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Abstract: With the increasing take-up of PAT1 by the pharma- and bio- industries there is 
a critical need for robust spectral calibrations for processes which are subject to the 
variations in physical properties such as sample compactness, surface topology, etc. The 
variation in the optical path-length materializing from the physical differences between 
samples may result in multiplicative light scattering influencing spectra in a nonlinear 
manner leading to the poor calibration performance. A new approach “Optical Path 
Length Estimation and Correction” overcomes the limitations of existing light scattering 
correction methods.  Copyright 2007 IFAC 
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1. INTRODUCTION 
 
Bio- and pharmaceutical development and 
production are now being heavily influenced through 
the recent FDA PAT 1  initiative and spectroscopic 
instrumentation is now being widely applied to or at 
the very least explored for on-line real-time 
applications.  This drives the urgent need to 
incorporate and integrate the detailed spectral 
information into process performance monitoring 
schemes. The enhancement of spectroscopic data 
analysis and calibration algorithms and software thus 
becomes even more important if PAT is to be widely 
applied and accepted.  Spectroscopic technologies 
such as near infrared spectroscopy has been widely 
applied in areas of food technology, agriculture, 
pharmaceutics, etc (Siesler, et al. 2002), due to their 
high measuring speed and fewer or no sample 
preparation requirements which make them highly 
suitable for in-line process monitoring.  Generally, it 
is the chemical information (in most cases the 
concentrations of the chemical or biological 
                                                      
1 FDA, PAT - A Framework for Innovative Pharmaceutical 

Development, Manufacturing, and Quality Assurance, 
http://www.fda.gov/cder/guidance, 2004. 

compounds) inherent within the spectroscopic 
measurements, rather than the spectroscopic 
measurements themselves, that are used for efficient 
management and optimization as well as for quality 
control.  Calibration models are, therefore, needed to 
extract the desired concentration information from 
abundant spectroscopic measurements. To achieve 
these aims two areas of complexity need to be 
addressed.   
 
The first relates to the variations in external process 
variables which can have different impact on 
different chemical species in mixture samples. For 
example, fluctuations in temperature will provoke 
non-linear shift and broadening in spectral bands of 
absorptivity spectra of constituents in mixture 
samples via the changes in intermolecular forces. 
Such temperature-induced non-linear spectral 
variations will have detrimental effects on predictive 
performance of multivariate calibration model, if not 
being properly taken into account when developing 
the model. Chen et al (2004) proposed a new 
approach termed Individual Contribution 
Standardization (ICS) to eliminate the temperature 
effects on the predictive abilities of calibration 
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models for white chemical system. In ICS, it was 
assumed that the absorbance of each chemical 
species in every wavelength follows simple 
monotonic smooth nonlinear function with respect to 
temperature. ICS had the advantages of providing an 
enhanced performance with ease of implementation. 
Furthermore, it did not require the training samples 
measured at all training temperatures to be exactly 
the same. Unfortunately, since ICS was specially 
designed for white chemical systems, it could not be 
applied to grey chemical systems. In order to 
overcome these limitations, Chen et al (2005) 
generalized the ideas behind ICS and designed a 
Loading Space Standardization (LSS) approach to 
correct temperature-induced spectral variations for 
grey chemical systems.  
 
Another area of complexity concerns the issues 
arising when analyzing more or less intact complex 
samples by spectroscopic instruments where the 
uncontrolled variations in optical path length due to 
the physical variations of samples such as particle 
size and shape, sample packing and sample surface 
may cause dominant multiplicative light scattering 
perturbations which will mask the spectral variations 
related to the content differences of chemical 
compounds in samples. The effects of multiplicative 
light scattering are difficult to approximate with 
linear factor combinations during calibration process. 
Hence, without being properly pre-processed, 
spectral data dominated by multiplicative light 
scattering effects cannot be explicitly modelled by 
any of the current popular bilinear calibration 
methods such as PCA (Cowe, et al. 1985) and PLS 

(Martens, et al. 2001). Though there are several 
methods available for correcting the effects of 
Multiplicative Light Scattering - MSC (Geladi, et al. 
1985), ISC (Helland, et al. 1995), EMSC1 (Martens, 
et al. 1991), EISC1 (Pedersen, et al. 2002), EMSC2 
and EISC2 (Martens, et al. 2003), they all have 
various stringent underlying requirements on the 
spectral data which are quite difficult to satisfy in 
practice. For example, pre-processing spectral data 
by MSC, ISC and EISC1 is safe only if the effects of 
chemical variations among samples are negligible. 
The success of EMSC1, EMSC2 and EISC2 mainly 
depends on the availability of the pure spectra of 
every chemical constituent in samples and the 
consistency of spectral contributions from 
constituents in mixtures with those of isolated 
constituents in pure state. Therefore, methods which 
can correct the effects of multiplicative light 
scattering for systems with little or even no prior 
chemical knowledge are therefore highly desirable.   
 
The aim of this study is to introduce a new 
multiplicative light scattering correction method, 
called Optical Path Length Estimation and 
Correction [OPLEC] (Chen, et al. 2006), without any 
requirement on prior chemical knowledge, and to 
compare its performance with that of EISC1 and 
EMSC2 for near infrared transmittance spectra of 
mixtures of powders of wheat gluten and starch. 
Powder mixing, along with grinding and blending, 
are critical unit operations in pharmaceuticals 

manufacturing in order to ensure ideal particle size 
distribution of the active ingredient. 
 
 

2. MULTIPLICATIVE LIGHT SCATTERING 
 
For I transparent solutions comprising J absorbing 
chemical components, when the cuvette width is kept 
constant during each measurement, according to 
Beer-Lambert law, the theoretical absorbance 
spectrum (xi,Chem, row vector) of sample i is a linear 
combination of the absorbance contributions of all 
the J constituents.  

∑=
=

J

j
jjiChemi c
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,, sx ,  Ii ,,2,1 L= (1) 

Where ci,j is the concentration, and row vector sj, the 
absorptivity spectrum of jth constituent in sample i. 
Assume sj (j = 1, 2, …, J) are linearly independent of 
each other, the multivariate linear calibration model 
build between xi,Chem. and ci,j (i = 1, 2, …, I) can 
provide satisfactory predictions for concentrations of 
constituent j in future solution samples.  
 
If the samples to be analyzed are solid samples 
(powder, granules) as well as emulsions and 
dispersions, it is practically quite difficult to make 
the optical path length constant over samples. For 
relatively simple systems, the effects of light 
scattering caused by the changes of optical path 
length due to the physical variations of samples can 
be approximated by the following EMSC2 model 
(Martens, et al. 2003).  
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Where xi is the measured absorbance spectra of 
sample i.  is a row vector with all its elements 
equal to one. Coefficients ai and bi stand for additive 
and multiplicative effects of light scattering due to 
the physical variations of sample i relative to a 
reference sample. Coefficients di and ei are 
introduced to account for smoothly wavelength 
dependent spectral variations from sample to sample. 
εi represents unknown and irrelevant types of spectral 
variations. Without being pre-processed by 
appropriate methods, the relationship between the 
measured absorbance spectra xi and ci,j (i = 1, 2, …, I) 
can not be fully explicitly modeled by any of the 
current popular multivariate linear calibration 
methods such as PCA and PLS. 

r1

 
2.1 Optical Path Length Estimation and Correction 

Though the models used in existing multiplicative 
light scattering correction methods are slightly 
different from each other (Helland, et al. 1995), most 
of them can be seen as simplification or modification 
versions of the above EMSC2 model. They generally 
share the same parameter estimation and spectral 
correction procedures: 

(i)   construct a regressor matrix based on the model 
employed 
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(ii)   estimate model coefficients (such as ai, bi, di and 
ei in Eq.2) by least squares regression and 
regress onto the regressor matrix 

(iii) insert the estimated coefficients into the model 
and remove the effects of multiplicative light 
scattering to yield corrected spectrum xi,Corrected 
(xi,Corrected ≈ xi,Chem) with only absorbance 
contributions from chemical variations.  

The parameter estimation and spectral correction of 
conventional methods heavily relies on the 
availability of the regressor matrix such as the pure 
spectra of every chemical constituent in samples for 
EMSC2, which hinders their application in practice.  
 
However, if the aim of removing the effects of 
multiplicative light scattering is to build a robust and 
accurate calibration model, instead of all the model 
parameters, only parameter bi which carries the 
information about multiplicative effects of optical 
path length variation is needed. The following 
section will focus on how to estimate bi for both 
calibration samples and how to use it for prediction 
under the circumstance of no prior information about 
the pure spectra of constituents in the samples.  
 
The influence of baseline offset (ai) and smoothly 
wavelength-dependent spectra variation from sample 
to sample (di and ei) in Eq.2 can be removed by 
projecting the measured spectrum xi onto the 
orthogonal complement of the space spanned by the 
row vectors of P = [1r; λ; λ2]. 

*
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Suppose the first component is the target constituent 
in the mixtures and  (which strictly holds for 

ci,j representing unit-free concentration such as 
weight fraction and mole fraction), then Eq.3 can 
also be expressed as:  

1
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Given the concentration vector c1 = [ c1,1; …; ci,1; …; 
cI,1] of the target constituent in the calibration 
samples, column vector b = [b1; …; bi; …; bI] can be 
obtained by the following procedure even if the pure 
spectra (sj, j = 1, 2, …, J) are unavailable.  
 
Suppose Zbase is a full-row-rank matrix assembled by 
J spectra (row vector) deliberately selected from Z = 
[z1; …; zi; …; zI] and Zrest is composed of the rest 
spectra (rows) in Z. bbase, brest, c1,base and c1,rest consist 
of the corresponding elements of b and c1 with the 
same values of index i as the spectra in Zbase and 
Zrest, respectively. It is obvious that each row in Zrest 
can be expressed as a linear combination of the rows 
in Zbase. 

baserest AZZ = , 

 

(5) 

( ) 1'' −
= basebasebaserest ZZZZA

According to Eq.4, there are linear relationships 
between zi and bi, and also between zi and . 
Therefore, the following equations hold. 

1,iicb

baserest Abb =  (6) 

basebaserestrest diagdiag bcAb(c )() ,1,1 =  (7) 
Where, diag(c1,rest) denotes the diagonal matrix in 
which the corresponding diagonal elements are 
elements of c1,rest. Inserting eq.6 into eq.7 yields: 

basebasebaserest diagdiag bcAAb(c )() ,1,1 =  (8) 

Since there is no need to know the absolute value of 
bi, the first element of bbase can be assigned to take 
the value of 1. The rest elements of bbase can be 
calculated by nonnegative least squares regression. 
Given bbase, brest can then be estimated out according 
to the following equation. 

basebaserestrest diagdiag bIcAIcb })({})({ -1 ++= ,1,1  (9) 

The estimation of b is obtained by rearranging the 
elements of bbase and brest in appropriate order.  
 
Due to the existence of noise and possible 
interferences, different selections of Zbase may 
produce more or less different estimations of b. 
Therefore, in this contribution, a set of matrixes 
Zi,base (i = 1, 2, …, I) are constructed by first 
selecting the i-th spectrum zi from Z and then 
sequentially adding new spectrum which carries the 
most new spectral information not contained in 
spectra already selected, until the number of spectra 
in Zi,base is equal to J (the number of chemical 
components in samples). Each Zi,base produces an 
estimation of b (bj). The average over all bj’s (i = 1, 
2,…, I) provides a good estimation of b.  
 
With b and c1 available the following two calibration 
models can be built by multivariate linear calibration 
methods such as PLS. 

11 βZ1bc ],[)( cdiag = ,  2βZ1b ],[ c= (10) 

Where  is a column vector with its elements equal 
to unity. The two estimated regression vectors β1 and 
β2 can be used to correct the effects of multiplicative 
light scattering on the concentration predictions of 
the target constituent in any test samples. 

c1

)-( PPIxz += testtest ,  1,1 1 βz ],[ testctesttest cb =

21 βz ],[ testctestb = , 
2

1
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βz
βz

],[
],[
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testc
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(11) 

 
 

3. NIR IN POWDER MIXING 

The data consists of 100 near-infrared transmittance 
spectra of five mixtures of gluten and starch powder 
with different weight ratios (1:0, 0.75:0.25, 0.5:0.5, 
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0.25:0.75 and 0:1) 2 . For each of the five powder 
mixtures, five samples were randomly taken and 
filled loosely into five different glass cuvettes. Two 
consecutive transmittance spectra were recorded for 
each sample. After that, each loosely packed sample 
was packed more firmly, and another two 
consecutive transmittance spectra were measured. 
Hence there are 100 spectra in total. Each of the 100 
transmittance spectra was transformed into 
absorbance spectra. The 100 absorbances between 
850nm and 1050nm formed the basis of the data 
analysis. 60 spectra from the three mixtures with 
gluten/starch equal to 1:0, 0.5:0.5 and 0:1 were used 
to construct the calibration set. The test set was 
composed of the remaining 40 spectra from the other 
two mixtures. For more experimental details, readers 
are referred to the original paper of Martens, et al. 
(2003).   

For the powder mixture data, partial least squares 
(PLS) regression was used to build the calibration 
models between the mean-centred concentrations of 
the target constituent (gluten) in the samples and the 
corresponding mean-centred raw or pre-processed 
near-infrared spectra. The root mean square error of 
prediction for independent test set (RMSEPtest) is 
used as performance criterion to assess the predictive 
power of the PLS models. All pre-processing and 
multivariate calibrations were carried out on a 
Pentium PC using MATLAB Version 6.5.  
 
 

4. RESULTS AND DISCUSSION 
 
The 100 near-infrared absorbance spectra of five 
mixtures of gluten and starch powder in 20 replicates 
are displayed in Fig.1.  From the standpoint of 
calibration, it is expected to see five bunches of 
spectra. However, due to multiplicative light 
scattering effects caused by the changes in optical 
path length, the 20 spectra from the same mixture are 
quite different from each other. PLS was used to 
build the calibration model between the 
concentrations of the gluten in powder mixtures and 
the corresponding raw spectra. Both the leave-one-
out cross validation root mean square error of 
prediction for the calibration set and the root mean 
square error of prediction for the independent test set 
suggest that PLS model with 9 components can 
provide the best predictions for the raw data. 
 
Figure 2 shows the predictive results of the 9-
component PLS model for the raw spectra. It can be 
seen that the predictions of the optimal PLS model 
are not as good as expected. RMSEPtest of the 
optimal PLS model is 0.024, which is equivalent to a 
relative predictive error of 6.08%. It clearly 
demonstrated that even when the number of PLS 
components used is sufficiently large, PLS still can 
not fully model raw spectra masked by multiplicative 
light scattering.  With a view to separating the 
spectral variations caused by multiplicative light 
scattering due to the changes in physical properties 

                                                      
2  Prof H. Martens, MATFORSK/Norwegian Food 

Research Institute is acknowledged for providing the 
powder mixture data 

of samples from those contributed by chemical or 
biological constituents, OPLEC, EISC1 and EMSC2 
were applied to pre-process the raw spectra plotted in 
Fig.1. 
 

 
 

Fig.1. The raw absorbance spectra of the five 
mixtures of gluten and starch powder with 
different weight ratios (Black lines: 1:0; 
blue lines: 0.75:0.25; red lines: 0.5:0.5; 
green lines: 0.25:0.75; cyan lines: 0:1) 
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The number of spectra used in constructing the 
matrices Zi,base in OPLEC is set as two, the number 
of chemical constituents in the powder mixtures. As 
suggested in the original paper of Martens, et al 
(2003), spectra No.3 and No.93 were used in EMSC2 
as the pure spectra of gluten and starch, respectively. 
To investigate the possible influence of the choice of 
pure spectra on the performance of EMSC2, the 
mean spectra of 20 replicates of pure gluten samples 
and pure starch samples were also considered as 
input pure spectra. For the convenience of 
comparison, both sets of pure spectra were 
normalized. Hereafter, EMSC2 with the two different 
choices of input pure spectra will be simply referred 
as EMSC23,93 and EMSC2mean.  
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Fig.2. Predictive results of a 9-component PLS 

model built on raw calibration spectra. 
Diagonal line: theoretically correct 
predictions, Blue circle: leave-one-out cross 
validation predictions for calibration set, 
Red triangle: predictions for independent test 
data set 

 
Figure 3 shows the spectra pre-processed by OPLEC, 
EMSC23,93, EMSC2mean and EISC1, respectively. 
The spectra pre-processed by all the four methods 
exhibit five distinct spectral patterns for five powder 
mixtures. The 20 replicates of each mixture are more 
or less indistinguishable. However, it does not 
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necessarily mean that all the methods provided 
satisfactory results.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3. The calibration (blue solid lines) and test 

(red dotted lines) spectra of powder 
mixtures pre-processed by different 
methods: a) OPLEC  b) EMSC23,93, c) 
EMSC2mean, d) EISC1 

 
From the calibration point of view, the variations of 
the five spectral patterns should also correctly reflect 
the variations of the constituents’ concentrations in 
the five powder mixtures. From Fig.3, it can be seen 
that the spectra pre-processed by OPLEC and 
EMSC23,93 maintain the expected equal spaces 
between every two neighbouring spectral patterns.  
Though the results of EMSC2mean are quite similar to 
those of EMSC23,93, the more or less unequal spaces 

between every two neighbouring spectral patterns 
reveal that the different choice of input pure spectra 
affects the performance of EMSC2. In contrast, the 
spectra pre-processed by EISC1 do not carry the 
right information about the constituents’ 
concentrations in the powder mixtures. The 
significantly unequal spaces between every two 
neighbour spectral patterns obtained by EISC1 
indicate that either some of the chemical information 
has been wrongly removed along with the effects of 
multiplicative light scattering or the effects of 
multiplicative light scattering has not been 
effectively corrected. Either case will affect the 
performance of the calibration models built on the 
pre-processed spectra.  
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Fig.4. The predictive performance of the PLS 

models (black dots); calibration spectra 
pre-processed by OPLEC (blue upward 
triangle, EMSC23,93 (yellow diamond), 
EMSC2mean (green square) and EISC1 
(red downward triangle) 

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.5. Predictive results of 2-component PLS model 

pre-processed by OPLEC. Diagonal line: 
theoretically correct predictions; predictions 
for calibration set (Blue dots); predictions 
for independent test set (Red triangle) 

 
Figure 4 confirms the above conclusions. PLS 
models built on the calibration spectra pre-processed 
by EISC1 gave unacceptable predictions with errors 
even larger than those of the PLS models established 
on the raw calibration spectra. The failure of EISC1 
on this powder mixture data suggests that like its 
predecessor, ISC, it is not suitable for samples with 
significant spectral variations due to the changes in 
chemical compositions. It is observed that EMSC2 
can greatly improve the predictive accuracy of the 
PLS models. However, the significant difference 
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between the predictions provided by PLS models on 
pre-processed calibration spectra of EMSC2mean and 
EMSC23,93 further demonstrates that the choice of 
input pure spectra is crucial for better performance. 
The application of OPLEC offers equivalent, if not 
better, improvement in the predictive ability of the 
PLS models as EMSC23,93. Both methods attained 
the same level of minimal RMSEPtest (0.005) at a 
slightly different number of PLS components. It is 
worth stating that after being pre-processed by 
OPLEC, a 2-component PLS model can provide 
excellent predictive results (Fig.5) with RMSEPtest 
equal to 0.008 which is equivalent to relative errors 
as small as 1.7%, while the corresponding RMSEPtest 
of EMSC23,93 is 0.013, i.e., 2.5% in terms of relative 
error. Considering the fact that OPLEC does not 
require the pure spectra of the chemical constituents 
in the samples, as does EMSC23,93, these results are 
very encouraging. 
 
 

5. CONCLUSIONS 
 
It has been shown that without using any prior 
chemical knowledge, the proposed OPLEC algorithm 
is able to separate the physical light scattering effects 
from spectral variations related to chemical 
constituents.  This significantly improves the 
prediction accuracy of calibration models, and in the 
particular the example presented here for powder 
mixture data. Compared with other existing 
multiplicative light scattering correction methods 
which can be used only when the pure spectra of all 
chemical constituents in the samples are available, or 
the effects of chemical variations among the spectra 
are negligible, OPLEC places no special requirement 
on spectral data. The new approach has been 
demonstrated to have significant potential and has a 
much wider PAT application domain than existing 
methods. The final paper will also provide 
applications of the new algorithms to batch cooling 
crystallization. 
 
 

6.  ACKNOWLEDGEMENTS  
     
The authors acknowledge the financial support of the 
EPSRC grant GR/R19366/01 (KNOW-HOW) and 
GR/R43853/01 (Chemicals Behaving Badly II). 
 
 

REFERENCES 
 

Chen, Z.P., J. Morris and E. Martin (2004). Modeling 
temperature-induced spectral variations in  
chemical process monitoring. IFAC DYCOPS, 
Boston.  

Chen, Z.P., J. Morris and E. Martin (2005). 
Correction of temperature-induced spectral 
variations by loading space standardization. 
Anal. Chem., 77,  pp. 1376-1384. 

Chen, Z.P., J. Morris, and E. Martin (2006). 
Extracting chemical information from spectral 
data with multiplicative light scattering effects 
by optical path-length estimation and correction. 
Anal. Chem., in press.  

Cowe, I. and J.W. McNicoi (1985). The use of 
principal components in the analysis of near-
infrared spectra. Appl. Spectrosc., 39, pp. 257-
266. 

Geladi, P., D. McDougall and H. Martens (1985). 
Linearization and scatter-correction for near-
infrared reflectance spectra of meat. Appl. 
Spectrosc., 39, pp. 491-500. 

Helland, I.S., T. Næs and T. Isaksson (1995). Related 
versions of the multiplicative scatter correction 
method for preprocessing spectroscopic data. 
Chemom. Intell. Lab. Syst., 29, pp. 233-241. 

Martens, H. and E. Stark (1991). Extended 
multiplicative signal correction and spectral 
interference subtraction: new preprocessing 
methods for near infrared spectroscopy. J. 
Pharm Biomed Anal., 9, pp. 625-35. 

Martens, H. and M. Martens (2001). Multivariate 
analysis of quality: an introduction. John Wiley 
and Sons, Chichester. 

Martens, H., J.P. Nielsen and S.B. Engelsen (2003). 
Light scattering and light absorbance separated 
by extended multiplicative signal correction: 
application to near-infrared transmission 
analysis of powder mixtures. Anal. Chem., 75, 
pp. 394-404. 

Pedersen, D.K., H. Martens, J.P. Nielsen and S.B. 
Engelsen (2002). Near-infrared absorption and 
scattering separated by extended inverted signal 
correction (EISC): analysis of near-Infrared 
transmittance spectra of single wheat seeds. 
Appl. Spectrosc., 56, pp. 1206-1214. 

Siesler, H.W., Y. Ozaki, S. Kawata and H.M. Heise 
(2002). Near-infrared spectroscopy: principal, 
instruments, applications. WILEY-VCH, 
Weinheim. 

 

8


