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Abstract: Intra- and inter-patient variability poses a challenging task to control blood 
glucose concentration in diabetic patients. A data based model predictive control with 
state and disturbance estimation has been developed to control the blood glucose 
concentration in the type-I diabetic patients in the presence of meal disturbances under 
patient-model mismatch. Simulation studies were performed on three distinct patient 
models generated as a result of sensitivity analysis, which revealed that the proposed 
control strategy is able to control the blood glucose concentration well within the 
acceptable limits and also able to compensate for the slow parametric drifts.  Copyright © 
2007 IFAC
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1. INTRODUCTION 

Diabetes mellitus (DM) is a metabolic disorder with 
the inability of the pancreas to secrete sufficient 
insulin, the most important hormone regulating 
glucose metabolism, results in poor maintenance of 
normoglycemia (defined as blood glucose 70–100 
mg/dL) with elevated blood glucose concentrations. 
Chronic hyperglycemia (arterial blood glucose >120 
mg/dL) causes damage to the eyes, kidneys, nerves, 
heart and blood vessels (Alberti and Zimmet, 1998).  
Particularly, type-I DM, known also as insulin 
dependent diabetes mellitus (IDDM), defines a group 
of patients that need exogenous insulin in order to 
prevent hyperglycemia. Conventional therapy of 
IDDM out-patients involves subcutaneous 
administration of exogenous insulin several times a 
day (two to four). With the developments in 
programmable extra corporeal and implantable 
insulin pumps as well as implantable non-invasive 
glucose concentration sensors, it has become 
practical to develop a closed-loop insulin infusion 
device.  The problem of IDDM management is very 
complex, due to the great inter- and intra-individual 
variability of patients’ response, and to the variety of 
factors that may determine fluctuations in the 
glucose metabolism (from diet to physical exercise, 
from stress to the insulin injection site). This 
challenge can be posed as disturbance rejection 
under unknown external disturbances and plant 
model mismatch.  Initial approaches have utilized 
direct feedback control. Next generation algorithms 
used either explicit kinetic models or adaptive time 
series models for controller synthesis. Since these 
conventional algorithms do not allow reaching and 
maintaining near normal BGL without increasing the 
frequency of BG measurements, the risk of hyper- or 
hypoglycemic events is typically higher than 
desirable. Next generation insulin infusion control 
employed model predictive control to predict these 
events prior to their occurrence and take a corrective 
action. The models used typically require either 
patient-specific parameters that are not generically 
available, and/or knowledge of glucose or exercise 
inputs that may not be known a priori.  Some 
researchers modelled insulin infusion dynamics with 

fuzzy logic and/or neural network. Developing such 
models and incorporating them into the control 
algorithm demands a greater computational effort 
compared to any linear control algorithm. Even in 
such cases, if proper correction is not made for plant-
model mismatch due to external disturbances, control 
system may become unstable. Hence, in case of inter 
and intra-patient variations due the inherent 
uncertainty in the influential parameters affecting the 
glucose and insulin metabolism, plant-model 
mismatch is to be explicitly addressed to synthesize a 
robust control algorithm for insulin infusion.  

In present study, an input-output data based 
disturbance modelling approach is adopted with 
constrained disturbance and state estimation based 
linear MPC (MPC/DSE) control algorithm (Ricker, 
1990). If the characteristics of the unmeasured 
disturbances that are expected to disturb the process 
are known, one can estimate the disturbances along 
with the states. This relaxes the stringent requirement 
of efficient process modelling. In MPC/DSE optimal 
disturbance and state estimates are propagated into 
the future predictions and hence, proper input moves 
that are to be implemented to reject the external 
disturbances can be found. Since IDDM management 
involves several general issues that are common to a 
variety of intelligent monitoring tasks, it is believed 
that the methodology proposed could be applicable to 
other monitoring problems. 

2. PATIENT MODEL UNCERTAINTY 

In this work diabetic patient model used for patient 
simulations is taken from Parker et al(1999). This 
pharmacokinetic - pharmacodynamic compartmental 
model of the human glucose-insulin system was 
initially developed by Guyton et al (1978) and  
Sorensen (1985),  and then modified by Parket et 
al.(1999) to include meal and exercise   disturbances.   
This model has 19   state  equations and 47 
physiological parameters. Utilizing compartmental 
modelling techniques, the diabetic patient model is 
represented schematically in Fig. 1. In  this   model 
human   body   is   divided   into  six compartments 
(brain, heart/lungs, gut, liver, kidney, and periphery). 

Preprints Vol.1, June 4-6, 2007, Cancún, Mexico

147



     

FIGURE 1. Compartmental diagram of the glucose and 
insulin system in diabetic patient model 

Individual compartment models are obtained by 
performing mass balances around tissues important 
to glucose or insulin metabolism.  Sub-compartments 
(namely, capillary and tissue), such as those in the 
brain and periphery, were included where significant 
transport resistance (e.g., time delay) exists.  The 
periphery represents the combined effects of muscle 
and adipose tissue while the stomach and intestine 
effects are lumped into the gut compartment.  This 
model was constructed to represent   a   sedentary   
70-kg   male   diabetic patient.  Controlled    output    
for   this system is the arterial glucose concentration, 
which is regulated by the manipulated variable, 
insulin infusion rate.  A disturbance variable, glucose 
uptake from the gut compartment, is added to the 
model to simulate the diabetic patient ingesting a 
meal.  The mathematical representation of the meal 
sub model is described in Lehmann and 
Deutsch(1992).   

Due to the inevitable patient-model mismatch there 
exists some uncertainties; these uncertainties 
between the actual patients and the nominal patient 
model could be translated to variations in the model 
parameters which represent glucose or insulin 
metabolism. The glucose and insulin dynamics were 
found to be most sensitive to variations in the 
metabolic parameters of the liver and the periphery. 
In the patient model, glucose metabolism is 
mathematically described by threshold functions 
with the following general structure; 
    

eeee
DxCBAE ie tanh           (1) 

The subscript is the state vector element involved in 
the metabolic effect, and subscript e denotes specific 
effects within the model: the effect of glucose on 
hepatic glucose production (EGHGP), the effect of 
glucose on hepatic glucose uptake (EGHGU), and 
the effect of insulin on peripheral glucose uptake 
(EIPGU). Inter- or intra-patient uncertainty were 
classified physiologically as either a receptor (

e
D ) or 

a post-receptor (
e

E ) defect; these two parameters 
were estimated to fit the actual patient data. 
Differences in insulin clearance (metabolism) 
between patients also exist and were modelled as 
deviations in the fraction of clearance (i.e., insulin 
utilized) by a given compartment, such as the 
fraction of hepatic clearance (

LCF ) or the fraction of 

peripheral insulin clearance ( PCF ). This uncertainty 
formulation essentially focuses on the liver 
(variability in five parameters) and the peripheral 
(muscle/fat) tissues (variability in three parameters), 
as these are considered to be more relevant to the 
control study. Nominal values of the above eight 
parameters (three sets of 

e
D  and 

e
E ,

LCF , and 
PCF )

are listed in Table 1.   

Figure 2 shows the steady state blood glucose 
concentration levels with variation in each sensitive 
parameter affecting the glucose and insulin 
metabolism.  It can be seen from this figure that post-
receptor defect on the effect of either glucose or 
insulin on the glucose uptake (

EGHGU
E  and 

EIPGU
E )

is similar. When these metabolic parameters increase 
glucose uptake rate increases causing hypoglycemia 
and when decreases causes hyperglycemia. Where as, 
the receptor defects with the hepatic and periphery 
glucose utilization (

EGHGU
D  and 

EIPGU
D ) shows a 

different trend. A small decrease in the nominal 
value makes the patient dynamics insensitive to 
further   change   in   these   parameters.    These   are 
significant only in hypoglycemic conditions. LCF ,
and PCF   bear  the similar   regulatory   effects on the 
blood glucose concentration. When the fractional 
clearance is higher the patient  dynamics  are  tend  to 

TABLE 1. Values of uncertain parameters which determine 
the patient dynamics 

FIGURE 2. Variation in blood glucose concentration with 
respect to the variation in metabolic parameters.
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be hyperglycemic levels and vice versa. In other 
words, impaired suppression of hepatic glucose 
production (higher values of LCF ) will result in 
accumulation blood glucose level. These two 
metabolic parameters are very important in 
determining the patient dynamics as they cause large 
variation in the blood glucose concentration (from 40 
mg/dL to 130 mg/dL) for similar percent parametric 
change compared to other parameters, which is 
evident from the figure.   

Three kinds of patient simulations were generated by 
setting values for uncertain parameters (

EGHGU
D , PCF

and LCF ) so that the sensitivity of the patients to 
insulin differed significantly; Patient-1 with nominal 
parameters, Patient-2 with higher sensitivity to 
insulin infusion, and Patient-3 with relatively 
insensitive dynamics to insulin infusion. The steady-
state insulin infusion rates to keep the blood glucose 
concentration at 81.1 mg/dL for three patients were 
22.3, 15.2 and 22.88 mU/min respectively.  The 
sensitive parameter values of three patients are given 
in Table 1. 

Transient responses to open-loop changes in the 
insulin infusion rate were simulated in order to 
characterize the insulin-to-glucose dynamics of three 
patient models. A unit negative step (-1 mU/min) 
was introduced in the insulin infusion rate and the 
corresponding response in the blood glucose 
concentration for three patients was plotted in Fig. 
3a.  From the step response curves it is evident that 
the insulin-glucose metabolism in three patients 
differs from each other in both steady state and 
dynamic behavior. Patient-3’s glucose metabolism 
was relatively insensitive to insulin infusion, where 
are as Patient-2 was highly sensitive. Patient-1 with 
nominal parameters had the insulin-glucose 
dynamics in between these two patients. 

Transient responses to a meal disturbance were 
simulated in order to characterize the post-meal 
glucose concentration dynamics. A 50 g meal 
disturbance was introduced at 300 min into the 
patient simulations.  The responses of three patients 
for the similar meal disturbance in open loop 
(without control action) were plotted in Fig.  3b.  It 
was observed that, the blood glucose levels goes up 
from 140 to 170 mg/dL.   Even   though   these levels 

FIGURE 3. (a) Openloop response of three patients for a 
negative unit step in insulin infusion rate at t=100 min; (b)
Openloop response of the three patients for similar meal 
disturbance 

FIGURE 4. Steady state input-output mapping for the three 
patient models with different insulin sensitivity used in the 
study 

reduced to normal, eventually, the time period for 
which they were above the normoglycemia threshold 
was significant.  This had to be considered seriously, 
as the prolonged hypo- or hyperglycemic excursion 
deteriorates the metabolism rates. From the response 
of three patients to similar disturbances, it can be 
seen that the disturbance model (meal to glucose 
dynamics) also differs from one patient to another. 
Figure 4 shows the steady-state mapping of blood 
glucose concentration and insulin infusion rate for 
the three patients.  It can be seen that not only the 
dynamics of three patients are different but also there 
exist a significant difference in the steady-state 
behavior of the patients. From Fig. 4, it is also 
evident that, they possess highly nonlinear insulin-
glucose dynamics. 

3. DISTURBANCE AND STATE ESTIMATION 
BASED MPC 

3.1 Disturbance modeling and estimation. 

A model predictive control formulation based on the 
initially identified process model can pose practical 
difficulties in the presence of mismatch between the 
plant behavior and the model predictions.  Over a 
period of time the behavior of the plant changes due 
to the shift in operating conditions or changes in the 
disturbance characteristics. As a natural 
consequence, there will be a large discrepancy in the 
model predictions. Under such situations achieving 
an offset free control is an impossible task. Some 
times this plant-model mismatch may destabilize the 
control loop.  Compensation for model mismatch 
and unmeasured disturbances can be achieved by 
augmenting additional disturbance states in the state 
space model, which introduces an integral action in 
the control implementation.  If the characteristics of 
the disturbances that are expected to enter the 
system are known a priori, a new model can be 
formed by augmenting the process model with the 
disturbance model (Muske and Badgwell, 2002). 
This augmentation facilitates in better predictions 
for future output and disturbances in MPC 
formulation. The disturbances can be classified as;

(i) Output disturbances which enter the process 
at the output and are additive in nature; these can be 
modeled as the augmented output states. 

(ii) Input disturbances which enter the process at 
input and bear   some   functionality   on  them before 
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TABLE 2. State augmentation for disturbance modeling for 
various kinds of disturbances

they show up in the controlled variable; these can be 
modeled as ramping output disturbances (Morari and 
Lee, 1991) or an augmented input or disturbance 
state (Davison and Smith, 1971). 

(iii) Combined state and output disturbances; 
these can be modeled as a combination of both 
output and input disturbances 

(iv) Purely integrating disturbances; these can be 
partially attributed to a constant output disturbance 
and partially to a constant integrating state 
disturbance (Muske and Badgwell, 2002). 
Let the process model in discrete state space form be 
given by, 

)()()(
)()()()1(

kvkCxky
kwkukxkx          (2)  

where mr RuRx , and nRy  represent state, 
manipulated and controlled variable vectors, 
respectively.  This model can be augmented with 
additional states to account for the disturbances 
entering the plant. The augmented process models 
for various kinds of disturbances are shown in the 
Table 2. In these models dp,  and  i  represent the 
output, input, and integrating disturbance states, 
respectively;  

d
 and 

p
 are the output and input 

disturbance transfer functions, respectively.  The 
necessary and sufficient conditions for the 
augmented model to be observable and controllable 
are given by Muske and Badgwell (2002). The key 
idea of generating the augmented state space model 
is to quantify the disturbances and correcting the 
states based on the plant-model mismatch. The 
process and disturbance states are not directly 
accessible and must be estimated. The quality of 
these estimates has important bearings on the overall 
performance of a model predictive controller. Thus 
comes a need of an optimal state estimator.  Kalman 
filter is the most established tool for state estimation. 
A discrete form of recursive Kalman filter is 
employed to estimate the current states in this work.  
In its simple form, the augmented model can be 
written as, 

)()()(
)()()()1(

kvkxCky
kwkukxkx

aa

aaaaa           (3) 

wa and v are the process and measurement noises, 
respectively. They are assumed to be independent 

white noise sequences with covariance of Q and R
(constant in most applications), respectively.  At 
every sampling instant it is implemented in two steps 
as given below; 
       Time update  

QkPkP

kukxkx
T

aa

aaaa

)1()(

)1()1(ˆ)(ˆ              (4) 

Measurement update 

    

)()()(

)(ˆ)()()(ˆ)(ˆ
)()()(

1

kPCkKIkP
kxCkykKkxkx

RCkPCCkPkK

a

aaaa

T
aa

T
a

        (5) 

This optimal estimate of current states is used in the 
MPC algorithm for future output predictions. 

3.2 Predictive Control Implementation. 

An online constrained optimization is carried out at 
every sampling instant to choose the control action. 
This aims at minimizing certain performance 
criterion over a finite future time horizon, where the 
future behavior is computed according to the model 
of the plant.  The predictive control implementation 
involves following steps;  

(i) Optimal current state and disturbance 
estimation is carried out using the Kalman filter.  

(ii) At every sampling instant, the 
augmented state space model is used for the 
openloop predictions of the controlled variable over a 
finite future time horizon of length, p(prediction 
horizon) starting from the current time instant, k. Let 
the degrees of freedom for future manipulated input 
moves be q(control horizon). Assuming that the 
expectation of the future innovations is zero, future 
output trajectory can be estimated by propagating the 
current states into future horizon as, 

)|1(ˆ)|1(ˆ
)|1()|1(ˆ)|(ˆ

kikxCkiky
kjkukikxkikx

aa

aaaa

   for  
piifq
qiifi

jpi ;,...,1                          (6)        

where )|(ˆ kikxa  is the state estimate at (k+i)th

instant given the information till kth instant. 
(iii) A filtered future setpoint trajectory is 

generated using a reference system of the form 

)()|()|(
)()()|1()|(

kykikxCkiky
kykrkikxkikx

rrr

rrrr                 

                              for pi ,...,1              (7)            
with initial condition 0)|( kkxr  and unit steady 
state gain. Here, nRkr )(  is the setpoint vector and 
the coefficient matrices of the reference system are 
tuning parameters.28

(iv) The future manipulated input moves 
qjforkjku ,...,1)|(  are determined by 

minimization of an objective function (performance 
criteria) defined as            

q

j
u

T
p

i
fe

T
f kjkuWkjkukikeWkike

qjkjku
Min

11
)|()|()|()|(

,..,1),|(
 subject to the following constraints,    

qjukjkuuandukjkuu
piykikyy

HLHL

HL

,...,1,)|()|(
,...,1,)|(ˆ     (8) 
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where the tracking error )|( kike f
, is defined as 

the difference between )|( kikyr  and )|(ˆ kiky .
We and Wu are the positive definite weighting 
matrices on tracking error and input rate, 
respectively.   Thus, after solving the optimization 
problem, only the first move is implemented on the 
plant and the optimization problem is reformulated at 
the next sampling instant based on the updated 
information from the plant. 

4. RESULTS AND DISCUSSIONS 

The objective of this work is to design a robust 
model based control for effective disturbance 
rejection under patient model mismatch. Simulation 
studies were carried out using Simulink® model and 
Matlab® routines.

4.1 MPC relevant model identification 

Patient-1 was used for perturbation studies and the 
resultant input-output data was used for nominal 
MPC relevant model generation.  The choice of 
sampling time (1 min) was made keeping view of the 
system dynamics (settling time is 85 min) and 
constraints on the sensor sampling rates.  A pseudo 
random binary sequence (PRBS generated using 
idinput routine in Matlab® with amplitude of ±3 
mg/dL and a switching time of 10 min to extract fast 
rate dynamics) input signal in insulin infusion rate is 
introduced for 600 min.  The data encompassing first 
400 min was used for model building and rest is used 
for validation.  Different linear state space models 
were developed using the ident toolbox in Matlab®,
and a third order state space model was selected for 
control implementation, which had small R2-value
compared to others.  The developed 3rd order state-
space model is given by, 

Txand

txty

tue
e

txtx

0129.000996.00422.0)0(,

)(0293.0995.0291.56)(

)(
0193.0

0599.3
0614.2

)(
76488.019558.000787.0
07663.098165.00287.0

00389.00839.0018.1
)1(

  (9) 

As evident from the open-loop disturbance responses 
plotted in Fig.  3b, an integrating disturbance 
produced a prolonged deviation in the output from 
the steady state.  It was assumed that prediction error 
can be attributed partially to a constant output 
disturbance and partially to a constant integrating 
state disturbance.  The corresponding augmented 
model used in control synthesis is given by 

( 1) ( )
( )

( 1) 0 ( ) 0

( )
( )

( )

d

p

x k x k
u k

p k I p k

x k
y k C

p k

                      (10) 

where,  
p I ,

d
 and  is chosen to be 

2.5x103, which is a tuning parameter.    The resulted 
augmented model is given by, 

Txand

txty

tue
e

txtx

00129.000996.00422.0)0(,

)(10293.0995.0291.56)(

)(

0
00193.0

0599.3
0614.2

)(

1000
8401.47649.01956.0007.0
099.0076.09816.0028.0

0054.00039.00839.0018.1

)1(

  (11) 

4.2 Control Implementation. 

Two controllers are studied for their performance for 
disturbance rejection. 

Linear Model Predictive Controller (LMPC) 
using nominal process model and without 
output constraints 
Disturbance and state estimation based MPC  

For these two controllers the tuning parameters are 
tabulated in Table 3.    

The performance of the linear MPC without output 
constraints using actual process model is shown in 
Fig. 5.   These controller parameters  were first tuned 
for patient-1 and then detuned to get optimal 
performance in all the three patients.  It was observed 
that LMPC’s performance for disturbance rejection 
was unacceptable.  In all cases, both positive and 
negative offsets in the Blood glucose concentrations 
were outside the allowable range (70-100 mg/dL).  
This controller should be rejected.  To account for 
the disturbance that entered the process and for 
effective rejection of the disturbance by taking 
appropriate control action, a proper disturbance 
model and an observer were essential.  A MPC/DSE 
was   implemented  to   serve  this  purpose.  Later, to 

TABLE 3. Controller parameters for LMPC and MPC/DSE 

FIGURE 5. Disturbance rejection with Linear Model 
Predictive Control for three patients for a similar kind of meal 
disturbance 

FIGURE 6. Disturbance rejection with Disturbance and State 
Estimation based Constrained Linear Model Predictive 
Control for three patients for a similar kind of meal 
disturbance 
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increase the sensitivity of MPC/DSE algorithm, 
output constraints were introduced in the 
optimization problem of MPC.  This resulted in an 
aggressive insulin addition, when the open loop 
observer predicted the blood glucose concentrations 
outside the given output limits.  These constraints 
were carefully chosen, in such a way that they did 
not affect the feasibility of the optimum solution 
under normal condition.  It was observed that the 
controller showed tremendous improvement in 
disturbance rejection in all three patients as shown in 
Fig. 6.  The strict maintenance of normoglycemia 
was achieved with MPC/DSE in all three patients 
even though there exists a large patient-model 
mismatch.  The performances of the two controllers 
are tabulated in Table 4.  It can be seen that for each 
patient, the performance of the MPC/DSE was 
superior, with 100-fold reduction in sum of squares 
of tracking error (SSE) compared to linear MPC. As 
these controllers were tuned in an iterative fashion 
these parameters may not be optimal.  But, it is 
evident from the table that the constrained MPC/DSE 
with proper disturbance modeling efficiently rejects 
the disturbance. 

In addition to parameter mismatch, the MPC/DSE 
controller was able to compensate for slow parameter 
drifts.  Parametric drift is a common phenomenon in 
patients, which is generally governed by the 
gradually altering metabolism due to pathological 
effects.  To reflect these conditions, a gradual change 
was introduced in the fraction of hepatic glucose 
clearance  (FLC)  from  0.4  to  0.7  over   a   period of  
seven days as given by the following equation, 

3000/3.04.0 t
LC eF           (12) 

The patient was assumed to consume two 50g meals 
per day. The corresponding regulatory response with 
MPC/DSE is shown in Fig. 7. As the hepatic glucose 
clearance becomes worse, the demand for insulin 
infusion is expected to increase which was met by 
MPC/DSE as seen from Fig. 7. The augmented 
disturbance state estimate encompassed slow 
parametric drifts along with the external meal 
disturbances and hence showed excellent regulatory 
control performance.   

CONCLUSIONS 

Model-based predictive control of insulin infusion 
system requires a compensation mechanism for 
patient-model mismatch under external disturbances 
such as meal or exercise. In such conditions 
disturbance modelling by additional augmented 
disturbance states essentially served the purpose of 
rejecting disturbances under plant-model mismatch.  
It was observed that, even under huge process-model 

TABLE 4. Comparison of performance of MPC and 
MPC/DSE algorithms for insulin infusion

FIGURE 7. Regulatory control of blood glucose 
concentration with MPCDSE for 7 days on a patient whose 
hepatic glucose clearance is becoming worse (

LCF  gradually 

increasing from 0.4 to 0.7) on twice a day meal (50 gm 
glucose each) basis. 

mismatch with an integrating type of disturbance 
(meal disturbance) entering the system, constrained 
MPC/DSE gave promising control ensuring perfect 
normoglycemia. Slow parametric drifts representing 
the pathological effect on the patient metabolism 
towards glucose was also efficiently handled with 
MPC/DSE. The digital nature of this control 
algorithm enables potential implementation onto a 
microprocessor chip to design portable insulin 
infusion systems mounted on the patient.   
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