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Abstract: The sensitivity of measurements to unmeasured state variables strongly affects
the rate of convergence of a state estimator. To overcome potential observability problems,
the approach has been to identify the model parameters so as to reach a compromise
between model accuracy and system observability. An objective function that weighs the
relative importance of these two objectives has been proposed in the literature. However,
this scheme relies on an extensive heuristic search to select the weighting coefficients.
This paper proposes an objective function that is the product of measures of these two
objectives, thus alleviating the need for the trial-and-error selection of the weighting
coefficient. The proposed identification procedure is evaluated using both simulated and
experimental data, and with different observer structures. Copyright c©2007 IFAC
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1. INTRODUCTION

Observability tests typically provide a binary yes/no
answer and, thus, do not help assess whether practi-
cal observability problems such as slow convergence
of the state estimates will occur. A study has shown
that even an accurate bioprocess model can lead to
poor state estimates when the measurements have a
low sensitivity with respect to the unmeasured states
(Bogaerts and Vande Wouwer, 2004). To alleviate this
problem, the same authors have suggested a model
“falsification” procedure, in which the model param-
eters are identified so as to achieve a compromise
between model accuracy (via minimization of a crite-
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rion expressing the deviation between the model and
plant states) and system observability (via a measure
of observability based on sensitivity matrices). Un-
fortunately, the proposed objective function contains
a weighting coefficient that is best determined via a
trial-and-error procedure involving repeated optimiza-
tion.

The contribution of this paper is to propose an ob-
jective function that (i) achieves the aforementioned
compromise between model accuracy and system ob-
servability, and (ii) can be determined without trial-
and-error procedure. It turns out that the objective
function can be formulated as the product of two mea-
sures that are related to the sought objectives. This
study also compares the classical extended Kalman
filter (Maybeck, 1982) with a less classical (at least
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in bioprocess monitoring) particle filter (Doucetet
al., 2001) on two case studies, one in simulation and
the other using experimental data.

The paper is organized as follows. Section 2 sets the
notations for parameter identification and briefly re-
views the concept of nonlinear system observability.
Section 3 describes the parameter identification pro-
cedure for state estimation, while Section 4 details the
results obtained with a simulated example and a real-
life application. Finally, conclusions are provided in
Section 5.

2. PRELIMINARIES

2.1 Parameter identification

We consider continuous-time nonlinear models asso-
ciated with discrete-time measurements:

ẋ(t) = f(x(t),u(t),θθθ) x(0) = x0 (1)

yk = h(x(tk),θθθ) (2)

wherex(t) ∈ ℜnx is the state vector,u(t) ∈ ℜnu the
input vector andyk ∈ ℜny the output vector at the
discrete timetk. θθθ is the vector of parameters to be
identified. f and h are, in general, nonlinear vector
functions. For simplicity of notation, the time depen-
dency of the signalsx(t) andu(t) will be dropped in
the sequel.

The parameter identification problem can be formu-
lated as follows:

(θ̂θθ, x̂0) = arg min
θθθ,x0

Jid(θθθ,x0) (3)

given model (1)− (2); ymeas

with

Jid(θθθ,x0) =
1

2N

N

∑
k=1

(

ymeas,k−yk(θθθ,x0)
)T

Q−1
k

(

ymeas,k−yk(θθθ,x0)
)

(4)

whereymeas,k represents the measured outputs at time
tk, Qk the covariance matrix of the measurement noise,
andN the data length. Note that, since the initial con-
ditions are rarely known in practice, they can be con-
sidered as decision variables as well. This is similar
to the approach taken in moving-horizon estimation
(Haseltine and Rawlings, 2005).

The properties of the resulting model can be analyzed.
In the context of the design of a state observer, system
observability is of paramount importance.

2.2 Observability of nonlinear systems

A system is said to be completely observable if it is
possible to reconstruct the state vector from a finite
number of output measurements. Global observability
analysis of nonlinear systems is a delicate task since
observability generally depends on the system inputs.
The analysis is made simpler through the introduction

of canonical forms (Zeitz, 1984; Zeitz, 1989). A sys-
tem is said to be globally observable if the nonlinear
model can be expressed in the following canonical
form (Gauthier and Kupka, 1994):
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with ∀i ∈ {1, ...,q} : xi =
[

xi
1, . . . ,x

i
ni

]T
,

n1 ≥ n2 ≥ ... ≥ nq, ∑
1≤i≤q

ni = nx

and if the following conditions are satisfied:

• ∀ j ∈ {1, ...,n1} :
∂h j

∂x1
j

6= 0 (7)

• ∀i ∈ {1, ...,q−1} , ∀(x,u) ∈ ℜnx ×ℜnu :

rank

(

∂f i(x,u)

∂xi+1

)

= ni+1 (8)

This canonical form assumes that only the first state
subvectorx1 is measured, i.e.ny = n1. Condition (7)
states thatx1 can be inferred directly from the mea-
surements, whereas condition (8) implies a pyramidal
influence of the state subvectorxi+1 on xi , so that any
differences in the state trajectory can be detected in
the measurements.

A convenient way to check condition (8) is to compute
the(ni+1)× (ni+1) matrix

Mi(x,u) =

(

∂f i(x,u)

∂xi+1

)T(∂f i(x,u)

∂xi+1

)

(9)

and check the rank condition:

rank[Mi(x,u)] = ni+1 (10)

It is shown in (Bogaerts and Vande Wouwer, 2004)
that an accurate process model can lead to poor esti-
mates when the matricesMi(x,u) are ill-conditioned,
i.e. when the internal connections between state vari-
ables are somewhat “loose”, at least in some time
intervals. Upon analysis, this lack of connectivity is
generally related to the model structure and the selec-
tion of operating conditions.

3. IDENTIFICATION FOR STATE ESTIMATION

This section discusses two ways of including the ob-
servability issue in the parameter identification: (i) a
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weighted-sum cost function that penalizes the rela-
tive lack of observability (but requires an exhaustive
search for determining the weighting), and (ii) a prod-
uct cost function which avoids the introduction of a
weighting coefficient.

3.1 Weighted-sum cost function

In (Bogaerts and Vande Wouwer, 2004), the objective
function (4) has been extended to include a measure
that indicates the lack of observability (lobs), which
can be assessed from the determinant (or the condition
number) of the matrixM1:

Jlobs(θθθ,x0) =
1
N

N

∑
k=1

q−1

∑
i=1

[det(Mi (xk(θθθ,x0),uk))]
−1/2

(11)

A combined objective function is defined, where a
compromise between model accuracy (smallJid) and
observability (smallJlobs) is achieved through the
weighting coefficientλ:

(θ̂θθ, x̂0) = arg min
θθθ,x0

{Jid(θθθ,x0)+λJlobs(θθθ,x0)} (12)

given model (1)− (2); ymeas

The optimal weighting coefficient can be chosen
through extensive heuristic search, i.e. by considering
different values ofλ, computing the estimate (12) cor-
responding to each of these values, and representing
the evolution of the two measuresJid and Jlobs as
functions ofλ. The “best” value ofλ corresponds to
improved system observability while keeping satisfac-
tory model accuracy. The main disadvantage of this
procedure is that it is relatively time consuming, as a
series of compromises have to be tested in order to
select the “best” one. The following section therefore
suggests an alternative noniterative procedure.

3.2 Product cost function

The objective here is to investigate whether it is pos-
sible to transform problem (12) into a problem of the
form:

(θ̂θθ, x̂0) = arg min
θθθ,x0

{

J̃id(θθθ,x0) J̃lobs(θθθ,x0)
}

(13)

given model (1)− (2); ymeas

In this formulation, the weighting coefficient disap-
pears, thus avoiding the extensive search mentioned
above. However, several questions need answers:

• Is such a product objective function meaningful?
• What are appropriate choices ofJ̃id andJ̃lobs?

Formally, the goal of parameter identification for state
estimation is to generate a model that is capable of
describing the state evolution from the output mea-
surements. The problem of estimating the states over
a time interval can be expressed as that of estimating

the initial states from measurements in that time in-
terval (Chen, 1999). Hence, the problem of parameter
identification for state estimation can be expressed as:

(θ̂θθ, x̂0) = arg min
θθθ,x0

‖x̃0(θθθ,x0)−x0‖ (14)

given model (1)− (2); ymeas

where x̃0(θθθ,x0) represents the initial states recon-
structed fromymeasusing the identified model, as ex-
plained below.

Most nonlinear systems can be approximated by linear
time-varying models. Thus, without loss of generality,
consider the unknown LTV discrete model:

xk+1 = Ak(θθθ,x0)xk +Bk(θθθ,x0)uk, xk=0 = x0

yk =Ck(θθθ,x0)xk (15)

The initial conditions can be expressed in terms of the
N output measurements (Chen, 1999):

x̃0 =

(

N−1

∑
k=0

ΨT
k Ψk

)−1 N−1

∑
k=0

ΨT
k ȳmeas,k (16)

with ȳmeas,k = ymeas,k −y0
k

y0
k = Ck(θθθ,x0)

k−1

∑
j=0

(

j+1

∏
i=k−1

Ai(θθθ,x0)

)

B j(θθθ,x0)u j

Ψk(θθθ,x0) = Ck(θθθ,x0)

(

0

∏
j=k−1

A j(θθθ,x0)

)

wherey0
k are the output values that would result from

zero initial conditions. Hence,̄ymeas,k expresses the
effect of the initial conditions on the outputsymeas,k.

Using (15),x0 in (14) can be expressed as:

x0 =

(

N−1

∑
k=0

ΨT
k Ψk

)−1 N−1

∑
k=0

ΨT
k ȳk (17)

with ȳk = yk − y0
k. This way,x0 can be expressed in

a form similar to (16), and the objective function (14)
becomes:

‖x̃0(θθθ,x0)−x0‖ = (18)

=

∥

∥

∥

∥

∥

∥

(

N−1

∑
k=0

ΨT
k Ψk

)−1(N−1

∑
k=0

ΨT
k

(

ymeas,k−yk

)

)

∥

∥

∥

∥

∥

∥

=
∥

∥

∥

(

O
T
O
)−1
O

T (Ymeas−Y)
∥

∥

∥
=
∥

∥O
+ (Ymeas−Y)

∥

∥

where the(N ny×nx) matrixO and theN ny-dimensional
vectorY are given by:
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Remarks

• The term O is an observability measure for
LTV systems (note the resemblance with the
Kalman observability matrix for LTI systems),
while the term(Ymeas−Y) expresses the output
error. Hence, the objective function in (14) in-
volves theproductof terms expressing these two
objectives.

• The objective function (18) can be bounded as
follows:
∥

∥O
+ (Ymeas−Y)

∥

∥≤
∥

∥O
+
∥

∥‖Ymeas−Y‖ (19)

which allows writing:

J̃lobs =
∥

∥O
+
∥

∥ J̃id = ‖Ymeas−Y‖ (20)

The output error norm can be computed as in
(4), while theL2 norm ofO + can be chosen, i.e.
its largest singular value:

∥

∥O
+
∥

∥

2 = σmax(O
+) = σ−1

min(O )

• In the final cost functions (18-19), an actual
model linearization is only needed to derive the
expression ofO +, whereas the outputY is ob-
tained through simulation of the nonlinear model
equations using the parameter valuesθ and start-
ing from the initial conditionsx0. As such,Y can
be written in a more explicit way asY(θ,x0).

3.3 Case of full state state measurement

In (Bogaerts and Vande Wouwer, 2004), the parameter
identification problem (3) has assumed that the full
state vector can be measured off-line. This way, maxi-
mal experimental information is used for system iden-
tification. To mimic this situation here,xmeas should
replaceymeas in the computation ofJid and J̃id in
(12) and (20), respectively. However, since the on-line
estimator will use the measurements of only a subset
of the state variables, practical observability problems
might result. This structural ”lack of observability” is
expressed byJlobs andJ̃lobs, i.e., these quantities need
to be computed from the model using the outputy and
noty = x.

4. CASE STUDIES

Two case studies are considered to illustrate the con-
cept of parameter identification for state estimation.
To show that the results do not depend on a particular
state estimation algorithm, two different observers are
tested, i.e. an extended Kalman filter (Maybeck, 1982)
and a particle observer (Doucetet al., 2001).

4.1 Simulation case study

A fed-batch bioreactor is considered. The reaction
scheme describes the growth of biomass on glutamine
and a maintenance process based on glucose that leads
to the production of lactate:

Growth:

νGlnGln
ϕg
−→

∧
X (21)

Maintenance:

G+νX X
ϕm
−→ νX X +νL L (22)

where G, Gln, X and L denote glucose, glutamine,
biomass and lactate, respectively.νGln , νX et νL are
yield coefficients. The symbol “−→∧ ” means that
the growth reaction is auto-catalysed byX, and the
presence of biomass on both sides of the maintenance
reaction indicates thatX catalyses this reaction.

The growth rateϕg and the maintenance rateϕm are
described by Monod laws with inhibition factors:

ϕg(X,G,Gln) = µg
max

Gln

Kg
M +Gln

Kg
i

Kg
i +G

X (23)

ϕm(X,G) = µm
max

G
Km

M +G
Km

i

Km
i +X

X (24)

The mathematical model is obtained from mass bal-
ances:

dX
dt

= ϕg−DX (25)

dG
dt

=−ϕm+D(Gin −G) (26)

dGln
dt

=−νGlnϕg +D(Glnin −Gln) (27)

dL
dt

= νLϕm−DL (28)

dV
dt

= Qin (29)

whereQin is the feed rate,V is the reactor volume,D
is the dilution rate (D = Qin

V ), andGin andGlnin are the
feed concentrations. Numerical values of the model
parameters are listed in Table 1. Three experiments

νL 1.7 νGln(mM/(105 cell/ml)) 0.2
µg

max(h−1) 0.05 µm
max(h

−1) 0.1
Kg

M (mM) 0.1 Km
M (mM) 0.2

Kg
i (mM) 70 Km

i (105cell/ml) 3

Table 1.Model parameters

are performed that differ in their initial conditions,
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inlet substrate concentrations and flow rate (Table 2).
The inlet flow rate is chosen asQin = 0 for t < tb and
Qin = α(t− tb) for tb ≤ t ≤ t f , with α = 5×10−4 l/h2.
Samples are taken every 8 h and are used to evaluate
the performance of the various state estimators. The
measurements are corrupted by noises, corresponding
to the assumption of constant relative errors, e.g.εrel

X =
0.1, εrel

G = 0.05,εrel
Gln = 0.05 andεrel

L = 0.05.

Exp 1 Exp 2 Exp 3
X(0) (105 cell/ml) 1 1 1
G(0) (mM) 10 10 8
Gln(0) (mM) 8 1 5
L(0) (mM) 1 1 1
V(0) (l) 0.5 0.5 0.5
Gin (mM) 5 5 10
Glnin (mM) 1 1 3
tb (h) 30 35 50
t f (h) 80 80 240

Table 2.Experimental conditions

Based on full-state measurements from the first two
experiments, the identification procedure provides ac-
curate model parameters, thus demonstrating that no
identifiability problem occurs.

Figure 1 illustrates state estimation with an EKF based
on a model identified using one of three objective
functions, i.e. with either the objective function “out-
put error” (3), “weighted sum” (12) or “product” (19).
Experiment 3 is used, and the various estimates are
compared to the off-line measurements with a 99%
confidence interval. The EKF uses on-line glutamine
and lactate measurements, and the initial conditions
for the unmeasured state are taken asX̂(0) = 5×105

cell/ml, Ĝ(0) = 15 mM with the standard deviations
σX(0) = 106 cell/ml, σG(0) = 10 mM. Clearly, the
convergence of the state estimates, in particular for
glucose, improves when using an objective function
that considers system observability. Figure 2 shows
the same trend with a particle-filter observer. Interest-
ingly, the particle filter (PF) appears more robust, par-
ticularly when the number of particles is sufficiently
large so as to have a good exploration of the state
space. PF has certainly the advantage that it does not
rely on a linearization of the process model.

To give an idea of the computational load, an op-
timization run takes about 5 to 20 minutes using a
Pentium 4 computer and the MATLAB optimization
toolbox. This load depends on the initial starting point
for the optimization problem. It is nearly the same
for all objective function types. However, with the
objective function (12), it is necessary to repeat the
identification procedure for several values ofλ. In
this simulation example, theλ values were chosen in
the interval[0, . . . ,1] as follows: 0,10−10, . . . ,10−1,1.
This range can be refined if necessary to improve pre-
cision. Consequently, the computation time using the
objective function (12) can be 10 to 20 times longer
than with the objective function (13). However, the
latter objective function can be more prone to local
minima, and some kind of multi-start strategy might
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Fig. 1. State estimation with EKF using the objective
function “output error” (3) (- -), “weighted sum”
(12) (· · · ), and “product” (19) (–).
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Fig. 2. State estimation with a particle filter (N = 500)
using the objective function “output error” (3) (-
-), “weighted sum” (12) (· · · ), and “product” (19)
(–).

be necessary, which slightly reduces the benefits of
the procedure. These local minima are essentially of
two types: (a) minima that ensure a good compromise
betweenJid andJlobs and (b) minima that correspond
to the particularly damaging situation where one of
the two measures can be reduced to a very low level,
without taking care of the value of the other measure.
In this latter case, the improvement in observability
can be detrimental to accuracy, or vice versa.

4.2 Experimental application

The experimental study concerns batch animal cell
(CHO-K1) cultures. The model equations are those of
the simulated example withQin = D = 0. The kinetics
are described by

ϕg = αgXγg,X Gγg,GGlnγg,Gln

e−βg,XXe−βg,GGe−βg,GlnGlne−βg,LL

ϕm = αmXγm,X Gγm,GGlnγm,Gln

e−βm,XXe−βm,GGe−βm,GlnGlne−βm,LL

(30)
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Rare and asynchronous measurements of biomassX,
glutamineGln, glucoseG and lactateL concentra-
tions are available for model identification, whereas
glutamine and lactate measurements only are used for
state estimation. Again, the three objective functions
are used to provide model parameters. First, a standard
parameter identification, i.e. without consideration of
system observability, is performed, and the model
cross-validated is shown in Fig. 3. With the objective
function (12), a series of repeated optimization runs
suggests the valueλ = 10−6.
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Fig. 3. Validation of models obtained via standard pa-
rameter identification, i.e. without consideration
of system observability.

Figure 4 illustrates the performance of a PF, in partic-
ular its good convergence properties.
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Fig. 4. State estimation with a particle filter (N = 500)
using the objective function “output error” (3) (-
-), “weighted sum” (12) (· · · ), and “product” (19)
(–).

5. CONCLUSIONS

A variation to the objective function given in (Bogaerts
and Vande Wouwer, 2004) has been proposed. It
uses the product of a measure of model accuracy

and a measure of system observability rather than a
weighted sum of the two. Consideration of system
observability improves the rate of convergence by in-
creasing the sensitivity to the measurements. The ad-
vantage of the proposed objective function is twofold:
(i) The identification process is no longer repetitive,
and (ii) the objective function has a sound theoretical
(less heuristic) justification. The disadvantage of the
product objective function is however the existence of
local minima corresponding to the sought compromise
and to unbalanced situations where one of the two
model measures (accuracy or observability) is pushed
to the extreme at the expense of the other measure. A
use of a multi-start strategy is therefore advised.

One could also argue that a “falsified” model will lead
to steady-state offsets, and this might indeed be ob-
served in practice. However, the proposed procedure
is mostly intended for speeding up the convergence
of state estimates in batch or fed-batch processes, i.e.
where time of operation is limited and monitoring is
important from the beginning.
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