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Abstract: The purpose of this work is to design an exact fuzzy observer for a bioprocess 
switching between two different metabolic states. A continuous baker’s yeast culture is 
divided in two sub-models: a respiro-fermentative with ethanol production and a 
respirative with ethanol consumption. An exact fuzzy observer model using sector 
nonlinearity was built for both nonlinear models; the observer gains were designed using 
Linear Matrix Inequalities (LMI’s). The observer premise variables depend on the state 
variables estimated by the fuzzy observer.  Copyright © 2007 IFAC
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1. INTRODUCTION 

In bioindustries producing food or beverages by 
using bioprocesses, there are strong demands of 
systems providing optimization and automatic 
control of those bioprocesses in terms of quality 
control and cost savings (Horiouchi, et al., 2002). 
However, the lack of cheap and reliable sensors 
providing on line measurements of the biological 
state variables has hampered the application of 
automatic control to bioprocess (Bastin and Dochain, 
1990). This situation encourages the searching of 
new software sensors in bioprocesses. 

Two class of state observers for (bio)chemical 
processes can be found in the literature (Dochain, 
2003). A first class of observer called asymptotic 
observer, is  based on the idea  that the uncertainty in  
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bioprocess  models  is  located in the process kinetics 
models. A second class is based on the perfect 
knowledge of the model structure (Luenberger, 
Kalman Observers and nonlinear observers).  When 
the perfect knowledge of a nonlinear system is 
available, also a fuzzy model can be used. A first 
approach can be done using the Takagi-Sugeno (TS) 
fuzzy model (Takagi and Sugeno, 1985), where the 
consequent part of the fuzzy rules are replaced by 
linear systems. This can be attained, for example, 
linearizing the model around operational points, 
getting local linear representation of the nonlinear 
system. 

Another way for obtaining TS models can be 
achieved using the method of sector nonlinearities, 
which allows constructing an exact fuzzy model from 
the original nonlinear system by means of linear 
subsystems (Tanaka and Wang, 2001). From this 
exact model, a state observer may be designed based 
on the linear subsystems. Different fuzzy logic 
applications to bioprocesses can be found in the 
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scientific literature (Horiouchi, et al., 1998; Azevedo 
et al., 2004) among others.  

In this work a fuzzy state observer based on sector 
nonlinearities is proposed and applied to a 
continuous baker’s yeast process. An interesting 
feature of this model is the splitting in two different 
partial models: a respire-fermentative (RF) model 
with ethanol production and the respirative (R) 
model with ethanol consumption. The switching 
condition depends on whether the process is 
consuming or producing ethanol. The observer 
premise variables depend on the estimated variables 
by the fuzzy observer. The use of fuzzy observers 
obtained from an exact fuzzy model, applied to a 
bioprocess described by partial models has not been, 
to the best author’s knowledge, reported in the 
literature. 

2. PRELIMINARIES ON FUZZY MODELS 

2.1 Takagi-Sugeno Fuzzy Model.

The Takagi-Sugeno fuzzy models are used to 
represent nonlinear dynamics by means of a set of 
IF-THEN rules. The consequent part of the rules are 
local linear systems obtained from specific 
information about the original nonlinear plant. The 
ith rule of a continuous fuzzy model has the 
following form: 

Rule i: 
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where i
jM is a fuzzy set and r is the number of rules 

in the fuzzy model;  x(t)  Rn is the state vector,
u(t)  Rm is the input vector, y(t)  Rq is the output 
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for all t. The term ))(( tzM j
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2.2 Fuzzy Observers

The state of a system is not always fully available, so 
it is necessary to use an observer to reconstruct, at 
least partially the states variables of the process. This 
requires to satisfy that 0ˆlim

0
(t))x(x(t)

t
, where 

)(ˆ tx denotes the state vector estimated by the fuzzy 
observer. There are two cases for fuzzy observers 
design depending on whether or not z(t) depends on 
the state variables estimated by a fuzzy observer 
(Tanaka and Wang, 2001). Given the TS fuzzy model 
(1), the ith rule of a continuous fuzzy observer can be 
constructed as: 

Observer Rule i 
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where Ki is the observer gain for the ith subsystem. If 
z(t) depends on the estimated state variables, the 
observer takes the following form: 

,))(ˆ)(()()(ˆ))(ˆ(ˆ
1

r

i
iiii tytyKtuBtxAtzhx (9)

).(ˆ))(ˆ()(ˆ txCtzhty ii (10)

3. THE BAKER’S YEAST MODEL 

A continuous baker’s yeast culture can be 
represented by the following set of differential 
equations 
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Pormeleau (1990) suggested a reformulation of 
model (11) using two partial models: a respiro-
fermentative partial model (RF) with ethanol 
production and a respirative partial model (R) with 
ethanol consumption. With this reformulation a split 
process model is obtained switching from the RF 
partial model to the R partial model and vice versa 
depending on whether the system is consuming or 
producing ethanol. To precise the ideas consider a 
nonlinear system described by the model (11) which 
can be written as: 

))(()())(()( txdtButxftx i

))(()( txhty
(12)

where ))(( txf i describe both the RF and R partial 
models, namely 
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and u(t)=Sin, B=[0 D 0 0]T and h(x(t))=x3. The 
oxygen transfer rate OTR is assumed to be a 
measurable and known perturbation, and thus 

d = [0 0 0 OTR]T (15)

The variables and parameter values used in (11-14) 
are shown in table 1. Yield coefficients values for k1,
k2, k3, k4, k5, k6 and the oxygen transfer rate (OTR) 
are described in Ferreira, (1995) 

Table 1 Parameters and variables used in the baker’s 
yeast model. 

Variable / parameter                                     units
    x1   =  biomass      g/l 

x2    =  substrate      g/l 
x3    =  ethanol                g/l 
x4    = dissolved oxygen               mg/l 
Sin   = inlet substrate concentration             g/l 
D    = dilution rate                                       h-1

o
s  = specific growth rate for respiratory  

          growth on glucose               h-1

    r
s  = specific growth rate for fermentative 

              growth on glucose                     h-1

o
e  = specific growth rate for respiratory 

             growth on  ethanol.                          h-1

 The specific rates for the RF partial model are given 
by: 
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For the R partial model the specific rates are given by 
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From equation (20) and (21) it can be inferred that 
the R partial model given by (14) should be split in 
two new models: (Rqe1) when 

1_ e
o

Re q  and 

(Rqe2) when
2_ e

o
Re q . The switching condition 

between the RF and R partial model is described by 
Ferreira, (1995). The yield coefficients used in the 
specific rates (16-21) and in the partial models (13) 
and (14) are those reported by Sonnleitner and 
Käppeli (1986). To change between the RF to the R 
models, Sin was varied according to figure 1, while 
the dilution rate was set to 0.2 h-1.

Fig. 1.  The inlet substrate concentration signal 

4. THE EXACT FUZZY MODEL 

When the nonlinear dynamic model for the baker’s 
yeast is known, as well as all their parameters, a 
fuzzy exact model can be derived from the given 
nonlinear model. This requires a sector nonlinearity 

311



     

approach (Tanaka and Wang, 2001). To construct the 
RF and R exact fuzzy models,  fRF can be expressed 
as

RF model 

1

1

max max24 1
2

4 2

1max max24 1
1 2 2 2

4 2

max max2 4 1
3 3

4 2

max 4
5 2

4

0 0

0 0

0

0 0

O
o O r r s

O

O
o O r r s

O
RF

O
r o r s

O

O o

Yx xq Y Y D Y q
Ko x Y Ks x

xYx xq k Y k Y k Y q D xKo x Y Ks xf
Y x xk Y q k Y q D
Y Ko x Ks x

xk Y q D
Ko x

2

3

4

,
x
x

            (22) 

and according to (20) and (21) fR should be split to 

Rqe1 model 
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From (22-24) the fuzzy exact model using sector 
nonlinearities can be constructed. The premise 
variables are chosen as: 
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,
)(

))((
21

21
11 aa

atz
tzM ,

)(
))((

21

11
12 aa

atz
tzM (29) 

,
)(

))((
21

22
21 bb

btz
tzN ,

)(
))((

21

12
22 bb

btz
tzN (30) 

where 
,9859.0)(max

)(
11

4

tza
tx

     ,01.0)(min
)(

12
4

tza
tx

,50)(max
)(),(

21
21

tzb
txtx

          ,01.0)(min
)(),(

22
21

tzb
txtx

,8039.9)(max
)(),(

31
32

tzc
txtx

    .01.0)(min
)(),(

32
32

tzc
txtx

The fuzzy rules for the RF partial model are then: 

       IF z1(t) is “M1(z1(t))” and  z2(t)  is “N1(z2(t))”
THEN 11 11( ) ( ) ( )RF RFx t A x t Bu t d

       IF z1(t)  is “M1(z1(t))” and  z2(t)   is “N2(z2(t))”
THEN 12 12( ) ( ) ( )RF RFx t A x t Bu t d

       IF z1(t)  is “M2(z1(t))” and  z2(t)   is “N1(z2(t))”   
THEN 21 21( ) ( ) ( )RF RFx t A x t Bu t d

       IF z1(t)  is “M2(z1(t))” and  z2(t)   is “N2(z2(t))”   
THEN 22 22( ) ( ) ( ) ,RF RFx t A x t Bu t d

where the linear subsystems RFRFRFRF AAAA 22211211 ,,, are
derived from  
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The final aggregated model turns to be: 
2 2
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This fuzzy model exactly represents the RF partial 
nonlinear model in the region x1(t) 0, 10 , x2(t)
0, 1 , x3(t) 0, 10  and x4(t) 0, 0.007 . The 

fuzzy exact model for the Rqe1 and Rqe2 models 
were constructed following the same procedure. 

5. THE EXACT FUZZY OBSERVER 

After an exact fuzzy model for the nonlinear 
baker’s yeast partial model has been obtained, a 
fuzzy observer can now be designed. The following 
assumptions are made: 

H1. The yield coefficients k1, k2, k3, k4, k5 and k6
are constant and known. 

H2. The ethanol, the dissolved oxygen 
concentration and the OTR are known. 

When the output of the RF partial model is the 
ethanol and the subsystems given by (31) are used 
observability full rank cannot be achieved and only is 
possible to estimate biomass, substrate and ethanol. 
With this approach dissolved oxygen can not be 
estimated. However, the observer can still be 
designed, due to the fact that dissolved oxygen and 
OTR are usually available on line. The same 
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situation applies with the Req1 and Rqe2 partial 
models.  Since the dissolved oxygen is measurable, 
the premise variable z1(t) is taken as in (25). 
However for z2(t) and z3(t), we have to consider the 
estimates, namely 
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To construct the fuzzy observer for the RF partial 
model the procedure described by Tanaka and Wang 
(2001) is followed. The membership function for the 
premise variable z1(t) is once again given by (29); 
however, for )(ˆ2 tz  the membership function is 
described by 
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To construct the RF observer the linear subsystems 
RFRFRFRF AAAA 22211211 ,,, are derived from  
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The fuzzy rules for the RF partial model observer are 
stated as 
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The aggregated fuzzy observer for the RF model 
turns to be 
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The fuzzy observers for the Rqe1 and Rqe2 partial 
models were derived using the same procedure. The 
observer gains were calculated by means of the 
Linear Matrix Inequalities (LMI´s) given by (36) and 
solved using the MATLAB™ Linear Matrix 
Inequalities toolbox. The observer gains for the RF, 
Rqe1 and Rqe2 partial models are shown in table 2. 

0

0
T T T
i i i

T T
i i i

X

X A X C N
XA N C X

(36)

 where X=P-1, N=PK, P is a common definite 
positive matrix and K is the observer gain.  

Table 2 Fuzzy observer gains for the RF, Rqe1, and 
Rqe2  partial models.

x1     x2      x3
K1_RF  -3009  6372 -57.87 
K2_RF  -5.335  8.685  0.679 
K3_RF  -3004  6361 -58.04 
K4_RF   0.167 -1.98  0.511 
K1_Rqe1 -1022  1996  79.14 
K2_Rqe1  -1006  1966  77.83 
K3_Rqe1 -19.32  36.48  1.808 
K4_Rqe1 -3.716  6.509  0.4972 
K1_Rqe2 -2093    4460 -56.08 
K2_Rqe2 -3.532    5.744  0.5116 
K3_Rqe2 -2089    4452 -56.14 
K4_Rqe2 -0.235 -1.72  0.4531 

Also, common positive definite matrices that 
guarantees global asymptotic stability (Tanaka and 
Wang, 2001), were found for each partial model, 
namely 

-5 -4 -6

-4 -4 -6

-6 -6 -6

8.837 10 -1.7137 10 -2.6913 10
-1.7137 10 0.36302 10 -3.3403 10
-2.6913 10 -3.3403 10 4.962 10

RFP

-5 -4 -6

-4 -4 -6
1

-6 -6 -6

5.3024 -1.0182 -4.4542
-1.0182 1.99 7.8516
-4.4542 7.8516 1.0353

RqeP

-3 -3 -5

-3 -2 -4
2

-5 -4 -4

2.5022 10 -4.9634 10 -3.889 10
-4.9634 10 1.0578 10 -1.344 10
-3.889 10 -1.344 10 1.4845 10

RqeP

6. SIMULATION RESULTS 

The application of the proposed observer scheme was 
simulated using MATLAB . The fuzzy observers 
were tested using the continuous RF and the R 
baker’s yeast partial models given above. The inlet 
substrate concentration was varied between 3 g/l and 
10 g/l in order to force the switching between both 
models. The initial conditions were chosen as 
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x1(0)=2.0 g/l, x2(0)=0.02 g/l, x3(0)=0.15 g/l and 
x4(0)=0.0066 mg/l. A white noise signal was added 
to the ethanol and the dissolved oxygen on line 
measurements, see figure 2.  The behavior of the 
fuzzy observer for biomass estimation is shown in 
figure 3. It can be noticed that the dynamics of the 
baker’s yeast switch through the RF, Rqe1 and Rqe2 
partial models. The observer converges to the real 
biomass values. The estimated substrate is shown in 
figure 4, as it can be seen in this case the substrate 
observer is more sensitive to the white noise signal; 
however the observer performance is acceptable for 
the range of chosen values. The rate of convergence 
could be improved by convenient closed loop 
eigenvalues relocation. 

Fig.2. Ethanol  and dissolved oxygen with a white 
noise signal of   0.1. 

Fig. 3. Biomass estimation for three initial conditions 
1̂(0) 1.0,  3.0 and 4.0 g/l.x

Fig.4. Substrate estimation for three initial      
conditions 2ˆ (0) 0.01,  0.03 and 0.06 g/l.x

7. CONCLUSIONS 

Based on the idea of splitting the baker’s yeast 
model, a novel TS fuzzy model was proposed using 
the sector nonlinearities method, giving an exact 
representation of the original nonlinear plant. 
Moreover, an observer for each partial model was 
constructed. It is worth noting that the observer was 
capable of switching along the partial models, 
without performance degradation. Therefore, the 
approach presented here may be considered a valid 
method to design an observer. Future work will 
include the experimental validation of the fuzzy 
observer, as well as the implementation of the fuzzy 
exact observer for a baker’s yeast fed batch culture. 
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