of operation; however the neuro observer was tested 
using the output data (in this case the current 
difference pressure) and obtained the other process 
variables: CE and CO2 concentrations.

Biofilter. The biofilter was inoculated with the fungal 
strain Paecilomyces variotii CBS115145. The 
experiments were performed in a biofilter consisting 
of a 1 m high cylindrical glass column with an 8 cm 
inner diameter. The volume of the filter bed was 2.9 
L. The reactor was filled with the inoculated packing 
material (vermiculite). The support was inoculated 
with a spore suspension an initial concentration of 
2*107 spores/g of initial dry mass. Air saturated with 
toluene was mixed with water-saturated air (70%) in 
order to obtain an initial toluene inlet concentration 
of 6 g/m3. The gas stream was introduced at the top 
of the reactor. Airflow was regulated at 2.5 L/min by 
means of mass-flow controllers (60061; Cole Parmer, 
Vernon Hills, IL, USA). The empty bed residence 
time (EBRT) was 1.15 min. In some experiments, 
water or medium were added at the top 
intermittently. Elimination capacity (EC) of the 
toluene (S) is defined as EC (g/m3h)=(Sin  Sout)* Air 
Flow/ V reactor. Efficiency (%) is equal to 100* (Sin

 Sout)/Sin.

Analytical Methods. Toluene concentrations in the 
inlet and outlet stream of the biofilter were monitored 
with an FID gas chromatograph (GowMac, Series 
580; Bridgewater, NJ, USA), equipped with a 1/8 in 
X 16 ft stainless steel column (Silar 10C, Grapac GC 
80/100; Altech, Deerfield, IL, USA). The operation 
conditions were: injector, 190°C; oven, 180°C; 
detector, 200°C; carrier gas (N2), 25 mL/min. 
Standard curves were obtained by injecting a known 
amount of toluene into a 500 mL calibrated glass 
bottle using a 10 mL liquid syringe. For the 
determination of the CO2 concentration, an IR gas 
analyzer (1A-AA1, MIRAN A Foxboro, 
Bridgewater, MA, USA) at 4.3 mm with a 0.75 m 
path length was used. The same IR gas analyzer at 
10.4 mm with a 20.25 m path length was also used to 
quantify NH3 concentration in the biofilter. 
Temperatures were measured by thermocouples T 
(CPSS-186G-12, Omega, Stamford, CT, USA) at the 
inlet, outlet and in the medium with a precision of 
±0.1°C. A pressure transducer (7352-16, Cole 
Palmer, Chicago, IL, USA) was used to obtain the 
pressure drop through the bed. The air containing 
toluene vapour was supplied to the biofilter by a 
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compressor. The CO2 concentration at the outlet of 
the biofilter was measured with an infrared analyzer 
(3400 Gas Analyzers; California Analytical 
Instruments, USA), the reported values correspond to 
the difference between the outlet and the inlet 
(ambient) CO2 concentrations. The pressure drop was 
determined online by using a pressure transducer 
(22370,1E11-2; Omega Engineering, Stanford, CA, 
USA). Data acquisition device was used to monitor 
flows, temperature, CO2 production, and pressure 
drop. The final biomass was determined by 
extracting the protein from the support. One gram of 
the packed material was mixed with 5 mL of 
phosphoric acid (0.5 M). The sample was boiled in a 
bath for 7 min and centrifuged at 5000 rpm for 15 
min. The protein in the solution was quantified using 
the Bradford method. 

2.2 Computational. 

Based on the input-output data for the biofilter 
process dynamic variables, the numerical algorithm 
was implemented via personal computer. The   
DNNO was trained and tuned by the trial and test 
method the result variables were compared with the 
experimental data obtained by off line way in case of 
CE concentration and on line way for the CO2
concentration, the last variable was used to compare 
the precision between the estimate an experimental 
states. Finally, the complete evolution for the CE and 
CO2 concentrations was plotted for both states 
(estimate and measure).  

3. RESULTS. 

The DNNO was designed and trained to estimate the 
elimination capacity in the fungal biofilter treating 
toluene vapours as the figure 2 clearly shows. In this 
figure the CE estimate state is close to the 
experimental CE data, which denotes the DNNO 
good performance.  
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Fig. 2.  Elimination capacity: estimate and measure 
states. 

The evolution for the estimate state of CO2
production and the experimental data are shown in 
the figure 3, the precision for the estimation is 
remarkable again because the trajectories follow the 
same pattern.  
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Fig. 3.  CO2 concentration: estimate and measure 
states. 

4. CONCLUSIONS. 

The results of the DNNO system shows that the use 
of this tool to measure the variables in this kind of 
processes is much simpler than is the performance 
were obtained of long and costly experiments.  
This method could be use to develop soft sensor 
based on the DNNO structure and this could be a 
way to sense the other variables in a process when 
the instrumentation could be cost.  
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 APPENDIX 
The proof for the Learning Law is described by 
Proof Define the state estimation error as  

ˆt t tx x   and the output error as  

2, 2,ˆ ˆt t t t t t t te y y Cx Cx C
 for which the following identities hold  

2,
T T

t t t tN C e C

 The dynamics of  t   is governed by the following 
ODE: 

(0) (0)

1, 1 2

ˆ
ˆ+ +

ˆ ˆ

t
t t t t t t

t t t t t t

dx
x A W x W

dt
f K y y K y ySIGN

(6) 

where  ˆ:t t tx x  . Define the following 
Lyapunov function as: 
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Using (6) implies 
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Notice that  
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use the matrix inequality 
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and, in view of the selection  1
2

TK P C   one gets 
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i i
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Substitution of all of these inequalities in (7) leads to 
the following inequality: 

2
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2
1 0 1 0 1

1
2 22 4 tr
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t t t

T
t t t

t t

V PA A P PRP Q

f x f n x Q

n k DW S

Taking the learning laws as  1 0t tk DW S
and multiplying each component of this identity by  

,i j
tWsign   we obtain (3) and (4) 

2
Q QP

V t t  . 
 Integrating both sides and dividing by  T  , we get 

2
0 0

0

1 /
T

TQ
T Q t Pt

t

Vdt V V T dt
T T

Taking the upper limit on  T   completes the proof. 

399



 

400


	TP09_85_Final_Manuscript.pdf
	emptypage0.pdf

