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Abstract: Using frequently sampled blood glucose measurements (at 5 min in-
tervals), low-order recursive linear time series models have been developed for the
prediction of future blood glucose concentrations. Such predicted glucose values are
then integrated with model based control algorithms, such as GPC and LQC, for
adjusting the required insulin infusion rates with an automated insulin pump. Since
the models are derived from patients’ own glucose data, the proposed algorithm
can dynamically adapt to inter- and intra-subject variability. Copyright c© 2007
IFAC
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1. INTRODUCTION

Diabetes is a disease characterized by degrada-
tion of insulin secretion, leading to insufficient
regulation of blood glucose in the body. For pa-
tients with type 1 diabetes, this impairment is
total which makes patients completely dependent
on exogenous insulin. The current therapy for
insulin dependent subjects includes 3 to 5 daily
insulin injections or insulin infusion by a manual
pump, with the insulin dose tuned according to 3
to 7 daily blood glucose measurements, diet and
physical activity conditions. The Diabetes Con-
trol and Complication Trial study (DCCT 1993)
has shown that keeping the blood glucose levels
within tight control minimizes the progression of
diabetes related complications. However, due to
the open loop nature of the current therapy and
unexpected daily life disturbances (e.g. change in
diet, exercise, stress or illness), patients frequently
encounter large variations in blood glucose con-

centration which may lead to hypo/hyperglycemic
episodes. To avoid such large fluctuations, pa-
tients are generally forced to follow a strict diet
and a very rigid lifestyle. Therefore, a novel ther-
apy that gives the patient a freedom in daily life
is of great importance. Such therapy may be pos-
sible by totally closing the loop (with no-need of
patient intervention) with an automated artificial
pancreas, consisting of a continuous blood glucose
measuring device, an insulin infusion pump and a
control algorithm. In this paper, we focus on the
last component of such a device and propose a
control algorithm based on adaptive control con-
cept which makes use of a linear model developed
from a patient’s own glucose data.

Modeling glucose-insulin dynamics has been a
flourishing research area (Cobelli et al. 1982,
Sorensen 1985, Hovorka et al. 2002). By predic-
tion of future blood glucose values, the primary
objective of such models is to mimic the natu-
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ral feedback between glucose and insulin in the
body. Due to the nonlinear nature of glucose-
insulin dynamics and lack of extensive real patient
data, proposed physiological models are generally
nonlinear with too many parameters to be iden-
tified and are representative of only an average
subject under specific conditions. Most of the
works in literature proposing model-based control
strategies for closing the loop, make use of such
physiological models for future blood glucose pre-
dictions (Parker et al. 1999, Lynch and Bequette
2001, Hovorka et al. 2004). However, for the de-
velopment of an automated artificial pancreas, a
more realistic description that takes into account
the intra- and inter-subject variability is required.
Taking this requirement as the primary objective,
simple linear models derived from patient’s own
frequently sampled blood glucose data are devel-
oped for future blood glucose prediction, in the
first part of this research. The proposed strategy
for model identification is based on glucose time
series analysis, and for the disturbance rejection
(e.g. effect of meal or exercise) it is incorporated
with a change detection method.

Finally, we focus on the development of a con-
trol strategy for the case of subcutaneous mea-
surement of glucose and intraperitoneal adminis-
tration of insulin. Model based control strategy
where the model is adaptively identified from the
frequently sampled patient blood glucose data,
is proposed. The results are demonstrated using
two well known control algorithms: generalized
predictive control (GPC), and linear quadratic
Gaussian control (LQGC).

2. METHODS

2.1 The Model for Blood Glucose Prediction

Glucose prediction for disturbance free conditions
is described first. Then a model identification
algorithm with a disturbance rejection strategy is
proposed.

Low-Order Linear Models for the Rigid Lifestyle
Case: The intensive insulin therapy, in a way
restricts patients to follow a rigid lifestyle. Pa-
tients are constrained to eat at specific time and
specific amount of food, and to avoid unexpected
physical activity or stress conditions. In litera-
ture, the proposed physiological models describing
glucose-insulin dynamics are capable to illustrate
such disturbance free conditions. However, even
for the strict lifestyle case, the main restriction of
these nonlinear models is the increased number of
parameters to be identified, which makes it diffi-
cult to isolate the effect of inter-individual vari-
ations. To overcome this limitation, we propose
development of linear models from patients’ own

glucose data in the form of time series. The con-
sidered models include; Autoregressive (AR), Au-
toregressive Moving Average (ARMA) and Sub-
space State Space Models:

AR : A(q−1) · yk = ek (1)

ARMA : A(q−1) · yk = C(q−1) · ek (2)

State Space : xk+1 = A · xk + wk (3)

yk = C · xk + vk

Here yk denotes the output variable of interest
at time instant k, which corresponds to blood
glucose measurement, and xk is the process state
vector. The ek and wk are the process noise, and
vk is the measurement noise. And all are assumed
to be zero mean white noise. (q−1) is the back
shift operator, where the polynomials A(q−1) and
C(q−1) are represented by: A(q−1) = 1+a1 ·q

−1+
. . .+ anA

· q−nA , and C(q−1) = 1 + c1 · q
−1 + . . .+

cnC
· q−nC .

Only low-order models and with time-invariant
parameters are considered. The idea of using such
simple linear models is to test whether the near
future glucose values can be predicted using only
the previous glucose readings regardless of the
meal, and insulin administration, or physiological
conditions of the subject. In the results section,
it will be shown that models with order of 3
are satisfactory to capture the 24-hour glucose
dynamics.

Recursive Linear Models for the Unexpected Dis-
turbance Case: Different from the previous sec-
tion, here we focus on strategies that provide
the subject with freedom in his/her daily life.
Daily life disturbances, such as change in the diet,
illness, stress, physical activity conditions may
occur unexpectedly and instantaneously. In such
situations, time-invariant models will not work
well enough. The proposed modelling strategy is
the Recursive Least Square (RLS) method with a
forgetting factor, λ:

yk = ϕT
k · θk + ek (4)

θ̂k = θ̂k−1 + Kk

{
yk − ϕT

k · θ̂k−1

}
(5)

Kk =
Pk−1 · ϕk

λ + ϕT
k · Pk−1 · ϕk

(6)

Pk =
1

λ
·

[
Pk−1 −

Pk−1 · ϕk · ϕT
k · Pk−1

λ + ϕT
k · Pk−1 · ϕk

]
(7)

where yk is the output of interest, ϕk describes
the vector of past observations at kth time step,
and θk corresponds to vector of model parameters
while the θ̂k is its estimate. The terms Kk and
Pk stand for smoothing parameter and estimate
of error variance, respectively. At each sampling
time, the linear model is updated based on the
blood glucose measurements, meantime the for-
getting factor puts relative weights on the past
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data sequence and makes the more recent data
predominant in model parameter estimation.

Additionally, in order to capture drastic changes
and to provide a quicker respond to such changes,
the proposed RLS algorithm is interfaced with a
change detection method. When change in model
parameters is detected, to ensure quicker con-
vergence to new parameter values, the forgetting
factor is decreased to a smaller value. This way,
the past observations are rapidly excluded, and
the model is derived from the more recent and
fresh data only. The proposed change detection
method can be described by null and alternate
hypotheses given as:

H0 : E(θ̂k) = θ̂0 for N < k < N + NW (8)

H1 : E(θ̂k) 6= θ̂0 for N < k < N + NW

where E(θ̂k) denotes the expected value of the

parameter estimate at time instant k. θ̂0 is the vec-
tor of unbiased parameter estimates computed by
RLS algorithm using the data till time instant N .
NW is the window size for change detection per-
sistency check. When a persistent change within
the window size is detected, the λ is reduced to
a smaller value and θ̂0 is replaced with its new
estimate.

Since the model is derived from a patient’s own
glucose data and since in response to changes
or disturbances, the model is updated recursively
with a forgetting factor and a change detection al-
gorithm, the proposed algorithm can dynamically
adapt to inter- and intra-subject variability.

2.2 The Control Strategy

The proposed control algorithm is based on adap-
tive control concept which makes use of a linear
model developed from patients own glucose data,
figure 1. At each step with the new coming glucose
measurement, the model parameters are updated,
and the estimation of future time course of blood
glucose is performed, using the RLS method de-
scribed. Then the necessary insulin infusion rate
that minimizes the deviation of the predicted glu-
cose values from a set point trajectory is deter-
mined using a model-based control law. For the
demonstration of the effectiveness of the proposed
algorithm, GPC and LQC methods are selected
for the computation of the control action.

Generalized Predictive Control (GPC) Strategy:
Differently from equations 1-3, the time series
model should also include an input (insulin in-
fusion rate) term, for the close-loop conditions.
Based on GPC, the glucose dynamics in re-
sponse to insulin infusion is described by an auto-
regressive integrated moving-average model (ARI-
MAX) in the form of:

Future Reference 

Trajectory

Model Based

Control Law

Recursive Update of

Model Parameters

Patient

Set points

Model

Insulin

Infusion rate
Glucose

Sampling

Fig. 1. Block diagram of the control strategy

A(q−1) · yk = B(q−1) · uk−d +
C(q−1)

∆
· ek (9)

where yk, ek, A(q−1), and C(q−1) have the same
definition as in equation 1 or 2. Similarly, polyno-
mial B is given by B(q−1) = b0 + b1 · q

−1 + . . . +
bnB

· q−nB . The term uk−d represents the insulin
infusion rate with d units of delay in action, and
∆ is the difference operator, (1 − q−1).

Using the ARIMAX model, the j-step ahead pre-
diction of blood glucose concentration (ŷ(k+j|k))
is computed as a function of past glucose mea-
surements, and past and future control actions
(insulin infusion rates). For detailed description
of the formulations please refer to (Bitmead et
al. 1990). The optimum control law is given by
minimization of the following quadratic function:

J(Ny, Nu) =

Ny∑

j=1

q · [ŷ(k + j|k) − yref (k + j)]2

+

Nu∑

j=1

r · [∆u(k + j − 1)]
2

(10)

where yref (k + j) is the desired reference trajec-
tory for the output (glucose concentration). Ny
is output prediction horizon and Nu is the con-
trol horizon with ∆u(k + Nu) = ∆u(k + Nu +
1) = . . . = 0. q and r are the weights on output
and input terms respectively. Due to the technical
restrictions of insulin pumps and safety limita-
tions, constraints on control action are added. The
ultimate control law is found by solution of the
following quadratic programming (QP) problem:

min

∆u J(Ny, Nu) (11)

s.t. umin ≤ u(k + j) ≤ umax

∆u(k) ≤ ∆max

The limits on infusion rate due the technical
restrictions are 0 mU/min ≤ u(t) ≤ 67 mU/min,
and to avoid infusion of an excessive amount of
insulin at a time: ∆max = umax/3. Note that, even
tough the QP problem gives control action for Nu
step ahead, only the first one is implemented and
the procedure is repeated at each sampling step.
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Linear Quadratic Control (LQC) Strategy: Based
on optimal control theory, LQC gives the control
law as

uk = −K · x̂k (12)

which minimizes the quadratic cost function

J =

∞∑

k=0

(
xT

k · Q · xk + uT
k · R · uk

)

s.t. xk+1 = A · xk + B · uk (13)

yk = C · xk + D · uk

over infinite prediction horizon subject to the
process state space model. x̂k is the optimal
(Kalman) estimate of the process states.

Since the LQC requires the model in a state
space representation, the time series model from
the proposed RLS algorithm is converted to a
minimum realization of state space model at each
step. Additionally, at each step, the constraints on
control action are checked.

Reference Trajectory: At each step, depending on
the current glucose measurement, a time-varying
trajectory is selected. The objective is to avoid any
sudden decrease in blood glucose concentration
that can be caused by high insulin infusion rates,
and to have a faster response during hypoglycemic
conditions. Therefore, similar to (Hovorka et al.
2004), for high glucose levels, a gradually decreas-
ing target trajectory is selected, while for low glu-
cose levels an exponentially increasing trajectory
is used to make the control action more aggressive.

3. RESULTS AND DISCUSSION

Computational studies are conducted to assess the
effectiveness of the proposed linear recursive algo-
rithm for prediction of future blood glucose con-
centrations. Then, the reliability of such models
is tested in closed loop using model based control
strategies described in the previous section.

3.1 Blood Glucose Prediction with Recursive Models

The results of the proposed algorithms for glucose
prediction are validated on two sources of data: (1)
real subject blood glucose concentration data col-
lected at high frequency (5 minute intervals); (2)
simulation data on blood glucose concentration of
a virtual subject with type 1 diabetes.

The real patient data consists of frequently sam-
pled blood glucose measurements of healthy, glu-
cose intolerant and type 2 diabetic subjects. Dur-
ing data acquisition, patients were hospitalized
and subjected to a predefined, fixed diet and
disturbance free conditions. Subject’s blood glu-
cose concentration was monitored with a contin-
uous glucose monitoring system (CGMS System

GoldTM , Medtronic MiniMed, Northridge, CA)
over a period of 48 hour at 5 min intervals.

Time-invariant models described by equations 1-
3 are developed using the first half of the data,
while the second half is used for model validation.
The MATLAB System Identification Toolbox is
used for model development. The order of mod-
els is determined based on Akaike’s Information
Criterion (AIC), a statistical model fit measure.
For all subject groups, results show AR model
of order three (nA = 3), ARMA model of order
(3,1) (nA = 3, and nC = 1) and state space
model of order two to be satisfactory. Figure 2
demonstrates the prediction capabilities of these
models for a subject with type 2 diabetes.
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Fig. 2. Prediction of blood glucose for a subject with type

2 diabetes

The prediction performance of each model is eval-
uated based on Sum of Squares of Prediction Error
(SSPE), defined by:

SSPE =

√∑
(y − ŷ)2∑

y2
· 100 (14)

where y is the vector of blood glucose measure-
ments and ŷ represents the vector of predicted glu-
cose values. For the comparison of the prediction
performances of the models, table 1 provides the
SSPE values together with the model parameter
values for the same subject with type 2 diabetes.

From figure 2 and from SSPE values in table 1,
it is clear that none of the models overweighs the
others, and all three show promising results for
capturing the future glucose dynamics based on
past glucose data. Models of healthy and glucose
intolerant subjects show similar results.

Although, the results from real patient data are
very encouraging, it can be debated that the
model derived from first day data is very good
in prediction of glucose levels for the second
day, partly because of the disturbance free con-
ditions (hospitalized and predefined diet condi-
tions). Therefore, for the case of variable daily life,
the prediction performance of the proposed RLS
models will be analyzed.

Due to the lack of real patient data under the
conditions of total freedom in daily life, the results
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Table 1. Model parameters for subject with type 2 diabetes

Model
Model Parameters

SSPE
a1 (or A) a2 (or C) a3 c1

AR(3) 1.367 -0.521 0.153 - 3.792

ARMA(3,1) 1.290 -0.414 0.117 0.086 3.784

State Space(2)

[
0.994 0.004

-0.005 0.106

] [
-124.091

-1.215

]
- - 3.870

are demonstrated using simulated glucose data.
A web-based educational simulation package for
glucose-insulin levels in human body, GlucoSim, is
used for data acquisition. The variability in daily
life is captured with a 4 day scenario of changes
in the diet. The 4 day scenario for simulation
includes predefined meal content and timing on
day 1, 50% increased carbohydrate intake at lunch
on day 2, 1 hour late lunch on day 3, and both
50% increased carbohydrate intake and 1 hour
late lunch on day 4. The simulated patient is a
154 lb male with type 1 diabetes taking 3 daily
meal-related regular insulin injections with an
early morning basal insulin administration. The
meal schedule for day 1 is as following: Breakfast
at 8:30 AM with 40 gr of carbohydrate (CHO)
consumption, snack at 11:00 AM with 10 gr of
CHO, lunch at 1:30 PM with 50 gr of CHO, snack
at 5:30 PM with 10 gr of CHO, dinner at 7:30 PM
with 70 gr CHO, and snack at 10:30 PM with 25
gr of CHO. The insulin regimen is: 5 U of insulin
administered before breakfast, 5 U before lunch,
and 10 U before dinner.

To depict the sensor noise of a possible glucose
monitoring device, Gaussian noise with a stan-
dard deviation of 4.5 mg/dl is added to the data
provided by GlucoSim. Figure 3 illustrates the
prediction capability of the proposed algorithm,
for ARMA(2, 1) model and with NW = 5 (25
min), λ = 0.5 and reduced to 0.005 in the case
of change detection.
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Fig. 3. Glucose prediction results with RLS from fre-

quently sampled data

To investigate the effect of sampling interval on
prediction performance, the data with 15 min
interval is acquired from GlucoSim for the same
case scenario. The results in figure 4 with NW = 2
(30 min) are very encouraging, which demonstrate
that even for the infrequent sampling case the

proposed RLS algorithm can adapt and respond
to daily life disturbances easily.
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3.2 Closed Loop Performance

The performance of the proposed adaptive control
algorithm is demonstrated on a simulated patient
with type 1 diabetes. Based on the intravenous
glucose measurements coming from GlucoSim ev-
ery 5 min, the corresponding insulin infusion
rate of regular insulin is administered intraperi-
toneally, also at every 5 min. However, the future
continuous glucose monitoring devices may pre-
fer the subcutaneous route. Hence, a delay of 25
min is introduced to the data from GlucoSim for
the subcutaneous depiction of intravenous glucose
concentration, 5-10 min technical delay due to the
dead space of the sensor plus 10-15 min delay due
to glucose transport from plasma to interstitial
fluid (Hovorka 2005).

The ARIMAX model with nA = 1, nB = 14,
nC = 1, and d = 1 is selected based on physiolog-
ical insight about the action of intraperitoneally
administered regular insulin. It is assumed that
insulin will enter the circulation after 5 min (a
delay of 1 step) of its administration, and will
have a dominant effect on glucose regulation for
around 70 min (order of 14 for B(q−1)). Keeping
the model structure constant, its parameters are
updated at each step which gives the adaptive
nature of the algorithm.

Due to the delay between the subcutaneous and
intravenous glucose concentrations, the control
action near normoglycemic conditions requires a
more careful consideration. For glucose measure-
ments below 100 mg/dl, this is achieved with
the use of an exponential trajectory and with an
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increase (3 times) in the weight of output term
in the minimization problem, which puts further
effort on trajectory tracking.

Figures 5 and 6 show the control action of GPC
strategy with Ny=36 and Nu=15, and the resul-
tant 48 hour time course of glucose, where day
1 and day 2 corresponds to day 1 and day 4
scenarios of figure 3 or 4. The results for the LQC
strategy are demonstrated in these figures as well.
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Fig. 6. Control actions for GPC and LQC strategies

From insulin infusion plots, a transition period is
clearly seen, where the control action is aggressive
at the start and gradually smooths as more data
became available to capture the glucose dynamics.
Note that the transition is not repeated the next
morning when going from a long fasting state to a
sudden feeding state, demonstrating the adaptive
capabilities of the proposed RLS strategy. The
control action by GPC is more sluggish (figure
6) resulting in sustained higher insulin infusion
rates and consequently lower glucose concentra-
tions than the LQC. This can be explained with
the constrained QP (equation 11) problem that
may result in suboptimal solution for some cases,
while the optimal solution is guarantied in LQC
with the infinite horizon. Both control studies
manage to bring glucose levels back to normal
after a meal disturbance, showing the reliability
of the proposed RLS strategy for blood glucose
prediction.

4. CONCLUSIONS AND FUTURE WORK

An adaptive control algorithm for closed-loop in-
sulin infusion has been proposed. The novelty of
the work is the use of the proposed RLS strat-
egy with a forgetting factor and change detection
method, for the model development using pa-
tient’s own glucose data, which makes the model
dynamically to adapt to changing external con-
ditions, or physiological inter- and intra-subject
variability. The reliability of the algorithm has
been tested with model based control methods.
An interesting future project will be testing the
algorithm for the subcutaneous route of insulin.
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