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1. INTRODUCTION

The issue of quantitative bioprocess modelling
from extracellular measurements is a central issue
in bioengineering (e.g. Nielsen et al. (2002)). In
classical macroscopic models, the biomass is just
viewed as a catalyst for the conversion of sub-
strates into products. The process is represented
by a set of so-called bioreactions that directly
connect the substrates to the products, without
making an explicit reference to the intracellular
metabolism.

Recently, various publications have dealt with a
new “macro-micro” approach that aims at linking
the macroscopic model design to the metabolism

1 This paper presents research results of the Belgian
Programme on Interuniversity Attraction Poles, initiated
by the Belgian Federal Science Policy Office. The scientific
responsibility rests with its author(s).
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(e.g. Provost and Bastin (2004), Haag et al.
(2005), Provost et al. (2006), Zhou et al. (2006)).
Our concern in this paper is to give a brief but
rigorous presentation of the theory that grounds
this methodology. The goal is to design mini-
mal dynamic bioreaction models in the situation
where (a) the model is based on the knowledge
of a detailed underlying metabolic network, (b)
measurements of extra-cellular species in the re-
actor are the only available measurements. We
follow a systematic “model reduction” approach
that automatically produces a family of equivalent
models involving a minimal set of bioreactions
while being fully compatible with the underlying
metabolism and consistent with the available ex-
perimental data.

Furthermore, as a matter of illustration and mo-
tivation to the theory, we consider the example of



chinese hamster ovary (CHO) cells cultivated in
batch mode in stirred flasks (Ballez et al. (2004)).

2. THEORY

The intracellular metabolism of the cells under
consideration is supposed to be represented by
a metabolic network. A metabolic network is a
directed hypergraph? that encodes a set of el-
ementary biochemical reactions that take place
within the cell. In this hypergraph, the nodes
represent the involved metabolites and the edges
represent the metabolic fluxes. A typical exam-
ple of metabolic network that will be considered
in Section 3 is shown in Fig.1. The metabolic
network involves two groups of nodes: boundary
nodes and internal nodes. Boundary nodes have
only either incoming or outgoing edges, but not
both together. Boundary nodes can be further
separated into input (or initial) and output (or
terminal) nodes. Input nodes correspond to sub-
strates that are supposed to be only consumed
but not produced. Output nodes correspond to
final products that are supposed to be only pro-
duced but not consumed. In contrast, the internal
(or intermediary) nodes are the nodes that have
necessarily both incoming and outgoing incident
edges. They correspond to metabolites that are
produced by some of the metabolic reactions and
consumed by other reactions inside the cell.

It is assumed that the cells are cultivated in batch
mode in a stirred tank reactor. The dynamics of
substrates and products in the bioreactor are rep-
resented by the following basic differential equa-
tions:

ds(t)

dt) = —vs(t) X (¢) (1la)
dp(t
P —v,0X(1) (1b)

where X(¢) is the biomass concentration in the
culture medium, s(t) is the vector of substrate
concentrations, p(t) the vector of product concen-
trations, v (t) the vector of specific uptake rates
and v,(t) the vector of specific production rates.
(From now on, the time index “t” will be omitted).

Obviously, the specific rates vs; and v, are
not independent. They are quantitatively related
through the intracellular metabolism represented
by the metabolic network. In order to explicit
this relation, the quasi steady-state paradigm of
metabolic flux analysis (MFA) is adopted (e.g.
Stephanopoulos et al. (1998)). This means that
for each internal metabolite of the network, it
is assumed that the net sum of production and

2 A hypergraph is a generalization of a graph, where edges
can connect any number of vertices.
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consumption fluxes, weighted by their stoichio-
metric coefficients, is zero. This is expressed by
the algebraic relation:

Nv=0 v>0

(2)
where v = (v1,v2,...,0,)T is the m-dimensional
vector of fluxes and N = [n;;] is the n x m
stoichiometric matrix of the metabolic network
(m is the number of fluxes and n the number
of internal nodes of the network). More precisely,
a flux v; denotes the rate of reaction j and a
non-zero n;; is the stoichiometric coefficient of
metabolite ¢ in reaction j.

For a given metabolic network, the set S of
admissible flux distributions is the set of vectors
v that satisfy the finite set (2) of homogeneous
linear equalities and inequalities. Each admissible
v must necessarily be non-negative and belong to
the kernel of the matrix IN. Hence the set S is the
pointed polyhedral cone which is the intersection
of the kernel of N and the nonnegative orthant.
This implies that any flux distribution v can be
expressed as a non-negative linear combination of
a set of vectors e; which are the edges (or extreme
rays) of the polyhedral cone and form therefore a
unique convex basis (see e.g. Weyl (1950)) of the
flux space:

3)
The m X p non-negative matrix E with column

vectors e; obviously satisfies NE = 0 and (3) is
written in matrix form as

vV =wie1 +wses + - + Wy

RPNCY
From a metabolic viewpoint, the vectors e; of
the convex basis encode the simplest metabolic
paths that connect the substrates (input nodes)
to the products (output nodes). More precisely,
the non-zero entries of a basis vector e; enumerate
the fluxes of a sequence of biochemical reactions
starting at one or several substrates and ending at
one or several products. These simple pathways
between substrates and products are called ex-
treme pathways (ExPa) or elementary flux modes
(EFM) of the network (Schuster et al. (1999)
and Nielsen et al. (2002)). Since the intermediary
reactions are assumed to be at quasi steady-state,
a single macroscopic bioreaction is then readily
defined from an elementary flux mode by consid-
ering only the involved initial substrates and final
products.

. A
v=Ew with w= (w,ws,...,w,

Let us now come back to the basic model (1)
in order to elucidate the relation between the
specific consumption and production rates v, and
vp induced by the metabolic network. Obviously
v, and v, are linear combinations of some of the
metabolic fluxes. This is expressed by defining
appropriate matrices Ny and N, such that

vy = Nyv v, = Npv.

()



From (4) and (5), it follows that the model (1) is

rewritten as:
) = ( ) EwX =K.wX  (6)
—N,

i (
Keé<NP>E. 1)

dt

where

is the stoichiometric matrix of the set of biore-
actions encoded by the EFMs. Equation (6) can
be regarded as the dynamic model of a bioprocess
governed by the bioreactions with stoichiometry
K. and specific reaction rates w. In other terms,
each weighting coefficient w; in (3) can equally
be interpreted as the specific reaction rate of the
bioreaction encoded by the EFM e; : the flux
vector v is thus a linear combination of EFMs
whose non-negative weights are the macroscopic
bioreaction rates w;.

S
p

_Ns
NP

However an important issue concerns the num-
ber of distinct bioreactions that are generated
when computing the EFMs. It may become very
large because it combinatorially increases with
the size of the underlying metabolic network 2.
Furthermore, even when the number of EFMs is
rather limited, it appears that the resulting set
of bioreactions can be significantly redundant for
the design of a dynamic model that fully explains
the available experimental data. There is therefore
clearly a need for reducing the model size as much
as possible and trying to determine a minimal sub-
set of bioreactions that are able to fully describe
the available experimental data.

As mentionned above, our concern is dynamic
modelling when measurements of extracellular
species in the culture medium are available. We
assume that the specific uptake and excretion
rates vs; and vp; of those measured extracellular
species are estimated from the data and collected
in a vector v, such that:

Nnv=v,

(8)

for some appropriate matrix

N sub-matrix of (NS > .
Ny

In order to be compatible with the experimental

measurements, an admissible flux distribution v

has now to satisfy the augmented system:

3 The Double Description (DD) method (Motzkin et al.
(1953)) is the simplest known algorithm for computing the
convex basis of the solution space (see Fukuda and Prodon
(1996) for a review). In the context of metabolic networks
various refinements have been proposed that differ from
the original DD algorithm mainly by their initialization.
A first specific algorithm was presented by Schuster and
Schuster (1993). Recently, the implementation of the DD
method for metabolic networks has received various further
improvements (e.g. Gagneur and Klamt (2004) and Klamt
et al. (2005)).
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(%)=() o
Here we focus on the special case where this
system is exactly determined* and has a single
well-defined solution which can obviously be de-
composed in the convex basis as expressed by (3).
But even if the flux vector v satisfying equation
(9) is unique, it must be emphasized that the
decomposition of v in the convex basis {e;} is not
unique which is the algebraic expression of the fact
that the set of bioreactions used in the dynamical
model (6) is redundant. Using (4), system (9) is
equivalent to the system:

()= (

0

Vim

0
NmE Vi
We observe that the first equation NEw = 0 is
trivially satisfied independently of w since NE =
0 by definition. Hence, system (10) may be re-
duced to the second equation:

w > 0.

) w>0. (10)

NmEw =v,,
or equivalently:

(NmE —v,, ) <"1" (11)

In this form, it is clear that the set of admissible
reaction rate vectors w that satisfy (11) also
constitutes a convex polyhedral cone. Therefore
there exists a set of appropriate edge vectors h;

such that any arbitrary convex combination of the
form:

W:Zzihi 2120 Zzizl

is necessarily an admissible w satisfying (11). The
convex basis vectors h; have an important and
critical property : the number of non-zero entries
is at most equal to the number of measured
uptake and excretion rate i.e. the size of the
vector vy, (see Fukuda and Prodon (1996) and
Section 3.5 in Provost (2006)). From a metabolic
viewpoint, each vector h; is a particular solution
w of (11), or equivalently a particular way (among
an infinity) of computing the flux distribution v
that satisfies (10):

v =Eh; Vi. (13)

Of course in this expression, the non-zero entries
of the vector h; are interpreted as the weights of
the respective contributions of the corresponding
EFMs in the computation of the flux distribu-
tion v. But, at the same time, they can also
be interpreted as being the specific rates of the
bioreactions that are encoded by the EFMs and
are involved in the dynamic model (6).

>:O w > 0.

(12)

Hence each convex basis vector h; brings two
different pieces of information. First it tells which

4 The case where system (9) is underdetermined is treated
in Provost et al. (2006) and Provost (2006).



EFMs and consequently which bioreactions are
sufficient to explain the measured uptake and
excretion rates vy,. These EFMs are designated
by the position of the non-zero entries of h;.
Secondly, the value of each non-zero entry of h; is
the value of the reaction rate of the corresponding
bioreaction.

For each basis vector h;, we can then define a
selection matrix S; that encodes the correspond-
ing selection of bioreactions. Then the dynamical
model (6) is reduced to a minimal form:

d (s
l =Kir; X
dt<p> "

where K; £ K.S; and r; £ (S;)”h; respectively
denote the stoichiometric matrix and the vector of
the specific reaction rates of the selected minimal
set of bioreactions.

(14)

Therefore, we see that the computation of the
convex basis vectors h; provides the tool for de-
termining all the minimal dynamical models that
are both compatible with the metabolic network
and the available measurements. Furthermore, it
is worth to clearly understand that all of these
minimal models are totally equivalent because
they all provide exactly the same internal
flux distribution and the same dynamical
simulation results.

In the next section we shall illustrate this method-
ology with an application to chinese hamster
ovary (CHO) cells cultivated in batch mode in
stirred flasks.

3. CASE-STUDIES

Two case-studies will be given in the oral pre-
sentation of this paper. The first one is a simple
example that involves only two substrates (glucose
and glutamine) and a rather limited metabolic
network with only nine EFMs. It allows to illus-
trate clearly that even with a small number of
EFMs, the resulting set of bioreactions can be
significantly redundant. The second example will
involve all the amino-acids as substrates and a
much more complex metabolic network with more
than 80000 EFMs which obviously makes model
reduction imperative. Within the size limits of the
present paper, only the first example is briefly
described. The second example can be found in
Provost (2006).

During the growth phase, the cell metabolism
is described by the metabolic network presented
in Fig.1. This network describes only the part
of the metabolism concerned with the utilisation
of the two main energetic nutrients (glucose and
glutamine). The metabolism of the amino acids
provided by the culture medium is not considered
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Table 1. Matrix E of elem. flux modes.
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and the pentose-phosphate pathway is neglected.
Moreover it is assumed that a part of the glu-
tamine is used for the making of nucleotides which
are lumped into a single species with equal shares
of purines and pyrimidines (see Provost et al.
(2006) and Provost (2006) for further motivation
and details).

In this network, there are

e two input substrates :
Glutamine (Gln) ;

five output products : Lactate (Lac), COa,
NH,, Alanine (Ala) and Nucleotides (Nucl) ;
n 14 internal metabolites Glucose-
6-phosphate, Dihydroxy-acetone-phosphate,
Ribose-5-phosphate, Glyceraldehyde-3 phos-
phate, Pyruvate, Acetyl-coA, Citrate, a-
ketoglutarate, Fumarate, Malate, Oxaloac-
etate, Aspartate, Glutamate, COq;

m = 19 metabolic fluxes denoted v; to v1g in
Fig. 1.

Glucose (Glc) and

Without loss of generality, all the intermediate
metabolites that are not located at branch points
are omitted from the network. The network has
nine EFMs® that are collected in matrix E (see
Table 1) and from which the following set of
input/ output bioreactions is readily derived:

Moreover, there are five measured extra-cellular
species : the two substrates (Glucose and Glu-

5 computed with METATOOL (Pfeiffer et al. (1999))
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Fig. 1. Metabolic network : rectangular boxes represent input/output nodes, elliptic boxes represent
internal nodes. (The numbers along some arrows indicate stoichiometric coefficients).

tamine) and three excreted products (Lactate,
Ammonia, Alanine). The values of the average
specific uptake and excretion rates (vector vuy,),
computed by linear regression during the growth
phase (see Provost and Bastin (2004)), are given
in Table 2.

Table 2. Specific uptake and excretion
rates (mM/(dx10%cells)).

NHy
0.9617

Alanine
0.2686

Lactate
7.3949

Glutamine
1.1860

Glucose
4.0546

In this application, it can be checked that system
(9) is a system of 19 equations with 19 unknowns
which is uniquely determined. We are then in a
position to compute the set of vectors h; and
the result is shown in Table 4. We first observe
that there are 12 different vectors h; in this
Table. They all produce exactly the same value
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of the flux distribution v when premultiplied
by the matrix E as expected according to (13)
(see Table 3). Furthermore, as predicted by the

Table 3. Metabolic fluxes.

U1 v2 v3 V4 Vs
4.0546  3.5979  0.4567  3.5979  7.1958
V6 v7 V8 (%) v10
7.3949 0.2686 0.4900 0.4900 0.4900
v11 v12 v13 V14 V15
1.6760 1.9043 0.9467 0.9577 0.4567
V16 v17 V18 v19
0.4607 0.5010 0.2283  3.8420

theory, we also observe that there are exactly 5
non-zero entries in each vector h;. From these
observations, we can conclude that there are 12
different equivalent minimal dynamical models
of the form (14) for the considered process. For
each of these models, Table 4 tells us which 5



Table 4. Specific reaction rates for the 12 equivalent minimal dynamic models
(mM/(d x10%cells)

h; ho h3 hy hs he hr hg hg hio hii hi2
(b1) 3.5833  3.4671 3.3529  3.5979 3.4691 3.5979 3.5979 3.5979 3.3529 3.5979 3.5813  3.5979
(b2) 0.0146  0.1308 0.2450 0.0 0.1288 0.0 0.0 0.0 0.2450 0.0 0.0167 0.0
(b3) 0.0403 0.0403 0.0403 0.0403 0.2686 0.2686 0.1398 0.0403 0.2686 0.0695 0.2686 0.2686
(b4) 0.0 0.4607  0.4607 0.0 0.0 0.0 0.0 0.1991 0.2324 0.0 0.2324 0.1991
(b5) 0.4607 0.0 0.0 0.4607 0.2324 0.2324 0.3612 0.2617 0.0 0.4314 0.0 0.0333
(b6) 0.0 0.0 0.0 0.0 0.2283  0.0995  0.0995 0.0 0.2283 0.0 0.0 0.0
(b7) 0.2283 0.0 0.2283  0.1991 0.0 0.0 0.0 0.0 0.0 0.1991 0.0 0.0
(b8) 0.0 0.2283 0.0 0.0293 0.0 0.0 0.1288  0.2283 0.0 0.0 0.0 0.0
(b9) 0.0 0.0 0.0 0.0 0.0 0.1288 0.0 0.0 0.0 0.0293 0.2283  0.2283

bioreactions (among the set (bl)-(b9)) are used
and the value of their reaction rates.

The design of a particular dynamic bioreaction
model is finally completed by chosing arbitrarily
any vector h; in Table 4 and assuming that
the selected bioreactions have Michaelis-Menten
kinetics with maximum specific rates p; given
by the non-zero entries of h;. This automatically
gives by construction a model which necessarily
produces simulations that fit the experimental
data with a high accuracy, as it is illustrated
by many examples in Provost and Bastin (2004),
Provost et al. (2006) and Provost (2006).
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