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1. INTRODUCTION 

The control of biotechnological processes is an 
interesting area due to the nonlinear time varying 
nature, thereby presenting a significant challenge. 

Several control schemes developed over the last few 
years, have been applied to bioreactors, including 
classic control, adaptive, nonlinear, predictive, 
optimal, fuzzy, etc.,  (Schüger, 2001). At the same 
time, due to the nature of the variables determining 
the quality of the product, the sensors available on 
line are scarce and expensive. This has made 
necessary to use different schemes for state 
estimation and parameters such as, Luenberger, 
Kalman filters, neuronal networks, as well as a 
number of models developed to achieve this  
objective. (Dochain, 2003; Romero, 2003).  

A knowledge of the process model is fundamental in 
order to develop estimators such as the Luenberger 
observer and the Kalman filter, in which, the 
determination of gain depends on the model. The 
concentration of the growth limiting substrate is one 
of the variables that determine the evolution of the 
system, regulating the growth of the concentration of 
cellular biomass and the desired product (Henson, 
2006). Usually, the limiting substrate diminishes as 
time advances and it tends to stabilize  at a very 
small value. So, the gain values of a Luenberger 
observer usually show a tendency towards a high 
value and thus affect the convergence of the 
estimation. 

This article deals with the analysis of this case, using 
a bioprocess model. By applying the differential 
variant of the Mean Value Theorem (Zemouche, et
al., 2005) to the dynamic of the estimation error, we 

are able to obtain a linear matrix inequality (LMI). 
Then by determining the working limits of the 
system variables we can obtain a space in which the 
gain of the observer is valid for the defined LMI.  

Gouzé, et al, report diverse works using the analysis 
of interval for the design of observers of limited error 
and observers of interval, using for this the definition 
of a minimum real error that will exist between the 
value of the vector of rates of well-known and real 
reaction. On the other hand, Rapaport (2003) 
presents a generalization to this type of observer, 
denominating parallelotopic observer, which has 
variant limits in the time for the state variables, under 
the hypothesis that limits available for the uncertain 
terms exist. 

In this work, part of the fact that the structure of the 
vector of rates of reaction is well-known, as well as 
the limits of the states of the system to define the 
interval of the rates of reaction, whose possible 
combinations form the vertices of the politope that 
will define the value of the gain matrix, which is 
solved by means of LMI.  

The estimation of states is accomplished by means of 
classic observers, such as the asymptotic observer 
and the Nonlinear observer.  

2. DYNAMIC MODEL OF A BIOLOGICAL 
REACTOR 

The dynamic model of bioreactors is classified in 
accordance with the level of detail employed to 
describe an individual cell. Many descriptions are 
based on the models of the kinetic structure using 
mass balance equations (Henson, 2006). The General 
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Dynamic Model is a general model in state space of a 
reaction system (Bastin and Dochain, 1990): 

QDD)( iK (1) 

where n : vector of concentrations of the 

components [mass/volume], mxnK : matrix of 
coefficients of production, of range R, m)( :
vector of reaction rates [mass/time x volume],
D : specific volumetric exit flow or dilution D= 
Fi/V, n

i is the concentration of the component 

fed to the reactor and nQ vector of output flow 
rate of the component  of the reactor in gaseous 
form per unit of volume.

3. OBSERVERS FOR BIOPROCESSES 

3.1 Asymptotic Observer.

The design of the asymptotic observer is based on 
the general dynamic model of bioprocesses (1). If the 
system is exponentially observable, and when the 
error of the observer arrives at a point of 
asymptotically stable equilibrium, the process can be 
observed. However, its dynamics are determined 
partially by the experimental conditions. This is 
called asymptotic observer developed by Bastin and 
Dochain (1990).  

The principle of the asymptotic observer is based on 
the transformation of the state considering the 
partition of T

ba , Q=[Qa,Qb]T and 
F=[Fa,Fb]T induced by the partition of the matrix 
K=[Ka,Kb]T the submatrix being Ka of complete 
range (rank(Ka)=R), therefore: 

bQibDbabKb

aQiaDbaaKa
),(

),(
(2)

Taking into account the following considerations: 
C.1 The number of states measured, q, should 

be greater or equal to the range of the 
matrix K, q R.

C.2 Q, D and the coefficients K are known. 
C.3 The reaction rates )(  are unknown. 

A linear change of coordinates is then defined. 

aa

baob A
(3)

Where Ao =-KbKa
-1 and under the previously 

mentioned considerations, the separation of the state 
variables into measured, 1 ,and not measured, 2 is
carried out, rewriting the vector b  as a combination 
of these new vectors: 

2211 AA (4)

And the dynamics are independent of the reaction 
rates )( :

)()( bibaiao QDQDAD (5)

Thus, the matrix A2, dim (N-p) x (N-q), has a left 
inverse , (A2

TA)-1 A2
T, and the asymptotic observer is 

defined by: 

)()(ˆˆ bibaiao QQAD (6)

)ˆ(ˆ
1122 AA (7)

Where A2
+ is the left inverse of A2, 2

ˆandˆ  are the 

estimates on line of  and 2.
As can be observed, there is an independence of the 
reaction rates. However, the speed of convergence is 
given by the dilution rate D. Furthermore the 
asymptotic observer is an open loop one. 

3.2 Nonlinear observers 

Consider the nonlinear state space model (Dochain, 
2003) defined by: 

),( uxf
dt
dx

(8) 

The measured variables are givenl by y=h(x). Thus, 
the general scheme of an observer of state is: 

)ˆ)(ˆ(),ˆ(ˆ yyxuxf
dt
xd (9)

where yx ˆ,ˆ  are the estimation of x, y by means of the 
state observer )ˆ(ˆ xhy with )ˆ(x  as the gain of the 
observer. 
If we define the observation error as xxe ˆ , the 
dynamics of the error will be: 

)ˆ()ˆ()ˆ(),ˆ(),ˆ( xhexhxuxfuexf
dt
de

(10)

Designing the state observer involves choosing an 
appropriate gain so that the dynamics of the error has 
the desired properties.  In order to accomplish this, 
deterministic considerations (Luenberger observer) or 
stochastic (Kalman filter) ones can be used, among 
others.  

One general type of state observer for the nonlinear 
system that defines the General Dynamic Model ecc. 
(1), is: 

]ˆ[)ˆ()(ˆ)ˆ(
ˆ

LQDDK
dt
d

i (11) 

where ˆ is the state estimation , nxq)ˆ( is the 

gain matrix that depends on  ˆ  and L is the matrix 
which selects the measured components of   defined 
from the analysis of observability. Thus, 1=L . This 
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equation is a copy of the model with a correction 
term proportional to the observation error of the 
measured states. The error of observation is defined 
as ˆ  and the dynamics of the error follows 
the differential equation: 

LDK
dt
d )ˆ()]ˆ()([ (12) 

4. LINEARIZATION OF THE GENERAL 
DYNAMIC MODEL 

4.1 Problem of the linearization. 
As the model is nonlinear, one option is to linearize 
(8), for example, around the observation error e=0: 

exCxxA
dt
de )]ˆ()ˆ()ˆ([ (13) 

where 
x
h

xC
x
f

xA )ˆ(,)ˆ(  are the Jacobians 

obtained when xx ˆ .

There are some conditions that can define the 
behavior of the observers, such as the linearization 
around 0  which is based on the Jacobian of the 
reaction rates and the observability of the model. 

])ˆ()ˆ([ LA
dt
d (14)

where: 

nDIKA
ˆ

)()ˆ( (15) 

The gain matrix  of the observer is defined in such 
a way that the roots of the equation will be negative. 
In every biotechnological process, the equilibrium of 
all the variables in fedbatch fermentations is only 
reached mathematically when the substrate reaches 
0, but, according to the type of nutrition, certain 
variables may reach stabilization, while others are 
not stabilized (for example, volume). Thus, if the 
value of the substrate has decreased to a stable value 
and this value is low (close to 0), then some of the 
Jacobians will be null when the system reaches 
equilibrium, therefore, the inverse of the Jacobian 
will be poorly conditioned.  

Example: As an example of this proposal, we can 
consider the case proposed by Bastin and Dochain, 
1990: 

0
)(

1
1 inDS

X
S

D
k

X
S

where the reaction rate is defined by the law of 
Contois: 

SXK
XS

c

max)(

A situation is presented where S1 . Real negative 
values are desired for the Luenberger observer gains,   
thus the proper values of LA )ˆ()ˆ( , 0},{ 21 :

)ˆˆ)ˆ()ˆ)(((
ˆ
1

2ˆˆ

1
2

2121
1

2

1211

SXXX
X

XS

kDD
k

Dk

Where 

2

2
max

2

2
max

ˆ )ˆˆ(
ˆ
)ˆˆ(

ˆ

ˆ
ˆ

SXK
XK
SXK

S

S

X

c

c

c

S

X

And the dynamic is defined as: 

01ˆˆ
1 2

11
nXS DI

k

If the estimated value of the substrate tends to low 
value, 

D
SKSS

S

in
)(

0

then there will be a term of the gain matrix ( 2 ) that 
tends to infinitum. 

D
Dk S 0ˆ 11

with a consequent effect on the convergence of the 
observer. 

4.2  Theorem of the Differential Mean Value 

The main idea to avoid this problem is to find a 
polytope that covers the family of all possible 
situations of the model, and then design the gains of 
the observer that guarantees global convergence by 
using Linear Matrix Inequalities (LMI).  

It will be used the defferential mean value theorem to 
obtain the polytope from the observer error 
equations. 

 The Differential Mean Value Theorem in n is 
defined as: 

Theorem 1 Being nf : . Being nba,
Assuming that f is differentiable in Co(a,b). Then, 
there is a constant ),( baCoc , ac , bc  thus: 

))((')()( bacfbfaf (16)

Where 
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nx
f

x
ff
1

' (17) 

Since DMVT is not applicable to a vector function, 
in Zemouche et al (2005) the following is proposed.  
Being qnf : a vector function, if 

f(x)=[f1(x),…,fq(x)]T, where n
if :  is the i-th

component of  f. then: 

q

i
iq xfiexf

1
)()()( (18) 

Where the canonic base Eq is defined as: 

siieieE T
qqq ,,1,)0,,0,1,0,,0)(|)(

Based on the above, Zemouche, et al (2005) propose: 

Theorem 2. Being qnf : . Being nba, .
Assuming that f is differentiable in Co(a,b). Then, 
there are constant vectors ),(,,1 baCocc q ,

aci , bci  , i=1,..,q, thus: 

)()()()()()(
,

1,
bac

x
f

jeiebfaf
nq

ji
i

j

iT
nq (19) 

Applying this concept to the dynamics of the 
observation error for the model of (13), by DMVT 
there exists )ˆ,(* Co :

)ˆ(*)()ˆ()( (20) 

As n*)(
 then: 

ˆ*)()(*)(

1 i

n

i

T
n ie

(21) 

Where i , {i=1,…,n} are the individual states of the 
model. If we define: 

i
i th *)()(

the dynamic of the error is defined as: 

LDthieK
dt
d

i

n

i

T
n )ˆ()()(

1
(22) 

If we redefine : 

DthieKth

ththth

i

n

i

T
n

n

)()())((

)(,),()(
)ˆ(

1

1

Then the dynamic of the error will be: 

Lth ))(( (23)

As the states are positive, limited variables and are in 
relation to the maximum value of the entering 
concentration (Bastin and Dochain, 1990): 

,| )(max)(
nj

ij
ninii k

k
aSa (24)

Where ijk , i=1,…n, j=1,…m, is an element of the 

production coefficient matrix, and njk  is the element 
of the matrix relating to  S. 

Therefore, if the assumption is that the reaction 
kinetics follow a continuous and differentiable 
model, we can deduce that hi(t) is limited: 

)((minand))((max (min)(max) thhthh itiiti (25)

Therefore, if we have a polytope of 2n vertexes 
composed of all possible combinations of the values 
of hi(min) and hi(max) : 

Applying the Lyapunov function  

PtVtV T))(()(

Where P>0 is a symmetric matrix. The error of 
observation will converge exponentially to zero if 
V(t)>0 and V (t)<0, 0 :

LPthPPLPthtV

PPtV
TTTT

TT

))(())(()(

)(

If PR T y P=PT>0 then: 

)))(())((()( LRthPRLPthtV TTTT

If the LMI 

0
0))(())((

P
LRthPRLPth TTT

(26)

is feasible in ia {hi(min), hi(max)}, then V (t)<0 and 
the gain is determined by: 

RP 1
(27) 
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Since LMI is feasible in the domain defined by 
= 1,…, n| ia {hi(min), hi(max)}, the values of the 

gain will allow the convergence of the observer. 

5. EXAMPLE 

In order to show the results of the application of the 
main results of Zemouche, et al., (2005) in the 
general dynamic model for bioprocesses, let us 
consider the following system (Farza, 1997). 

0

0

10

01

21 inDS
P
S
X

D
X
X

kk
P
S
X

(32) 

Where n=3, k1 y k2 are production coefficients and 
the specific rates of growth and biosynthesis are 
defined by  

PK
K

SK
S

K
SSK

S

p

p

S

I
S

2

max
2

1

max and

KS1 y KS2 being constants of saturation  and KI  y KP
being constants of inhibition. The values of these 
parameters used for the simulation of the model are 
indicated in Table 1:  

Table 1. Simulation values

k1=5 KS1=1 g/l Sin=45 g/l 
k2=10 KS2=5 g/l X(0)=0.5 g/l 

max =0.25 h-1 KI= 150 (g/l)2 S(0)= 40 g/l 

max =0.1 h-1 KP=10 g/l P(0)=0.25 g/l 

Taking into consideration that L=[1 0 0], in other 
words, that the concentration of the biomass (X) is 
measured on line. The evolution of the states of the 
model is shown in the following figure, as well as the 
behavior of the dilution rate D. 

Asymptotic Observer 
In order to satisfy the condition C1, the measurement 
of the product is considered (P), thus 1 =[X,P] and 

2 =S:

10
1

22

0

ˆˆˆ
ˆ

AAS
DAD in (33)

Nonlinear Observer 
The observer for the model of the ecc (32) is defined 
as:

)ˆ()ˆ( 11QDDK i (34) 
Where X1  and the gain matrix  can be 
defined by different methods such as Ackermann 
(Luenberger Observer) or the solution of the Riccatti 
equation (Kalman Filters) may be used.  

Fig. 1 Evolution of the states of the model and the 
dilution rate.  

As we can see in figure 1, the substrate tends to low 
values due to the behavior of the dilution rate, 
therefore, in this case we calculate the gain matrix 
value  applying the previous concepts of 
DMVT.

If: 

n

i
ni

T
n DIthieKth

1
)()())(( (35)

Where n=3 and 

i

i
i X

X

h )(

)(

, i=1,…,n

Since Smax=Sin, then the limits of the concentrations 
are: X={0, 9}g/l, S={0, 45}g/l, P={0, 4.5}g/l. The 
maximum and minimum values of hi are: 

0.0385-0.00120.0621
00.0079-0.1891

9.5x10-0.00190.0019
00.02070.0227

(max)

8-(min)

i

i

h

h

The LMI 

0
0))(())((

P
CRthPRCPth TTT

where h(t)=(hi(min),hi(max)), PR T  and P=PT , it is 
feasible in accordance with the development using 
Matlab and the solution provides the gain matrix 
values: 

=[ 0.9736  -1.5926  -0.1314]T.

Figure 2 shows the error of observation using the 
development of the asymptotic observer and the 
nonlinear observer which uses the results obtained by 
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means of the LMI as the gain matrix, thus presenting 
a better behaviour over a period of time. 

Figure 3 shows the evolution of the error when the 
existence of a variation in the parameter is simulated 

max =0.255 h-1 and noise is present in the 
measurement, where we can observe that the 
asymptotic observer does not present a good 
response in the presence of noise. 

6. CONCLUSIONS 
Bioprocesses are nonlinear systems in which the 
estimation of states is important in order to obtain a 
better production. To this end, the asymptotic 
observer, Luenberger and Kalman filter are the most 
widely used. The Differential Mean Value Theorem 
was applied to calculate the gain matrix of the 
observer and to determine its performance by 
comparing it with the asymptotic observer. 
Furthermore, the asymptotic observer requires that 
the states measured be at least equal to the number of 
reaction rates, for the example, two are required, 
while the nonlinear observer only requires the 
measurement of one state.  

This article is a product of the doctoral thesis being 
developed under the agreement between the 
Universidad Politécnica de Valencia, España and the 
Dirección General de Educación Superior 
Tecnológica de México. This research has been 
partially supported the European Union and the 
Spanish government (FEDER-CICYT DPI 2005-
01180) 

Fig. 2. Behavior of the error in the estimation of the 
substrate eOA: error using an Asymptotic Observer, 
eONL  error using a Nonlinear Observer. 
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