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Abstract: In this paper the problem of optimal state estimation in a biological
wastewater treatment process (WWTP) is considered. The standard Kalman filter
(KF) and its extensions: the extended Kalman filter (EKF) and the unscented
Kalman filter (UKF), are used to estimate the unmeasured state. The prediction
of the state with the standard KF is poor due to the high nonlinearity of the
biological WWTP. Thus, the nonlinear estimation approaches are focused, with a
comparison between the EKF and the UKF. The simulation results show that the
UKF provides slightly better state estimate than the EKF for both an observable
process and an unobservable process. Copyright c° 2007 IFAC
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1. INTRODUCTION

State estimation of dynamic systems is an impor-
tant prerequisite for safe and economical process
operation. There is a wide range of techniques
in the literature designed for state estimation in
both linear and nonlinear dynamic systems. The
Kalman filter (KF) (Kalman 1960) is one of the
most widely used methods for state estimation
and tracking due to its simplicity and robustness.
The standard Kalman filter is the algorithm of
choice in state estimation for linear systems. The
approach can be used to reconstruct variables
that are not measured and to reduce the effect
of noise on the available measurements. However,
since most practical systems involve nonlinearity
of one kind or another, the problem of nonlinear
estimation is extremely important. Therefore, the
Kalman filter was early on extended in a some-
what ad hoc way to include nonlinear dynamic
models in the extended Kalman filter (EKF). For
the computation of the filter gain, the EKF simply
linearizes the nonlinear models about the cur-
rent estimate so that the standard Kalman fil-
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ter gain computation algorithm can be applied.
Although the EKF maintains the elegant and
computationally efficient recursive update form of
the standard KF, the EKF typically works well
only in the region where the first-order Taylor
series linearization adequately approximates the
nonlinear probability distribution (Crassidis &
Junkins 2004). To overcome this limitation, Julier
et al. (1995) proposed the unscented Kalman filter
(UKF) as an alternative to the EKF in nonlinear
estimation. The UKF generates a population of
so-called sigma points based on the current mean
and covariance of the state, and permits the direct
propagation of the mean and covariance through
the actual nonlinear system. The applications and
comparisons of the EKF and the UKF have been
discussed in a number of studies, e.g. Wan &
van der Merwe (2000) and Romanenko & Castro
(2004).

In the last decades, due to the increasingly strict
requirements on treated wastewater, the need to
monitor systems and automatically control bio-
logical wastewater treatment processes (WWTPs)
is rapidly increasing. To reconstruct the state
of the system from the few available measure-
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ments and to control important biological vari-
ables, appropriate algorithms have to be de-
veloped. Some state estimation algorithms for
WWTPs have been described in Dochain & Van-
rolleghem (2001), and Olsson & Newell (1999).
Also, in Keesman (2002), Boaventura et al. (2001),
Lukasse et al. (1999), and Zhao & Kümmel
(1995), the EKF has been applied to simplified
WWTP models, but the application of the UKF
to WWTPs is not studied much in the literature.

The objective of this study is to demonstrate (i)
the application of the standard KF, the EKF,
and the UKF to state estimation of a biological
WWTP and (ii) the differences in performance of
these estimation approaches. As an example, a ni-
trogen removal process described by the Activated
Sludge Model No. 3 (ASM3) (Gujer et al. 1999)
is considered. The state estimation is carried out
for the complete ASM3 model.

The paper is organized as follows. In Section 2, the
Kalman filter based state estimation approaches
are summarized. In Section 3, the approaches
are illustrated on a wastewater nitrogen removal
process. The comparison between the EKF and
the UKF is shown. Finally, some conclusions are
drawn in Section 4.

2. STATE ESTIMATION APPROACHES

2.1 Standard Kalman filter (KF)

To better understand how nonlinear estimators
work, it is useful to focus on the linear case first.
A linear system, approximated in discrete time is
given as

xk+1 =Axk +Buk +Gwk

yk =Cxk + vk

where xk ∈ Rnx is the state, uk ∈ Rnu is the con-
trol input, and yk ∈ Rny is the controlled output.
wk ∈ Rnw and vk ∈ Rnv present the process noise
and measurement noise, respectively. They are
assumed to be zero-mean Gaussian noise processes
wk ∼ N (0, Qk) and vk ∼ N (0, Rk).

A standard KF formulation for estimating the
process state x, where x is assumed to be initially
normally distributed with expectation x̂1|1 and
covariance P1|1, is given by:

x̂k+1|k =Ax̂k|k +Buk

Pk+1|k = APk|kA
T +GQkG

T

Kk+1 =Pk+1|kC
T
¡
CPk+1|kC

T +Rk+1

¢−1
x̂k+1|k+1 = x̂k+1|k +Kk+1

¡
yk+1 − Cx̂k+1|k

¢
Pk+1|k+1 = (I −Kk+1C)Pk+1|k (I −Kk+1C)

T

+Kk+1Rk+1K
T
k+1,

where yk+1 denotes the actual measurement at
step k+1. The Kalman gain Kk is chosen to min-
imize the a posteriori estimate error covariance
Pk|k. Note that the equation for the a posteriori
state covariance Pk|k is called the stabilized imple-
mentation, because it has better numerical prop-
erties than some other frequently used equations
for Pk|k, e.g. Pk|k = (I −KkC)Pk|k−1.

2.2 Extended Kalman filter (EKF)

For several reasons, state estimation for nonlinear
systems is considerably more difficult and admits
a wider variety of solutions than the linear prob-
lem (Crassidis & Junkins 2004). In this paper, we
discuss two different approaches to achieve esti-
mation for nonlinear systems: the method of EKF
uses the recursive update form of standard KF by
linearizing the nonlinear model at each time step,
and the method of UKF uses a set of appropriately
chosen weighted points to parameterize the means
and covariances of probability distributions.

The nonlinear system is described by the stochas-
tic model

xk+1 = f (xk, uk, wk)

yk = g (xk, uk, vk)

where x1 ∼ N
¡
x̂1|1, P1|1

¢
, wk ∼ N (0, Qk), and

vk ∼ N (0, Rk). x̂1|1, P1|1, Qk, and Rk are as-
sumed to be known.

The EKF algorithm can be summarized as the
following set of equations:

x̂k+1|k = f
¡
x̂k|k, uk, 0

¢
Pk+1|k =AkPk|kA

T
k +GkQkG

T
k

Kk+1 = Pk+1|kC
T
k+1

¡
Ck+1Pk+1|kC

T
k+1

+Hk+1Rk+1H
T
k+1

¢−1
x̂k+1|k+1 = x̂k+1|k +Kk+1

¡
yk+1 − g

¡
x̂k+1|k, uk+1, 0

¢¢
Pk+1|k+1 = (I −Kk+1Ck+1)Pk+1|k (I −Kk+1Ck+1)

T

+Kk+1Hk+1Rk+1H
T
k+1K

T
k+1,

where matrices Ak, Gk, Ck, and Hk are defined
as the following Jacobians:

Ak =
∂f

∂x

¯̄̄̄
x̂k|k,uk,0

, Gk =
∂f

∂w

¯̄̄̄
x̂k|k,uk,0

Ck =
∂g

∂x

¯̄̄̄
x̂k|k−1,uk,0

, Hk =
∂g

∂v

¯̄̄̄
x̂k|k−1,uk,0

.

2.3 Unscented Kalman filter (UKF)

We initiate the UKF by

x1 ∼ N
¡
x̂1|1, P1|1

¢
.
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Fig. 1. Model diagram of the nitrogen removal plant implemented in Modelica/Dymola.

First, an augmented state is defined as

xak =

⎡⎣ xk
wk

vk

⎤⎦ .
The mean and covariance of the augmented state
vector are

x̃k|k =

⎡⎣ x̂k|k0
0

⎤⎦ , P̃k|k =
⎡⎣ Pk|k 0 0

0 Qk 0
0 0 Rk

⎤⎦ .
The size of x̃k|k is nx̃ = nx + nw + nv. Introduce
matrix V as the Cholesky root of (nx̃ + λ) P̃k|k:

V TV = (nx̃ + λ) P̃k|k

where λ = α2 (nx̃ + κ)−nx̃ is a scaling parameter
(typically α ∈

£
10−4, 1

¤
and κ = 0). Let Vi denote

column i of matrix V .

Next, we define 2nx̃ + 1 sigma points X̃ i
k|k with

corresponding weights Wi as follows:

X̃ 0
k|k = x̃k|k

X̃ i
k|k = x̃k|k + Vi i = 1, . . . , nx̃

X̃ i
k|k = x̃k|k − Vi−nx̃ i = nx̃ + 1, . . . , 2nx̃

W 0
m = λ/ (nx̃ + λ)

W 0
c = λ/ (nx̃ + λ) +

¡
1− α2 + β

¢
W i

m =W i
c = 1/ [2 (nx̃ + λ)] i = 1, . . . , 2nx̃

where β is used to incorporate prior knowledge
of the distribution (with Gaussian distribution
β = 2).

Define X i
k|k to be the vector of the first nx ele-

ments of X̃ i
k|k, Wi

k|k to be the vector of the next

nw elements of X̃ i
k|k, and Vik|k to be the vector of

the last nv elements of X̃ i
k|k. The predicted sigma

points X i
k+1|k and Yi

k+1|k are given by:

X i
k+1|k = f

³
X i
k|k, uk,Wi

k|k

´
, i = 0, . . . , 2nx̃

Yi
k+1|k = g

³
X i
k+1|k, uk,Vik|k

´
, i = 0, . . . , 2nx̃.

We then compute the predicted means as

x̂k+1|k =
2nx̃X
i=0

W i
mX i

k+1|k

ŷk+1|k =
2nx̃X
i=0

W i
mYi

k+1|k,

and the predicted covariances as

Pk+1|k =
2nx̃X
i=0

W i
c

h
X i
k+1|k − x̂k+1|k

i h
X i
k+1|k − x̂k+1|k

iT
Ek+1|k =

2nx̃X
i=0

W i
c

h
Yi
k+1|k − ŷk+1|k

i h
Yi
k+1|k − ŷk+1|k

iT
Sk+1|k =

2nx̃X
i=0

W i
c

h
X i
k+1|k − x̂k+1|k

i h
Yi
k+1|k − ŷk+1|k

iT
,

where Ek+1|k represents the innovation covari-
ance, and Sk+1|k represents the cross correlation
matrix between x̂k+1|k and ŷk+1|k.

We can now compute the UKF gain Kk+1 as

Kk+1 = Sk+1|kE
−1
k+1|k,

and finally the updated estimates of state and
covariance as

x̂k+1|k+1 = x̂k+1|k +Kk+1

¡
yk+1 − ŷk+1|k

¢
Pk+1|k+1 = Pk+1|k −Kk+1Ek+1|kK

T
k+1.

Compared with the EKF, the UKF features two
main advantages: (i) the UKF avoids the compu-
tation of the Jacobian matrices, and (ii) the UKF
achieves a third order accuracy in the Taylor series
expansion of the statistics of the state, whereas
the EKF is at most first order accurate.

3. APPLICATION TO A NITROGEN
REMOVAL PROCESS

3.1 Process model

In this study, a laboratory-scale nitrogen removal
plant is considered. More details of the process are
given in Chai et al. (2006). The process model con-
sists of an aeration tank model in which oxygen

355



S
S 

[m
g/

l] 
 

 

 

X S
TO

 [m
g/

l]

S N
H

4  
[m

g/
l]

X A
 [m

g/
l] 

0.2

0.25
0.3

0.35
0.4

0.45

0 1 2 3
2

4
6
8

10
12

0 1 2 3

Time [days] Time [days]

140
160
180
200
220
240
260

0 1 2 3
25
30
35
40
45
50
55

0 1 2 3

Fig. 2. Simulation results of the standard KF (dash-dot), the EKF (dotted), and the UKF (dashed). The
solid line represents the true states.

is supplied, and a settler model where the sludge
is separated from the liquid being treated. ASM3
describes the biological processes involved in the
aeration tank. The states of the model are grouped
into the concentration of soluble components Sj
and particulate components Xj . The kinetic and
stoichiometric parameter values are taken from
the typical parameter values suggested in ASM3
publications. Assuming perfect mixing in the reac-
tor, the mass balance in the aeration tank results
in:

dxa
dt

=
Qinxin +Qrsxrs − (Qin +Qrs)xa

Va
+r + e1AO2

,

where xin, xrs, xa ∈ R13 contain the concentra-
tions in the influent, in the recycled sludge, and
in the reactor, respectively; their components are

xl = [SO2,l SI,l SS,l SNH4,l SN2,l SNOX,l SALK,l

XI,l XS,l XH,l XSTO,l XA,l XSS,l]
T ,

l ∈ {in, rs, a}; r ∈ R13 is the reaction rates of each
component (defined in ASM3); e1 is the standard
basis for the first coordinate i R13. AO2

describes
the oxygen transfer: AO2

= KLa
¡
SsatO2

− SO2,a

¢
,

whereKLa is the oxygen transfer coefficient which
is the control input variable in this study, and SsatO2

is the saturated dissolved oxygen concentration.

Assuming that the settler is a perfect splitter, the
resulting mass balance equations are as follows:

Effluent concentration:

Sj,eff = Sj,a, Xj,eff = 0

Recycled sludge concentration:

Sj,rs = Sj,a, Xj,rs =
Qin +Qrs

Qrs +Qw
Xj,a.

The dynamic model is implemented in the object-
oriented modeling language Modelica (Fritzson

2004) using the Dymola simulation environment
(Dynasim 2004), see Figure 1, based on modifi-
cations of the free Modelica library WasteWater
(Reichl 2003). Dymola generates a convenient in-
terface to Matlab such that Modelica models can
be executed within MATLAB.

3.2 Results and discussion

MATLAB is used for implementation of the es-
timation approaches. To estimate the state, we
need measurements from the plant. As an initial
study before doing state estimation based on real
data from the plant, we choose to check whether
reasonable state estimates can be obtained based
on response from the simulation model.

Observability is an important concept in dynamic
systems in general. Observability depends mainly
on the choice of measurement variables. In this
case, to ensure that the system is fully observable,
the following measurement variables are chosen:
the concentration of total nitrogen TN in the efflu-
ent, as well as the concentrations of dissolved oxy-
gen SO2

, dinitrogen SN2 , inert particulate organics
XI, and total suspended solidsXSS in the aeration
tank 2 . The state and measurement vectors are
subject to zero mean additive white noise with
covariances

Qk =Q = diag
³¡
xo · 10−3

¢2´
and

Rk =R = diag
³¡
yo · 10−4

¢2´
,

respectively, where (xo, yo) is the operating point.
The chosen noise levels are relatively low in this
introductory phase of the study. Larger noise
covariances will be considered in future work.

2 In practice, some of these measurement variables may
be difficult to measure; in this study, we assume that they
are available.
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Fig. 3. Comparison of the estimation errors of the EKF (dotted) and the UKF (dashed) for the observable
process.
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Fig. 4. Comparison of the estimation errors of the EKF (dotted) and the UKF (dashed) for the
unobservable process.

Figure 2 illustrates the performances of the stan-
dard KF, the EKF, and the UKF. Four unmea-
sured states, which most clearly exhibit the dif-
ference of the estimation results between the EKF
and the UKF, are shown in the figure: the concen-
trations of readily biodegradable substrates SS,
ammonium SNH4 , organics stored by heterotrophs
XSTO, and autotrophic biomass XA. The predic-
tion of the states with the standard KF is poor
because of the nonlinear characteristics of the bi-
ological WWTP dynamics. Nonlinear estimation
is therefore imperative for biological WWTPs. In
Figure 2, both the EKF and the UKF track all
the states of the process; indeed, the performance
of the EKF and the UKF are quite similar. To
compare the estimation qualities of the EKF and
the UKF, Figure 3 plots the relative squared es-
timation errors of the filters which are relative to
the true states. The result shows that the EKF
and the UKF give the similar estimation error
for the concentrations of the soluble components
(SS, SNH4). However, for the concentrations of the
particulate components (XSTO, XA), the superior
performance of the UKF is clear.

In WWTPs, measuring most state variables is
either difficult or expensive. This time, we assume
that only the concentration of total nitrogen TN
in the effluent and the concentration of dissolved
oxygen SO2

in the aeration tank are the available
measurement variables for the nitrogen removal
process. By performing observability analysis of
a linearized model, we find that this system is
not observable. However, the system is detectable
since the dynamics of the filter error is asymp-
totically stable; detectability guarantees conver-
gence of the filter. Figure 4 depicts the estima-
tion errors of the unobservable process with the
EKF and the UKF. By comparing Figure 4 with
Figure 3, we find that the estimation errors of
the unobservable process are slightly larger than
the observable process for both the EKF and the
UKF. With the UKF, the state estimates for the
unobservable process are more noisy than for the
observable process. However, for the unobservable
(but detectable) process, the EKF and the UKF
still give reasonable estimates for the unmeasured
states. Hence, if the available measurements are
adequate for the dynamic system’s requirements,
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Table 1. Mean estimation errors over 3
days.

Method SS SNH4 XSTO XA

Observable process
EKF 1.3× 10−4 8.5× 10−4 7.6× 10−2 6.4× 10−3
UKF 7.6× 10−5 1.5× 10−3 1.4× 10−2 2.2× 10−3

Unobservable process
EKF 1.5× 10−4 1.5× 10−3 8.9× 10−2 1.2× 10−2
UKF 1.3× 10−4 4.4× 10−3 2.5× 10−2 8.4× 10−3

a fully observable system may not be necessary
(Crassidis & Junkins 2004).

Finally, to give an overview of the estimation
capabilities of the EKF and the UKF, the mean
estimation errors for the aforementioned states
over 3 days are summarized in Table 1. For the
most states, UKF provides better state estimation
than the EKF for both the observable process and
the unobservable process (also see Figures 3 and
4).

4. CONCLUSIONS

In this paper, we investigate the use of the stan-
dard KF, the EKF, and the UKF in state estima-
tion of a typical biological WWTP and compare
the differences in performance of these estimation
approaches. First, the general formulations of the
Kalman filter based algorithms are introduced.
Then, the performances of the estimation algo-
rithms are evaluated by simulation studies. The
estimation results show that state estimation with
the linear approach (the standard KF) is poor
because of the high nonlinearity of the bioprocess.
It is therefore important to exploit nonlinear esti-
mation algorithms for biological WWTPs. For the
nitrogen removal process, the UKF provides more
accurate estimates than the EKF for both the
observable process and the unobservable process
(see Table 1), which attests to the power of using
the UKF for nonlinear systems. In the compu-
tation, the EKF takes 8 min, while the UKF
takes 23 min, i.e., the computation time of the
UKF is about 3 times longer than that of the
EKF. The reason for this is that the calculation
of the predicted sigma points in the UKF is time-
consuming for the nitrogen removal model. Nev-
ertheless, since the UKF avoids the computation
of the Jacobian matrices, the UKF is simpler to
implement than the EKF.
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