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Abstract: This article proposes a new class of observers in order to estimate
unmeasured variables of a biotechnological process. The observer is developed on
the basis of interval estimates, which provide guaranteed upper and lower bounds of
the unknown variables. The proposed method exploits monotonicity properties of
the error dynamics. A bundle of observers is generated by appropriately varying the
observer gains. The method is applied to a real industrial anaerobic digestion plant,
for the estimation of the key variables on the basis of the available measurements
of the methane flow rate. Copyright c©2007 IFAC.
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1. INTRODUCTION

Biotechnological processes play an increasing role
in many industries, such as food, pharmaceutical
or depollution (Stephanopoulos et al., 1998). In
contrast with other kinds of processes that are
perfectly described by physical laws -like mechan-
ical or electrical systems- biotechnological pro-
cesses are dealing with living organism. As a
consequence, their modelling is uncertain and is
known to have a lower aptitude to accurately
match experimental results.
On the other hand, online monitoring of biotech-
nological processes is a very difficult task. The
difficulty to measure chemical and biological vari-
ables is one of the main limitations in the improve-
ment of monitoring and optimisation of bioreac-
tors. The lack of hardware sensors to perform
monitoring tasks has forced the implementation of
complicated, and not reliable methods. This prob-
lem becomes of great importance in more com-
plex systems like anaerobic wastewater treatment

plants, where critical instability of the process
must be avoided, making the monitoring of the
system variables an important issue (Mailleret et
al., 2004).
As an efficient solution for the inherent problem
of monitoring biotechnological processes, the in-
ternal state reconstruction can be achieved by for-
mulating observers, also called software sensors.
Many types of observers have been proposed and
extensively studied, even for nonlinear biological
systems (Bastin and Dochain, 1990; Bernard and
Gouzé, 2006) and the choice of the design method
depends on the kind of available models. Indeed,
the quality of the used model is a factor of great
importance when choosing an observation strat-
egy. For instance, if a well identified and validated
model is available, a high gain observer (Gauthier
et al., 1992) may perform good estimations of
the internal state. If we have to deal with large
uncertainties in model parameters, inputs and
measurements, robust state estimation methods,
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for example based on interval analysis (Jaulin et
al., 2001) and approximation of reachable set us-
ing ellipsoids (Kurzhanski and Valyi, 1997), both
for discrete time systems, and cooperativity based
interval observers (Gouzé et al., 2000; Rapaport
and Gouzé, 2003) for the continuous time systems,
should provide robust estimates.
Interval observers work under the formulation of
two observers: an upper observer, which produces
an upper bound of the state vector, and a lower
observer producing a lower bound, providing by
this way a bounded interval in which the state
vector is guaranteed to lie. For the formulation
of the interval observer, it is necessary to know
bounds of the uncertainties in the model (i.e. un-
certainties in model parameters, input variables,
etc.). These observers are based on hypotheses
of monotonicity (Smith, 1995), and the design
of such observers for non monotone systems is
much less straightforward. We propose here an
alternative design strategy to the one proposed
in (Moisan and Bernard, 2005) for non monotone
systems.
In this paper we propose a guaranteed interval es-
timation exploiting monotonicity properties of the
error dynamics under two approaches. The first
correspond to a direct cooperative observer and
the second one to dynamics which becomes coop-
erative after a variable change. Both approaches
require a specific choice for the signs of the ob-
server gains. We run then several observers in
parallel, obtaining a bundle of observers (Bernard
and Gouzé, 2004), and we take the best estimate
provided by the bundle.
This paper is organised as follows. In section 2
the considered class system is presented, linking
it with example related to a general biotechno-
logical model. Section 3 introduces the observer,
considering first a perfect knowledge case and
then a general uncertainty framework. Section 4 is
devoted to running many observers in parallel to
obtain the observer bundle. The application to an
anaerobic wastewater treatment process is studied
in Section 5.

2. CLASS OF SYSTEMS AND EXAMPLE

We consider a general class of nonlinear systems
whose dynamics are expressed as follows:

(S) :
{

ξ̇ = Aξ + Br(ξ) + d, ξ(0) = ξ0

y = r(ξ)
(1)

where A ∈ Rn×n is a diagonal and stable matrix,
B ∈ Rn and d ∈ Rn is a system input. For
the sake of simplicity, in this paper we restrict
the analysis to the nonlinear term r(ξ) such that
r(ξ) ∈ C1 : Rn 7→ R.
An example of such a structure can be found in
the classical mass balance models for continuously

stirred bioprocesses as proposed by (Bastin and
Dochain, 1990):

ξ̇ = −DHξ + Kr(ξ) + Dξin −Q(ξ) (2)

In this model, the state vector ξ = (ξ1, ξ2, . . . ,
ξn) t is the vector of all the process concentra-
tions and biomasses. The matrix K contains the
stoichiometric coefficients, also known as yield
coefficients of the model. The vector r(ξ) =
(r1(ξ), r2(ξ), . . . , rk(ξ)) t is a vector of reaction
rates (or conversion rates) representing the mi-
crobial activity (in this paper we only consider the
case r(ξ) ∈ R). The diagonal matrix H stands for
the fraction of biomass or substrates in the liquid
phase. The influent feeding concentration is rep-
resented by the positive vector ξin. The dilution
rate D > 0 is the ratio of the influent flow rate
and of the volume of the fermenter. Finally Q(ξ)
represents the gaseous exchange with the outside
of the fermenter.
With such a classical modeling we have e.g.:

A = −DH, B = K and d = Dξin −Q(ξ)

The bacterial kinetics model (r(ξ)) is generally
a rough approximation and is highly uncertain.
Moreover, for wastewater treatment processes,
the influent concentrations ξin are generally not
measured.
The objective of this paper is to derive an interval
observer for the class of systems (1) considering
uncertainties in the measurements, in function
r(ξ), as well as uncertainties in the vector d.
Before introducing the observer, let us recall an
useful definition.

Definition 1. A square matrix P is said to be co-
operative if its offdiagonal terms are nonnegative
(Smith, 1995): pij ≥ 0, ∀i 6= j.

Remark 1. The operator ≤ applied between vec-
tors or matrices should be understood as a set of
inequalities applied component by component.

The main properties of a cooperative system de-
fined by

Ẋ = PX + b

where X, b ∈ Rn, is that it keeps the (partial)
order of the trajectories. If we consider two initial
conditions x1(0) and x2(0) such that x1(0) ≥
x2(0), then x1(t, x1(0)) ≥ x2(t, x2(0)), ∀t ≥ 0.
An interval observer is proposed in (Rapaport and
Gouzé, 2003) for system (1) provided that r(ξ) is a
monotone function. Here we want to extend these
results in the case where r(ξ) is not monotone. For
this purpose we will use the following property.

Property 1. The Lipschitz function r can be
rewritten as the difference of f and g which are
two increasing functions of ξ:

r(ξ) = f(ξ)− g(ξ)
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As a consequence, it follows that, for ξ− ≤ ξ ≤ ξ+:

r̄(ξ−, ξ+) ≤ r(ξ) ≤ r̄(ξ+, ξ−) (3)

where r̄(ξ1, ξ2) = f(ξ1)− g(ξ2).

Proof. See (Moisan and Bernard, 2005).
Equation (3) implies:

(i) r̄(ξ, ξ) = r(ξ)

(ii)
[

∂r̄

∂ξ1

]
≥ 0 and

[
∂r̄

∂ξ2

]
≤ 0

(4)

Property 2. There exist four positive matrices
Ni(ξ, e+, e−) ∈ R1×n

+ , i = {1, ..., 4} such that:

r(ξ+, ξ−)− r(ξ, ξ) = N1(ξ, e+/−)e+ + N2(ξ, e+/−)e−

r(ξ, ξ)− r(ξ−, ξ+) = N3(ξ, e+/−)e+ + N4(ξ, e+/−)e−

(5)
where e+ = ξ+ − ξ and e− = ξ − ξ−.

Proof. Indeed, r̄(ξ1, ξ2) corresponds to a function
where the increasing and decreasing parts of r(ξ)
have been identified. Let us verify equation (5).
For the upper bound, one has:

r(ξ+, ξ−)− r(ξ, ξ) = f(ξ+)− f(ξ) + g(ξ)− g(ξ−)
= N1e + N2e

(6)

with N1 =
∫ 1

0

∂f

∂ξ
(τξ+ + (1 − τ)ξ)dτ and N2 =

∫ 1

0

∂g

∂ξ
(τξ+(1−τ)ξ−)dτ . Matrices N3 and N4 are

analogously obtained when considering the lower
bound.

3. OBSERVER FORMULATION

3.1 Perfect knowledge framework

We consider the following system associated with
equation (1).

(O) :

{
ξ̇ = Aξ + (I − Γ1)By + Γ1Br̄(ξ, ξ) + d

ξ̇ = Aξ + (I − Γ2)By + Γ2Br̄(ξ, ξ) + d

(7)
where Γ1, Γ2 ∈ Rn×n are the observers gains
matrices to be tuned.
Let us write the dynamical system associated with
the differential comparison e = [ξ − ξ; ξ − ξ]t.
Considering the presented properties and after
some algebraic manipulation we obtain a system
of the type ė = L(ξ, ξ, ξ)e where matrix L ∈
R2n×2n is of the form:

L(ξ, ξ, ξ) =




A + Γ1BN1 Γ1BN2

Γ2BN3 A + Γ2BN4


 (8)

Remark 2. Components of matrix L are not ex-
actly known: matrices Nk, k = {1, . . . , 4}, depend

on the unknown state ξ. However the BNk have
known signs.

3.1.1. Direct cooperative observer. A first inter-
val observer is derived, choosing matrices Γk such
that matrix L becomes cooperative.

Proposition 1. Let us choose Γ1 and Γ2 such that
matrix L(ξ, ξ, ξ) is cooperative. If ξ(0) ≤ ξ(0) ≤
ξ(0) then system (7) is an interval observer of
system (1): ∀t ≥ 0 we have ξ(t) ≤ ξ(t) ≤ ξ(t).

Proof. Positivity of the error dynamics is deduced
from the cooperativity of matrix L (Smith, 1995).
Considering that B = [bi] and N = [ni]. Note that
the construction of Γ such that ΓBNk is positive
is straightforward. It suffices to take a matrix Γ
whose (fixed) sign for the jth column is the sign
of bj . Then ΓB is a positive vector.

Remark 3. If we choose Γ = 0 we obtain a (stable)
asymptotic interval observer with fixed conver-
gence rate given by matrix A .

3.1.2. Indirect cooperative observer. Now let us
focus on the term Fk = ΓkBNk. When these terms
are positive to get a cooperative matrix L, they
also do affect the diagonal of L. As a consequence
the stability of L may be affected. We propose
a second design, that guarantees the stability of
matrix L.

The idea consists in choosing a matrix Γ1 (or
Γ2) containing zeros everywhere except on the
kth row. This has the opposite signs of B, i.e.
γk,jbj ≤ 0. This leads to a matrix L of the form:

L =




a11 . . . 0
. . .

...
(−)k1 . . . (−)kk . . . (−)kn

...
. . .

0 . . . ann




(9)

this means, the kth line of L is negative and the
rest of the matrix has a diagonal form whose
entries are the same entries of matrix A.
We can now propose the following interval ob-
server.

Proposition 2. Choosing Γ1 and Γ2 such that ma-
trix L(ξ, ξ, ξ) has the form of matrix (9), and

moreover if ξi(0) ≤ ξi(0) ≤ ξ
i
(0) for i 6= k and

ξ
k
(0) ≤ ξk(0) ≤ ξk(0) then system (7) is an

interval observer of system (1): ∀t ≥ 0, ξi(t) ≤
ξi(t) ≤ ξ

i
(t) for i 6= k and ξ

k
(t) ≤ ξk(t) ≤ ξk(t).

Proof. It consists in considering a change of vari-
able where the kth variable is multiplied by (−1):
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[ξ1 . . . ξk . . . ξk+n . . . . . . ξn]t

= [ζ1 . . .− ζk . . .− ζk+n . . . ζn]t

This leads to the error dynamics ˙̃e = L̃(ξ, ξ, ξ)ẽ,
where L̃ is a cooperative matrix (after this vari-
able change, the kth line of matrix L becomes
positive, except for the diagonal element l̃kk). The
rest of the proof is the same as for Proposition 1.

Remark 4. The observers based on proposition 2
lead to a class of observers for which the matrix
L̃ is cooperative and stable. The observers based
on proposition 1 may lead to unstable estimates.

3.2 Uncertainty framework

Now we consider the case where the function
r(·), the input d and the available measurement
y are not perfectly known but upper and lower
bounded by two known functions for all time. This
is formalized in the following hypothesis:

Hypothesis 1. Function r̄(ξ1, ξ2) is assumed to be
bounded by two known functions r̄+(ξ1, ξ2) and
r̄−(ξ1, ξ2).

Hypothesis 2. A bounded noise δ such that δ ≤
∆ < 1, perturbs the system output. We assume
that this noise is of multiplicative nature.

y

1 + ∆
≤ r(ξ) ≤ y

1−∆
(10)

Hypothesis 3. The input vector d is unknown but
bounded: d ≤ d ≤ d.

Now the observer is reformulated considering the
bounds on the uncertain terms. Consider the
following observer candidate:{

ξ̇ = Aξ + ỹ+(I − Γ1)B + r̃+(ξ, ξ)Γ1B + d̃+

ξ̇ = Aξ + ỹ−(I − Γ2)B + r̃−(ξ, ξ)Γ2B + d̃−
(11)

where ỹ+, ỹ−, r̃+(ξ, ξ), r̃−(ξ, ξ), d̃+ and d̃− ∈ Rn

are vectors constructed using the known bounds
of the uncertainties and taking into account the
signs of Γi. For sake of space limitation, the way
these bounds are selected is not detailed here, but
their choice is straightforward: the objective is
to obtain error dynamics of the form ė = Le +
φ, where matrix L is, as in equation (8), either
a cooperative matrix (direct cooperativity) or a
diagonal matrix plus a k negative row (Equation
(9)). Vector φ is a residual vector generated be
the comparison of system (11) and system (1). It
is either a nonnegative vector (direct cooperativ-
ity), or nonnegative with the k nonpositive row
(indirect cooperativity).

4. BUNDLE OF OBSERVERS AND
REINITIALISATION

As we have seen, the cooperativity concept ap-
plied to the proposed observer provides us with

a guaranteed interval for the state vector. It is
worth noting that the gains Γ1 and Γ2 introduce
some degrees of freedom since the observer con-
vergence can be adjusted using different values
for these gains. Taking advantage of this last fea-
ture, now we run simultaneously several observers
with different values for the gain vectors satisfying
always the cooperativity condition (Bernard and
Gouzé, 2004). These observers are a mixture of
observers based on direct cooperativity (section
3.1.1) or indirect cooperativity (section 3.1.2), as-
sociated with a broad range of gains Γi. Thus we
use both stable (for example with Γi = 0) and
unstable observers. In this way, some observers
will provide a better estimate during their tran-
sitory response and other will have better esti-
mated for the steady state behaviour(Bernard and
Gouzé, 2004). Considering different upper [resp.
lower] estimations we take the lower [resp. upper]
envelope provided by the minimum [resp. maxi-
mum] values reached by this bundle of observers
(Bernard and Gouzé, 2004).
The bundle can be even improved with a reini-
tialisation process. Reinitialisation consist in the
restarting the whole bundle of observers with the
best estimation performed at the time of reinitial-
isation tr.

[ξ
Γ
(tr), ξΓ(tr)] = [max{ξ

Γi
}(tr), min{ξΓi

}(tr)]
where ξ

Γ
, ξΓ are the lower and upper envelopes,

i.e. the best estimates at time tr of ξ and ξ respec-
tively for the set of considered gain vectors Γi. It
has already been investigated that reinitialisation
of the observers can dramatically improve the
interval estimation (Bernard and Gouzé, 2004).

Proposition 3. If, among the set of gains Γ1 and
Γ2 that produced a bundle of cooperative ob-
servers (7), we have a stable observer (for example
obtained with Γi = 0), then the envelope of the
observer bundle (ξ

Γ
(t), ξΓ(t)) is stable.

Proof. The proof is trivial since the ξΓ(t) ≤ ξΓj
(t)

for any j, and especially for the gain j producing
a stable ξΓj (t). The same argue holds for the lower
bound.

5. APPLICATION TO AN INDUSTRIAL
ANAEROBIC DIGESTION PROCESS

5.1 Introduction

Anaerobic digestion is a wastewater treatment
process used to remove organic carbon from wa-
ter using a an ecosystem based on a consortium
of anaerobic bacteria. We will here focus on a
very simple model where only a single bacterial
population is considered. This two dimensional
model considers a biomass of bacteria x grow-
ing in a bioreactor and consuming the polluting
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organic substrate s (the Chemical Oxygen De-
mand (COD)). We also assume that the methane
gaseous flow is measured.
The associated model for this ideal CSTR is then
the following:




ẋ = r(ξ)−Dx
ṡ = −k1r(ξ) + D(sin − s)
y = k2r(ξ)

(12)

where sin is the influent substrate, and k1 and k2

are yield coefficients.
This model has the form (2) with:

H =
(−1 0

0 −1

)
, K =

(
1
−k1

)
,

ξin =
(

0
sin

)
, Q =

(
0
0

) (13)

As most of the time in biotechnology, the bacterial
growth rate r(ξ) is a complex function of the
state which is generally badly known. We consider
the analytical expression for this term r(s, x) =
µ(s)x, where µ(s) corresponds to the growth rate
function. In particular we will use the classical
Haldane expression which is a non monotone
function of the substrate. This growth rate model
is defined by the following equation:

µH(s) = µ0
s

s + ks + s2/ki
(14)

for which we consider that the parameter µ0 is
uncertain: µ−0 ≤ µ0 ≤ µ+

0 . Moreover, the influent
substrate concentration to be processed in the
bioreactor is not accurately measured and thus:
s−in ≤ sin ≤ s+

in.
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Fig. 1. Dilution rate and influent substrate for the
industrial plant.
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Fig. 2. Measured methane flow rate.

5.2 Observer design

Since the function µ(s) is non monotone with
respect to s we propose to bound it with a function
of two variables. We propose an expression as
in (Moisan and Bernard, 2005), such that for
s ≤ s ≤ s: µ̄(s, s) ≤ µ(s) ≤ µ̄(s, s) where
µ̄(s, s) = µ0

s

s + ks + ss/ki
. Now considering the

uncertainty on the parameter µ0, the final bounds
on the reaction rate function r(ξ) are:

r̄+(x, s, s) = x
µ+

0 s

s + ks + ss/ki

r̄−(x, s, s) = x
µ−0 s

s + ks + ss/ki

The gains are chosen from the signs of B = K
(see Equation (13)): b11 > 0 and b21 < 0.

We choose thus γ11 > 0, γ22 < 0, γ12 < 0
and γ21 > 0 that render L cooperative, fulfilling
conditions of proposition 1. On the other hand,
a matrix of type (9) can be obtained considering
γ11 < 0 and γ12 > 0 with γ22 = 0 and γ21 = 0. A
second matrix can also be proposed with γ21 < 0
and γ22 > 0 with γ11 = 0 and γ12 = 0. We
have run a broad set of observers including Γ =
0 (asymptotic observer), and 40 direct/indirect
cooperative observers with gain values varying in
the interval γij ∈ [−24, 24].

5.3 System setup

For the application of the method, we have consid-
ered a real industrial anaerobic digestion wastew-
ater treatment plant processing raw industrial
vinasses of 2000m3. This plant is owned by the
AGRALCO company located in Stella, Spain. The
assumed uncertainty on the parameter µ0 is in a
±15% range with respect to the nominal value.
Parameters meaning and values are summarized
in Table 1.

Table 1. System parameters.

parameter meaning value

µ0 maximal growth rate [0.72,1.08]
ks saturation constant 40
ki inhibition constant 50
k1 yield conversion 19.5
k2 methane yield conversion 25

The dilution input D and the available online
measurements of the methane gaseous flow can be
seen in fig. 1 and 2 respectively. A 3% multiplica-
tive noise on the measurement has been assumed
to derive the bounds.
Bounds for the unknown influent substrate sin are
shown in fig. 1, known to fluctuate around ±30%
of the real value. Fig. 3 and 4 show the estimates
performed by the proposed set of observers (only
the bundle envelope is presented) for the biomass
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and the substrate in the reactor. It can be seen
that the convergence is much more rapid than
for the asymptotic observer, especially for the
substrate estimation. Note that these observers
have been initialized in large intervals.

6. CONCLUSIONS

A new class of interval observers has been pro-
posed, based on an guaranteed interval approach,
managing a wide uncertainty framework of a class
of nonlinear systems. The presented observers are
designed in order to fulfil particular monotone
conditions for the error dynamics, considering
that the original system dynamics are non mono-
tone. It is worth noting that we have transformed
the n dimensional non monotone system into a
monotone system in dimension 2n. Moreover, the
combination of the two types of observers, asso-
ciated with various gain combinations, allowed a
strong improvement of the observer performances.
The method can be straightforwardly extended
to more complex systems with a known vectorial
function r(ξ). On the other hand, an optimiza-
tion criterion as the one introduced in (Moisan et
al., 2007) can be applied in order to find the gain
values that provide the best estimates.
The application of the method to an industrial
plant, where the observer presents good con-
vergence properties illustrates the method effi-
ciency, and its potential of enhancing the conver-
gence rate, especially compared with the classical
asymptotic observers.
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Fig. 3. Biomass interval estimates. —: final ob-
server bundle estimations. . : asymptotic ob-
server. ◦: data
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