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Abstract: This paper proposes a transitions validation method between system functional 
states in drinking water plant monitoring. The method is based in fuzzy entropy measure. 
The water plant is monitored by means of fuzzy classification method. The classification 
algorithm provides the membership degrees of the instant system data (individual) to all 
possible identified functional states (classes) of the water plant. Usually, the higher 
membership degree determines the recognized class. However, this criterion leads to 
uncertainty levels when decision is based on a bad conditioned fuzzy set due to similar 
membership degrees. The proposed method validates the recognized functional state in 
presence of uncertainty. Copyright © 2007 IFAC  
 
Keywords: Fuzzy Entropy Measures, Decision Index, Transition Validation, Water Plant 
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1. INTRODUCTION 

 
Water industry is facing the problem of producing 
quality water at lower costs. In drinking water to 
ensure the water supply to the population, in terms of 
quality and quantity, while protecting the 
environment. 
 
The drinking water plant object of this study is the 
"SMAPA" (SMAPA,2005) of Tuxtla city in Mexico. 
For this station we found worthy to include an 
automatic monitoring system in order to program a 
proper maintenance due to the irregular performance 
observed in the plant with the actual one. The 
objective is to establish a preventive and flexible 
maintenance according to the current system 
functional state instead of nowadays maintenance 
based on a fixed program.  
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Finding a general mathematical model for 
biotechnological process is somehow complex. 
Moreover the model should be adequate for 
monitoring, which is otherwise evident. On the other 
hand, the existence of large quantity of historical data 
of that plant offers the possibility to apply fuzzy 
classification methods for the monitoring system. 
Using this approach, the several functional states 
(classes) of the SMAPA plant are identified. 
Nevertheless; to eliminate false alarms and spurious 
classes, the transition validation method proposed in 
this document is applied in order to improve the 
monitoring performance.  
 
The dynamic process monitoring based on data 
classification consists in the identification of the 
current class associated to each functional system 
state. When the system is monitored on-line the aim 
is to recognize the class for the new individual (set of 
data) at the present time. The fuzzy classification 
methods provide the adequacy degree of the 
individual to each class under the form of a fuzzy set. 
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Usually, the logic applied when selecting a class 
among all possible classes is to take the one which 
the individual shows the maximum membership 
degree. Making a decision among all possible classes 
is particularly critical at transitions times between 
classes.  
 
In biological process monitoring uncertainties may 
be caused by the inaccuracy in measures, real 
process disturbances or the inherent algorithm 
variances. In such situations, the fuzzy set 
representing the individual adequacy to each class 
could be badly conditioned in order to make a 
decision accurately. Therefore, we found necessary 
to introduce a criterion that may help to improve the 
state transition validation reliability, as a contribution 
to health monitoring.  
 
Previous studies were carried out, focused in 
identifying the process states and their correspondent 
transitions (Kempowsky et al., 2006). However, 
those approaches have not taken in account the 
problem of uncertainty in transitions between 
classes.  
 
The purpose of that study is so to apply a 
methodology for decision validation in presence of 
uncertainty. To reach that aim, this approach is 
focused in the entropy theory since the objective is to 
make a reliable decision based on the present 
information provided by the classifier.  
 
The entropy theory was introduced by Shannon 
(1948) as a measure of information in the 
probabilistic domain. DeLuca and Termini (De Luca 
and Termini,1972) proposed an extension of 
Shannon (Shannon,1948) theory to the non 
probabilistic domain of the fuzzy sets. This approach 
is largely used in literature as a proved information 
index.  
 
The fuzzy entropy is a measure of information of a 
fuzzy set compared to a crisp set, taking in account 
that the crisp set is the most informative one. 
Though, the decision theory problem studied in this 
paper is not represented by the comparison to a crisp 
set but to a singleton, since the singleton is the most 
informative set in decision making. As a result, the 
validation method is based on fuzzy entropy (Diez-
Lledo and Aguilar-Martin, 2006) which is defined in 
the context of the classical fuzzy entropy. This 
approach provides an instantaneous information 
measure which allows making a reliable decision in 
presence of uncertainty when validating a state 
transition. 
 
In section 2 a brief plant description and the initial 
monitoring system are presented.  The proposed 
transition validation method is explained in section 3. 
The results of the applied method to the SMAPA 
plant are showed in section 4. Finally the conclusions 
and perspectives are presented. 

2. DRINKING WATER PLANT MONITORING 
 

2.1 Brief Drinking water Plant Description 
 
The “SMAPA” water treatment plant (Tuxtla city, 
Mexico), provides water to more than 800,000 
habitants and has a nominal capacity to process 800 
l/s of water per day. The complete usual chain 
comprises the 5 great following units: pre-treatment, 
pre-oxidation, clarification, disinfection, and 
refining.  Raw water is collected at the river 
“Grijalva” and pumped to the treatment plant. Water 
treatment plant includes two main process units, 
clarification and filtration. The behavior plant 
depends of the turbidity parameters and the chemical 
reagents consummation. There are two principal 
types de maintenance: 
 
Decanters maintenance: The critical variable is the 
water turbidity at the input and the exit of the 
decanters (before filtering). The sludge accumulation 
in decanters is considered a non desired state of the 
plant. During the rain season eventually there is a 
solids accumulation which blocks the sludge removal 
system. Consequently, a part of the solids is 
transferred to the filtering phase instead of being 
evacuated properly. Nowadays decanters 
maintenance is predetermined in February-March. 
 
Filters maintenance: The filters maintenance is 
programmed before the rain season so as to ensure 
the filter proper conditions at that period. As well, 
each filter has a backwashing task which is executed 
in function of the inlet and outlet filter pressure. 
 
 
A monitoring system of the process state would 
allow a flexible maintenance. 
 
 
2.2 Monitoring Using Classification Methods 
General Theory 
 
The use of the classification algorithms into the 
systems monitoring allows obtaining interpretable 
results and offers useful information for decision 
making in state system dynamics. 
 
At first step (learning), the objective is to find, 
through the analysis of historical data, the 
characteristics of the behaviour which will permit to 
identify the system states (Fig.1). At a second step, 
the data recognition allows us to identify on line the 
current system state.  
 
The data pre-treatment is necessary and includes 
traditional operations of Control Theory and Signal 
Processing. In all cases, a set of variables that 
describe the system ('descriptors', often called 
'attributes') summarizes the accessible information 
provided to monitoring. The current set of descriptors 
is called individual. Monitoring algorithms that 
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include fuzzy classification methods provide the 
membership degree of the individual to each system 
state (class). 
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Fig. 1. General monitoring scheme 
 
 
2.3 Drinking Water Plant Monitoring 
 
The LAMDA (Learning Algorithm for Multivariate 
Data Analysis) (Aguilar and Lopez,1982; Isaza et 
al.,2006) method was selected for data fuzzy 
classification. This method has a comparable 
performance with other very recognized 
classification methods (e.g. neural networks, gk-
means). Moreover, LAMDA offers the advantage of 
making a not supervised classification without giving 
the a priori number of classes. The algorithm shows a 
short training time and the parameters selection is 
intuitive relatively simple (Isaza et al.,2006). These 
advantages give the possibility to obtain a model for 
monitoring without the need of a precise knowledge 
on the system dynamics. Indeed, this is interesting 
for the SMAPA monitoring station since there is no a 
priori knowledge of the system states. 
 
Training data base is building up by 105 samples 
(from November 2000 to mid-February 2001). Four 
variables of the plant are chosen to identify the state: 
turbidity at the decanters input (TurbE), filter 
backwashing frequency (Retrolavag) and the 
coagulant dose added (Dose). The fourth descriptor 
is calculated as the difference between the descriptor 
TurbE and the output turbidity value (TurbEAF). 
 
By using the LAMDA classification method with not 
supervised training (the number of classes is not 
established a priori), the functional states and alarms 
of the system are identified. After that, the plant 
expert associates the classes to functional states and 
alarms (Hernandez,2006). The classification results 
are presented in section 4. 
 
The alarm class indicates the need for filter 
maintenance so as to prevent faulty operation states 
(high sludge, and critical mode). This alarm suggests 

preventive decanters maintenance long before the 
actual programmed maintenance. 
Previously, during the faulty states described before 
(high sludge and critical mode), the filter 
backwashing frequency and the coagulant dose 
should be increased in order to guarantee the quality 
of drinking water provided. Therefore, this implies 
additional costs and filter damaging. Since the alarm 
is taken in account the preventive maintenance 
avoids these critical situations. 
 
However, the classification algorithm finds out a 
spurious class. Moreover, there are false alarms 
occurring during the normal state. For these reasons 
is necessary to include a transition validation method 
as we propose in the next section. 
 
 

3. TRANSITIONS VALIDATION METHOD 
 
3.1 Algorithmic structure 
 
This paper proposes to analyse the quantity 
information of the membership degrees vector 
obtained as result of the fuzzy classification 
algorithm. When the monitoring system recognizes a 
functional state, the validation approach estimates the 
information decision degree (Eq.4). If this value of 
information is smaller than the uncertainty level 
(Eq.5) the transition is not validated and the decision 
is postponed. 
 
The validation of a transition applies whenever at 
some instant t+R a higher information value that the 
uncertainty level at that time is reached.  The general 
flow chart of the transition state validation method 
proposed is presented in Fig. 2 
 

Fig. 2. Validation state scheme 
 
Delay (R) permits to eliminate the noises or 
disturbances effects present during the transitions 
between functional states. In certain cases, due to the 
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inaccuracy in measures, the monitoring system may 
oscillate between two classes. This generates false 
alarms; hence these oscillations must be eliminated 
in an automatic way. 
 
3.2 Fuzzy Decision Validation Index 
 
Non probabilistic entropy functions indicate the 
fuzziness degree of a given discrete finite set that can 
be defined by the vector [ ]Tci µµµ=µ ,,...,1  where 

10 ≤µ≤ i .   
 
DeLuca & Termini proposed the following set of 
axioms for non probabilistic entropies so that a 
function ( )µH   can be considered as an entropy 
measure if it satisfies the following axioms. (DeLuca 
and Termini,1972;Trillas and Alsina,1979;Kosko 
,1986; Pal and Bezdek,1993) 
 

P1 :  { }1,0)(0)( ∈⇔= ixH µµ  

P2 :  ( ) 2
1)(max =∀⇔ ixiH µµ  

P3 : µηµη SHH ≥⇔≤ )()(  

(1) 

 
The order relation S≥   is called "sharpness". A fuzzy 
set η is considered sharper than the µ fuzzy set if:  

)()(.)( xxx µ≤η⇒≤µ 50
 

and )()(.)( xxx µ≥η⇒≥µ 50
 

They proposed as fuzzy entropy the function 
(DeLuca and Termini,1972): 
 

∑ µ⋅=µ
C

i
iSKH )()(

 
(2) 

 
Where  
 

)1ln()1(ln)( iiiiiS µµµµµ −⋅−+⋅= .  
 
This entropy has proven to be useful in many 
situations to quantify the uncertainty of fuzzy sets 
(fuzziness measure). 
 
To make a decision based on the membership 
functions that define a fuzzy set, the degree of 
fuzziness must be considered. As a result the fuzzy 
entropy shall be used to propose a decision validation 
index, as a measure of specificity (Garmendia et 
al.,2003). According to this remark, the information 
to make a decision is the complement of fuzzy 
entropy. 
 
Generally the choice that leads to the decision 
corresponds to the maximum membership 

[ ])(max iM xµµ = . Then the difference between the 
membership of the element that is chosen by the 
decision process and the membership of the other 
elements gives rise to a fuzzy set 

( ) { } MiiM ≠µ−µ=µδ   representing the adequacy of 
each element to the actual decision associated to 

[ ]iM µ=µ max .    

Some modifications to the De Luca and Termini 
axiomatic definition have been proposed (Diez-
Lledo, Aguilar-Martin, 2006). Essentially they 
consist in replacing the "sharpness" relation by 

µη F≥ ⇔ ( ) ( )µ≥η RELREL , and to take as 
reference the singleton instead of the corresponding 
crisp set. The REL relation, or reliability of a fuzzy 
set, [ ]T

ci µµµ=µ ,,...,1 , is given by 

( ) ( )[ ]µδ+µ=µ cardMREL .  As a result this fuzzy 
entropy is defined by: 

( )

e
e

M

i

M

i
i

C
H µ

δ

µ

δ
µ

⋅⋅

⋅
−=

∑
1)(  (3) 

 
Finally the information index proposed is the 
following. where C is the number of classes: 
 

( )

e
e

M

i

M

i
i

D
C

I
µ

δ

⋅µ⋅

⋅δ
=µ

∑
)(  (4) 

 
 
3.3 Uncertainty level 
 
The memberships of an individual to all the classes 
of the partition are a finite discrete fuzzy set 

{ }C
ii 1=µ=Γ . Whenever a threshold ζ  of 

membership has been introduced, it can be viewed as 
the membership to a non informative class (NIC) 
such that if ζ=µ<µ∀ NICii; , the 
corresponding element is assigned to that NIC class, 
meaning that the information is not sufficient to 
assign it to any class. 
 
By choosing as fuzzy classification method LAMDA 
(Aguilar-Martin and Lopez, 2001; Isaza et al. 2006), 
the value of the threshold that defines the NIC class 
is automatic. Therefore, the information, or 
uncertainty level, related to the NIC class is  
 

( ) ( )

e
ee

M

NICi

M

NIC
Mi

i

DNIC
C

I
µ

δ

≠

δ

⋅µ⋅

⋅δ+⋅δ
=

∑ )(

 
(5) 

 
where C includes the NIC class. 
 
 
As stated in the flow chart of figure 1, in a sequential 
classification, whenever a change of class occurs, it 
will only be considered meaningful if the information 
of the corresponding fuzzy set is greater than the 

minimum, i.e. DNICD II >  (for security reasons a 
margin ε is considered ε+> DDNIC II ) 
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4. RESULTS APPLYING THE TRANSITION 
VALIDATION MEHOD 

 
Initially, the states identification of the SMAPA plant 
is obtained using the plant descriptors mentioned in 
Section 2.  The classification results without the 
transitions validation are presented in Fig. 3 
corresponding to the training phase of the fuzzy 
classification algorithm. The training is not 
supervised, i.e. that the number of classes is not 
established a priori. 

 
Fig.3. LAMDA results in training phase without 

states validation (2001-2002) 
 
As a result, 6 classes were identified: 2 classes 
correspond to normal operation states (end of rain 
period and normal), one corresponds to the alarm and 
two classes were associated to non desirable states 
(high sludge and critical state). Class 6 was 
considered a spurious or badly conditioned class. The 
result of the on-line process monitoring using the 
system states recognition suggests the decanters 
maintenance 87 days before that the actual 
programmed maintenance. 
 
To validate the classes and to retire the badly 
conditioned decisions, the transition validation 
method proposed was applied.  At every moment, the 
minimum information level to validate a transition 
was calculated by means of the uncertainty degree, 
as described in Section 3. To apply this method, it is 
appropriate to choose a security value (ε). ε = -
0.0018 for the training data set permits not to 
validate the class 6. As it will be shown later, this 
value is representative for the system regular 
operation and not only of the training data set. All 
the other transitions are correctly validated. The 
transitions validation results obtained for the training 
data set are shows on Figure 4. 
 

RAIN
NORMAL

ALARM
CRITICAL

SLUDGE

NOT VALIDATION

SLUDGE

NOT VALIDATION:     VALIDATION:NOT VALIDATION:     VALIDATION:

INFORMATION DECISION:      UNCERTAINTY LEVEL:INFORMATION DECISION:      UNCERTAINTY LEVEL:

Fig.4. States validation results for training data 
(2001-2002) 
 
In the recognition phase, two data sets corresponding 
to years 2001-2002 and 2003-2004 were treated. The 
data were analyzed in a sequential way in order to 
simulate on line operation. The Figure 5.a. and 
Figure 5.b. present the variables evolution and the 

classes for the low water period in 2001-2002. This 
figure represents the recognized states and the alarm. 
The Figure 5.c. shows the correspondent transition 
validations. Class 6 was automatically invalidated. 

 
Fig.5. a. System variables (2001-2002) 

 
Fig.5.b. Recognized states (without the transition 

validation) (2001-2002) 

CRITICALCRITICAL

INFORMATION DECISION:      UNCERTAINTY LEVEL:INFORMATION DECISION:      UNCERTAINTY LEVEL:

Fig. 5.c. States validation results: data test 2001-2002 

 
The states recognition to period 2003- 2004   was 
carried out in the same way as period 2001-2002. 
The system variables evolution is showed in Figure 
6.a.  The Figure 6.b. shows fuzzy classification 
results.  The proposed validation method results for 
this period are presented in Figure 6.c. The class 6 
was automatically invalidated in all cases, so proving 
that class 6 is non informative.  The maintenance 
alarm is also presented before to the actual 
programmed maintenance. 
 

Fig.6.a. Analyzed variables (2003-2004)  

 
Fig.6.b. Results from LAMDA: phase of test without   

validation of states (2003-2004) 
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NOT VALIDATION

CRITICAL
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NOT VALIDATION:     VALIDATION:NOT VALIDATION:     VALIDATION:

INFORMATION DECISION:      UNCERTAINTY LEVEL:INFORMATION DECISION:      UNCERTAINTY LEVEL:

 
Fig.6.c. States validation results: data test (2003-

2004) 
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The validation method has been also applied to a 
data set where the actually applied coagulant dose 
has been replaced by the calculated value using a 
neural network (Hernandez and LeLann,2006), in 
order to be placed in the same conditions as the on 
line operation. In this case, false alarms are also 
removed by the transition validation method (Figure 
7). The systems states identification and validation is 
carried out without changing the ε parameter value.  
 

RAIN

NORMAL 1

ALARM
SLUDGE

NOT VALIDATION

NORMAL 2

FALSE ALARM

INFORMATION DECISION:      UNCERTAINTY LEVEL:INFORMATION DECISION:      UNCERTAINTY LEVEL:

NOT VALIDATION:     VALIDATION:NOT VALIDATION:     VALIDATION:

CRITICAL

 
Fig.7. States validation results: data test 2001-2002  

(Dose calculated) 

 
In this experiment, three classes have been associated 
with normal operation (end of rain, normal 1 and 
normal 2). Class 6 is now an alarm.  In the example a 
false alarm occurs if no (normal 1 state).  This 
problem is eliminated as previously by the method 
here proposed. 
 
 

5. CONCLUSIONS AND PERSPECTIVES 
 
A new method for transition validation is introduced. 
This approach provides a criterion for decision 
making when associating a class to an individual in 
presence of uncertainty or bad conditioned 
individuals. As a result, false alarms are eliminated.  
 
Moreover, the effect of disturbances has been 
minimized when eventually they lead to non reliable 
transitions. In consequence, the system monitoring 
becomes more robust since apparent transitions due 
to inaccuracy measures are not validated. 
 
One of the advantages of the method is also that the 
transition may be validated instantaneously since the 
method uses the output of the fuzzy classifier, which 
is not a big amount of data, and the computing time 
is as well reduced. On the other hand, some further 
studies are looking forward to introducing historical 
individuals memberships so that transitions could be 
validated based on finite time sliding window 
observations analysis.  
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