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Abstract: This paper improves a methodology that determines the pseudo-stoichiometric
coefficient matrix K in a mass balance based model. The idea consists in using modulat-
ing functions in order to filter the data that are often noisy for biotechnological processes.
The first stage consists in estimating the number of reactions that must be taken into
account to represent the main mass transfer within the bioreactor. This provides the
dimension of K . Then a set of modulating functions are used to directly determine the
matrix coefficients. This method is illustrated with simulations of a process of lipase
production from olive oil by Candida rugosa and compared to the method of Bernard
and Bastin (2005a) based on a temporal approach.
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1. INTRODUCTION AND MOTIVATION

A key challenge emerging in biotechnology consists
in identifying a model from a large set of data when
the underlying process mechanisms are unclear. This
is especially the case for data issued from large net-
works like metabolic or genetic networks. For exam-
ple, hundreds of genes can dynamically interact in the
cell to finally trigger or inhibit the production of a
metabolite. Here we will focus on mass balance based
systems that are characterized by mass fluxes (and not
information fluxes) between several compartments. In
this context the question of identifying a mass balance
based model can arise mainly for two reasons. Classi-
cally, the first class of problems concerns complex sys-
tems with many interactions between species that may
not all have been accurately identified. This is typi-
cally the case for a natural ecosystem where there are
continuous species successions. It can also appear for
some biotechnological complex processes. For exam-
ple wastewater treatment processes often involve bac-
terial consortium made of a broad range of bacterial
species degrading a mixture of organic substrates. For

instance, more than 140 bacterial species have been
found (Delbès et al. (2001)) in an anaerobic digestion
wastewater treatment plant. Identifying a simplified
macroscopic model that can describe these processes
is thus an important issue. The second important mo-
tivation is radically different. It addresses the question
of model reduction. When one wants e.g. to design on-
line algorithms for bioreactor monitoring, control and
optimisation (Bastin and Dochain (1990)), a model
that can be mathematically handled may be required.
Reducing a complicated given reaction network to a
much simpler model also can be targeted by the pro-
posed approach.

For these two purposes, our objective is to end-up
with the following general macroscopic mass-balance
model:

dξ(t)

dt
= K r(t) + v(t), (1)

In this model, the vector ξ = (ξ1, ξ2, . . . , ξn) T is
made-up of the concentrations of the various species
inside the liquid medium. The term v(t) represents
the net balance between inflows, outflows and di-
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lution effects. The term K r(t) represents the bi-
ological and biochemical conversions in the reac-
tor (per unit of time) according to some underly-
ing reaction network. The (n × p) matrix K is
a constant pseudo-stoichiometric matrix. r(t) =
(r1(t), r2(t), . . . , rp(t))

T is a vector of reaction rates
(or conversion rates). It is supposed to depend on the
state ξ and on external environmental factors.

The pseudo-stoichiometric (PS) matrix K is associ-
ated to a macroscopic reaction network that lumps
together the many intracellular metabolic reactions
of the various involved microbial species. The reac-
tion network then summarises the main mass transfer
throughout the bioreactor by a few reactions involv-
ing mainly extracellular compounds and biomasses
without describing the intracellular behaviour. Each
column of the matrix corresponds to a chemical or
biological reaction of the underlying macroscopic re-
action network. The coefficients kij j = 1, . . . , p are
associated with the jth reaction. A positive kij means
that the ith species ξi is a product of the jth reaction,
while a negative kij means that ξi is a substrate of the
jth reaction. If kij = 0 the species ξi is not involved
in the jth reaction.

In this paper, we are concerned with modelling situ-
ations where the on-line concentrations ξi of the in-
volved species are measured but the structure of the
simplified reaction network is a priori questionable
and therefore the matrix K is partially unknown. The
objective, as in (Bogaerts and Vande Wouwer (2001)),
is to provide guidelines to the user for the identifica-
tion of the structure of a macroscopic reaction network
and the determination of the PS matrix K from a set
of available data.

When the method is applied in order to simplify a
known detailed intracellular metabolic network the
concentrations ξi result from simulations of the de-
tailed model that must be reduced.

The usual approach dedicated to the determination of
reaction networks relies on the linearisation of the
dynamics around a reference solution (Eiswirth et al.
(1991); Chevalier et al. (1993)) and identification of
the local Jacobian matrix. This approaches are then
suitable for data close to steady state. Here, in the
spirit of (Bernard and Bastin (2005b)), we use linear
algebraic properties to exploit the structure of the
bioprocesses (Equation (1)) and our arguments do not
rely on any linearisation. As a consequence we are
not limited to steady state data and we can exploit all
the available measurements, even when associated to
transient states.

Example: As in (Bernard and Bastin (2005a)), we
consider the example of the production of lipase from
olive oil by Candida rugosa. Here the microorganism
is supposed to grow on two substrates that are pro-
duced by the hydrolysis of a primary complex organic

substrate (olive oil), leading thus to the following 3-
step reaction network (Chen and Bastin (1996)):

• Hydrolysis:

k11S1 + E −→ S2 + k31S3 + E

• Growth on S2:

k22S2 + k62O −→ X + k72P

• Growth on S3:

k33S3 + k63O −→ X + k43E + k73P

where S1 is the primary substrate (olive oil, made of
several compounds, mainly triglycerides), S2 (glyc-
erol) and S3 (fatty acids) are the secondary substrates.
E is the enzyme (lipase), X the biomass (Candida
rugosa), O the dissolved oxygen and P the dissolved
carbon dioxide.

The associated PS matrix is:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−k11 0 0
1 −k22 0

k31 0 −k33

0 0 k43

0 1 1
0 −k62 −k63

0 k72 k73

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

with kij > 0.

We shall assume that this reaction network is unknown
to the user and has to be discovered from data of
the species concentrations. In order to validate the
approach, the data will be simulated by a model but,
of course, in practice the data are obtained from ex-
periments.

Generally, the choice of a reaction network and its as-
sociated PS matrix K results from modelling assump-
tions. Sometimes however, a complete description of
the reaction network is a priori not available. This
can be a consequence of a lack of phenomenological
knowledge on some of the involved mechanisms, ren-
dering a part of the reaction network questionable. The
problem can also arise when it is desired to reduce a
complicated given reaction network to a much simpler
model.

We first recall a method to determine the size of matrix
K i.e. the number of independent reactions that are
distinguishable from the available data. We explain
how this methodology can be extended to better deal
with noise filtering using modulating functions (MF).
Then we show how the structure of matrix K can
be estimated on the basis of the decomposition of
the measurements on a specific basis. By structure
we mean the sign and the location of the non-zero
entries of matrix K . In addition, the method can
also provide an estimate of the parameters kij if the
available knowledge is sufficient. We compare this
new approach with the one presented in (Bernard and
Bastin (2005a)) based on a temporal approach.
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2. EXPERIMENTAL DETERMINATION OF THE
PS MATRIX RANK

2.1 Motivation

In this section, we recall how to determine the mini-
mum number of reactions which are needed in order to
explain the measured process behaviour. We assume
that the vectors ξ(t) of species concentrations and
v(t) of inflow/outflow balances are measured during
some time interval [t0 tf ] and exhibit significant vari-
ations with time. We assume also that the number
of measured variables is larger than the number of
reactions: n > p. The PS matrix K and the vector of
reaction/conversion rates r(t) are unknown. Note that
we assume K to be a full rank matrix. Otherwise, it
would mean that the same dynamical behaviour could
be obtained with a matrix K of lower dimension, by
defining other appropriate reaction rates.

2.2 Theoretical determination of dim(Im(K)) with
a temporal approach (recall)

The model equation (1) can be viewed as a linear
dynamical system with state ξ and inputs r(t) and v(t)
(although we know obviously that r and v are state
dependent).

dξ(t)

dt
− v(t) = Kr(t) (2)

which has the form:

u(t) = Kw(t) (3)

with u(t) = dξ(t)
dt

− v(t) and w(t) = r(t). How-
ever, the computation of u relies on the estimate of
a derivative and is thus sensitive to noise. To improve
this scheme, a first approach (Bernard et al. (1999);
Bernard and Bastin (2005b,a)), consists in applying a
linear filter in order to clean the data (noise reduction,
decrease of autocorrelations etc ...) and to still end
up with an expression of the form (3). For example,
the moving average is a very simple filter that can
be applied to (1) and leads to (3)(Bernard and Bastin
(2005a)).

In this temporal approach we will compute u(t) at
various successive time instants ti.

The question of the dimension of matrix K is then for-
mulated as the estimation of the dimension of the im-
age of K . In other words, the dimension of the space
where u(t) lives. The determination of the dimension
of the u(t) space is a classical problem in statistical
analysis. It corresponds to the principal component
analysis (see e.g. Horn and Johnson (1993)) that de-
termines the dimension of the vector space spanned by
the vectors ki which are the rows of K . To reach this
objective, we consider the n × N matrix U obtained
from a set of N estimates of u(t) at the time instants
ti:

U = (u(t1), . . . , u(tN ))

We will also consider the associated matrix of reaction
rates, which is unknown:

W = (w(t1), . . . , w(tN ))

We consider more time instants ti than state variables:
N > n.

Property 1. For a matrix K of rank p, if W has
full rank, then the n × n matrix M = UUT =
KWW T KT has rank p, it has thus p positive eigen-
values σi > 0, and (n − p) zeros eigenvalues.

Moreover, the eigenvectors associated with the σi

generate an orthonormal basis of ImK .

This property is a direct application of the singular
decomposition theorem (Horn and Johnson (1993)).

Now from a theoretical point of view, it is clear that the
number of reactions can be determined by counting
the number of non zero singular values of UUT .

In practice there are no zero eigenvalues and a statis-
tical approach must be used. In order to give the same
weighting to all the variables, the data vectors u(ti)
must be normalised (Bernard and Bastin (2005a)).
Then the proportion of the eigenvalues σi with respect
to

∑
j σj can be interpreted in term of variance associ-

ated with the corresponding eigenvector (inertia axis)
(Horn and Johnson (1993)).

Now the question is to determine the number of eigen-
vectors that must be taken into account in order to
produce a reasonable approximation of the data u(t).
The method consists in selecting the p first principal
axis which represent a total variance larger than a
fixed confidence threshold. For instance, in the next
example, we will consider a threshold (depending on
the information available on noise measurements) at
95% of the variance. This leads to the selection of 3
axis, and therefore p = 3.

Remark: If rank (M) = n, it means that rank(K) ≥
n. In such a case we cannot estimate p and measure-
ments of additional variables are requested in order to
apply the method presented here.

2.3 Theoretical determination of dim(Im(K)) using
modulating functions

Here we propose to test an alternative approach, using
a set of modulating functions (Shinbrot (1957); Preisig
and Rippin (1993)) φi (i ∈ {1...N}) that are C1 and
such that:

φi(t0) = φi(tf ) = 0 for i ∈ {1...N}

An application f(t) : [t0 tf ] → R
n is modulated by

taking the inner product with a MF φ

< f, φ >=

∫ tf

t0

f(τ)φ(τ)dτ
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Property 2. The following property holds:

<
dξ

dt
, φ >= − < ξ,

dφ

dt
>

Proof: The proof is straightforwardly obtained after
integrating by part the term

∫ tf

t0

ξ
dt

(τ)φ(τ)dτ .

As a consequence, if we consider the inner product
with any element of the set of MFs, we will have:

− < ξ(t),
dφi

dt
(t) > − < v(t), φi(t) >= K < r(t), φi(t) >

Let us denote by uφi
= − < ξ, dφi

dt
> − < v, φi >

and wφi
=< r, φi >, we end up with an expression

similar to equation (3):

uφi
= Kwφi

(4)

Now considering matrix Uφ made of the collection of
vectors uφi

for the N considered MFs:

Uφ = (uφ1
, . . . , uφN

)

We will also consider the associated matrix of reaction
rates, which is unknown:

Wφ = (wφ1
, . . . , wφN

)

These matrices verify Uφ = KWφ. The same PCA ap-
proach as in paragraph 2.2 can thus be applied, leading
thus to determination of both the number of nonzero
eigenvalues and of the associated eigenvectors.

2.4 Example: the lipase production

We come back to the example which has been in-
troduced above. Consistently with Equation (1), the
model for the state

ξ = (S1, S2, S3, E, X, O, P )t

involving 3 main reactions can thus be written:

dξ

dt
= K

⎛
⎝ r1

r2

r3

⎞
⎠ + v(t)

where v(t) = D(ξin − ξ) − Q(ξ), with ξin =
(S1in, S2in, S3in, 0, 0, 0, 0)t the vector of influent
concentrations, D is the dilution rate and Q(ξ) =
(0, 0, 0, 0, 0, qo2(O), qco2(P ))t the vector of gaseous
flow rates.

Matrix K (that will be reconstructed from data) was
chosen as follows:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−3 0 0
1 −5 0

0.3 0 −0.5
0 0 0.2
0 1 1
0 −2 −1
0 0.3 1.5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

For the simulation purpose, we assume that the kinet-
ics of the three reactions are the same than in (Bernard
and Bastin (2005a)).

A 30 day run of the model has been performed and the
collected data have been corrupted with a multiplica-
tive white noise of high magnitude (15% of the state)
and resampled. Finally 667 data points are available
(note that the considered noise is much higher than in
Bernard and Bastin (2005a)).

An example of the collected data (after sampling) is
presented in Figure 1. The state variables S2, S3, E,
X , P , O and the gaseous flow rates qO2

and qCO2
have

been measured. We assume here that the state variable
S1 was not recorded in order to illustrate the fact that
our approach is applicable even if the full set of state
variables is not available for measurement.
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Fig. 1. Experiment simulated from the kinetic mod-
elling corrupted with a multiplicative white
noise.

The vectors uφi
are then computed using a Fourier

basis of MF. For sake of comparison, the temporal
u(ti) are also computed by applying a simple moving
average. Finally, the eigenvectors of UUT are com-
puted.

Figure 2 represents the cumulated variance associated
with the number of considered inertia axis. The re-
sults obtained with the temporal approach do perfectly
correspond with what was expected: two reactions are
sufficient to explain 82% of the observed variance and
three reactions explain 95% of the total variance.

Surprisingly, the approach based on MFs has a very
different result: one reaction seems to be able to ex-
plain 96% of the variance. This result is somewhat
disappointing, but it can be easily explained. In the MF
approach the vectors w are all multiplied by the same
function φ(t). This induces thus a strong correlation
between the components of wφ. The result finally re-
produces this correlation. Even if the MF approach is
inefficient for assessing the reaction number, it will be
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Fig. 2. Total variance explained with respect to the
number of reactions for lipase production. Com-
putation using a temporal analysis ∇ or MF �.

seen in the sequel that it works much better than the
temporal approach for the identification of matrix K .

3. ESTIMATION OF THE
PSEUDO-STOICHIOMETRIC MATRIX K

We have previously estimated the number of involved
reactions, we are thus in a position to start the estima-
tion of the (totally or partially) unknown matrix K .

3.1 Determination of ImK

From Property 1 we know that ImK is spanned
by the eigenvectors ρi associated with the non zero
eigenvalues of UUT .

It means that each column ki of K is a linear combi-
nation of the ρi. In other terms, there exists a p × p

matrix G such that

K = ρ G

where the columns of matrix ρ are the eigenvectors ρj .
In other words, the family of possible PS matrices K

is parameterised by the p × p matrix G.

Remark 1: In general, since the reaction rates are
unknown, matrix G (and therefore matrix K) is not
identifiable (see Bernard and Bastin (2005a))), and
one must add p2 constraints to solve the problem.

Remark 2: The identification of each column Kk of
K is independent of the identification of the other
columns of K . indeed, let us call Gk the kth column
of G, we have Kk = ρGk. In the sequel we will thus
focus on the identification of Kk, the kth column of
K .

In order to make vector Gk (and thus Kk) uniquely
identifiable, we need to introduce p additional struc-
tural constraints. At this stage, all the a priori knowl-
edge on the reaction network should be considered
to improve the estimation process. See (Bernard and
Bastin (2005a)) for a review of the possible constraints
that can be taken into account.

First, we impose that the reaction rate is normalised
with respect to one species, and therefore that Kk

contains one +1 or one -1. Note that sometimes we
may not know the sign of the element: the two possible
cases must then be considered.

It can be known for example that some components
are not implied in a reaction, or that two yield co-
efficients must be equal (e.g. for the consumption of
oxygen and the production of carbon dioxide). Finally,
let us assume that p constraints are available for the
kth reaction. The following property explains how to
compute the remaining coefficients of vector Kk.

Property 3. Let us assume that the p elements ki1,k

to kip,k of Kk are known. Vector Kk can then be
computed from ρ, the basis of Im(K), as follows:

Kk = ρρ̃−1K̃k (5)

where the subvector K̃k [resp. submatrix ρ̃] is ex-
tracted from Kk [resp. ρ] using the rows i1 to ip
containing the known coefficients.

Proof: These submatrices obviously verify : K̃k =
ρ̃Gk. Since ρ̃ is a square matrix, it can generically be
inverted, and thus provide vector Gk = ρ̃−1K̃k.

We emphasize that the result is independent of the
other constraints on the other columns of K .

3.2 Example (continued)

In the considered example we consider that the first
reaction is known, and we determine the two other
reactions on the basis of experiments involving only
S2 and S3, O, X , E and P . We are thus in the
process of estimating the submatrix K̄ extracted from
K by removing the first row and the first column. The
eigenvectors ρ1 and ρ2 associated with the two largest
computed eigenvalues, following Property 1, are then
the basis of ImK .

To constrain the problem, we remark that a reaction
still takes place when only S2 [resp. S3] is present at
the initial time, and no S3 [resp. S2] is produced. In
other words this means that S2 is the only substrate
of one reaction and that S3 is the only substrate of
the other one. Thus we will impose k̄12 = 0 and
k̄21 = 0. Moreover we normalize the reaction with
respect to biomass: k̄14 = k̄41 = 1. Let us focus on the
reaction taking place in absence of S3. The constraint
submatrix ˜̄K1 is obtained keeping only rows 2 and 4
of K̄1: ˜̄K1 = (0 1)T . The corresponding matrix ρ̃

can then be computed by extracting the second and
fourth rows of ρ. Finally the first column of K̄ can be
computed: K̄1 = ρρ̃−1 ˜̄K1.

The same methods leads straightforwardly to the com-
putation of K̄2.
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We shall now illustrate the proposed approach with a
simulation study of the lipase production process. We
assume that the first reaction is known, and therefore
we only focus on the two other reactions.

K̄ temporal based MF based
identification K̄ identification K̄⎛

⎜⎜⎜⎜⎝

−5 0

0 −0.5

0 0.2

1 1

−2 −1

0.3 1.5

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

5.23 0

0 −2.13

0.36 0.19

1 1

−0.33 −1.09

2.70 1.68

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

−4.54 0

0 −0.50

0 0.19

1 1

−1.33 −0.72

0.34 1.24

⎞
⎟⎟⎟⎟⎠

Table 1. True coefficients of matrix K̄ and
identified values.

A set of noisy data of the state variables S2, S3, E,
X , P , O and of the gaseous flow rates qO2

and qCO2

is produced by simulation as described in Section 2.
The goal is to determine the 6 × 2 matrix K̄ from this
data set. More specifically, a question that we want to
address is to determine, from the data, which of the
two reactions produces the enzyme E.

This approach has been carried out both on the basis
of a temporal analysis using moving average functions
(as in Bernard and Bastin (2005b)), and on MFs. We
have chosen a Fourier basis for the analysis, keeping
20 modes. Finally, using the two presented methods,
we end up with two estimates of matrix K̄ (see Table
1).

It is worth noting that the identified matrix K̄ is much
more accurate using the MFs (average error 7.5%)
than with the temporal approach where the average
error on each unknown coefficient was 39.5%. The
value of the (theoretically zero) coefficient k̄31 is
0.01 (0.36 for the temporal approach) which can be
neglected with respect to the other coefficients of K̄.
Hence, the unknown part of the structure of matrix K̄

has been accurately recognised.

4. CONCLUSION

In this paper we have tested the advantage of using
MFs for computing ImK . It demonstrated that the
computation of the number of reactions should rather
be based on a temporal analysis, while the estima-
tion of K is strongly improved using a basis of MFs.
Through the studied example we have demonstrated
that the MF based method can more accurately esti-
mate the values of the PS coefficients in spite of noises
due to measurements and low sampling frequency. We
have chosen a Fourier basis of the MFs, but other
choices are possible and their respective efficiency
should be assessed.

The main result provided by the previous analysis is
the determination of the variables which are substrates
or products in the reactions or, in other words, the
obtained signs of the entries of K .

Another expected result can be the determination of
the variables which are not involved in a reaction,
corresponding to zero elements in matrix K . However
it is actually very unlikely that the analysis provides
estimates of the elements of K which are exactly
zero. The idea consist then in replacing the very small
elements by zeros, and to validate the corresponding
reaction network using the techniques presented in
(Bernard and Bastin (2005b)). These validation tech-
niques can also straightforwardly benefit from the fil-
tering capacity of the MFs.
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