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Abstract: The application of DNA array is spreading at a very fast rate, although 
mainly in medical and systems biology studies. However, the recent FDA Process 
Analytical Technologies initiative provides a very exciting possibility of using 
transcriptomics, proteomics and metabolomics to gain deeper bioprocess 
understanding leading to more rapid process development and tighter control of 
critical process parameters. This contribution introduces a method of normalisation 
necessary for DNA data analysis usable in such circumstances – i.e. a limited 
number of experiments under varying operational conditions. We show that this 
normalisation technique provides more plausible data preparation for further data 
analysis. Copyright © 2007 IFAC 
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1.INTRODUCTION 
 
DNA array technology provides the opportunity to 
study the many thousands of genes in an organism 
simultaneously.  Gene expression in human tissues, 
cell lines and model organisms can be monitored to 
increase our understanding of the complex functional 
and metabolic pathways in such systems.  This 
technology could also be used to enhance our 
knowledge of the effects of operating conditions 
upon production strains during process development. 
Although this technology has a promising potential, 
there are still issues to be addressed before reliable 
results can be obtained.  Given the large variation in 
environmental conditions and/or production strains 
during process development an important issue is 
that of normalising the array data.  This aligns the 
arrays to a common reference allowing direct 
comparison of different array hybridisation 
experiments, which may have been performed on 
different days or by different people. 
 
The importance of normalisation of array data has 
been highlighted by a number of researchers in the 
past. For example, Edwards (Edwards, 2003) claims 
‘Normalization has profound effects on subsequent 
analysis, irrespective of the methodology used. 
Failure to normalize appropriately will generally lead 

to misleading conclusions.’ An effective 
normalisation technique is one that reduces 
experimental variation or biases (noise) without 
affecting the measurement of the biological variation 
(signal). There are a number of well documented 
normalisation techniques ranging from simple 
scaling methods to more complex statistical 
approaches (Ballman et al, 2004, Quackenbush, 
2002, Wu et al, 2005).  ‘Global’ scaling methods are 
suitable for data sets where relatively few genes are 
expected to change between conditions and global 
array statistics such as median / mean expression 
levels can be used to scale the data.  Statistical 
models require a good level of replication of 
experiments in order to give acceptable results (Kerr 
et al, 2000). 
 
For some systems, normalisation is built into the 
experimental design using specific software for the 
DNA array system, such as the Affymetrix system. 
Some DNA array experiments, however, produce 
data that are not so easily normalised. This paper 
focuses on the normalisation of multi-condition time 
series gene expression data, generated using one-
colour membrane macroarrays where the biological 
hypotheses being investigated are concerned with the 
interactions of genes involved in both the non-
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specific and the specific stress response of the 
organism to phosphate limitation. This experimental 
design is very similar to the bioprocess development 
situation, where a number of operational conditions 
are varied in order to identify the optimum operating 
conditions. If DNA array data was to be useful in 
gaining deeper process understanding from such 
experiments, it is essential to develop a robust 
normalisation technique that would minimise the 
impact of noise without reducing the biological 
signal. Such a normalisation, referred to as Self-
Consistent Set (SCS) normalisation, is proposed in 
this contribution and its robustness is tested in 
respect of the two user defined parameters required. 
 
 

2. BIOLOGICAL SYSTEM 
 
Data has been obtained from experiments where both 
the specific and non-specific response to phosphate 
stress have been investigated in a set of isogenic 
Bacillus subtilis mutants over time (Pragai and 
Harwood, 2002). The overall aim was to identify 
regulatory interactions between the �B-dependent 
general stress and Pho regulons in B. subtilis. Strains 
with null mutations in the key regulatory genes sigB 
and phoR were used to investigate the level of 
interaction between these two regulons. In total four 
strains were used: a wildtype strain (strain 168); 
sigB-null mutant; phoR-null mutant and a sigB-null, 
phoR-null (double) mutant.  For a detailed 
description of the bacterial strains, plasmids, primers 
and medium used see Allenby et al (2005).  Each 
strain was cultured in phosphate limiting conditions 
with typically four samples taken at specified times.  
These samples were processed and used in 
transcriptome analysis by hybridising to B. subtilis 
Panorama™ gene arrays (Sigma Genosys 
Biotechnologies Inc., The Woodlands, USA).  The 
procedures of cell harvesting, RNA preparation, 
synthesis of radioactively labelled cDNA and 
hybridisation to the arrays as described by Eymann et 
al (2002) were followed.  Arrays were exposed on a 
Fuji cassette for a pre-determined time. After 
exposure the cassette was scanned using a Storm 
phosphorimager to generate both .gel and .tiff image 
files. These digital images were imported into the 
software package ArrayVision™ to generate the data 
set. 
 
 

3. NORMALISATION ISSUES 
 
Currently the scientific literature mainly reports on 
more straightforward investigations of either single 
time points from a variety of strains / conditions or 
time profile of gene expression from a single strain 
using traditional methods of normalisation. However, 
functional genomics in particular will require an 
alternative approach to both experimental design and 
data analysis.  Hence novel normalisation methods, 
such as the one proposed here, will become more 
appropriate. 

Depending on the data array construction, the 
application of statistical modelling methods, which 
rely more heavily on data replication (Barash et al., 
2004), may be limited. A number of normalisation 
methods are based on the identification of a group of 
genes deemed to be invariant (Kepler et al., 2002), 
although often data from all the arrays in the 
experiment has to be compared to one array, taken as 
the baseline array.  It is not logical to use a baseline 
approach with the B. subtilis data set due to 
biological variability between the strains as well as 
across the time trajectory within each strain as a 
result of growth and phosphate starvation. A similar 
argument would also apply in bioprocess 
development data. Therefore a new normalisation 
method, which does not require a selection of a 
baseline array, is proposed to identify a set of 
invariant genes globally, across all the arrays 
simultaneously as described below. 
 
 

4. SCS NORMALISATION METHOD 
 
Below is a mathematical description of the SCS 
algorithm. Figure 1 describes the process as a flow 
diagram. 
 
For a (m × n) data set where m is the number of genes 
(rows) and n is the number of arrays (columns), each 
element of the data set is gij, where i  = 1 to m and j = 
1 to n. For multi-strain time series data n = s × t 
where s = the number of strains from 1 to S and t = 
the number of time points from 1 to T. 
Firstly, the contributions matrix C, is generated by 
dividing each gene expression value by the column 
total: 
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The average of each row of contributions is 
calculated and the top and bottom x% is disregarded. 
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     (2) 
R is a vector of row numbers left once the top and 
bottom x% have been excluded.  These row numbers 
are used to generate a new contributions matrix C2 
which is a subset of the matrix C.  It is from this new 
(m-2mx) × n matrix that the initial SCS genes will be 
identified. 

( ) CCRC ⊆∀= 22   (3) 
For time point t: 
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     (4) 
In Equation 4, shown here there are three strains to 
consider, as the rank differences are calculated for 
each possible pairing of strains, the more strains 
there are, the more terms are needed in the equation. 
This is carried out for each time point to give SCS1, 
SCS2, SCS3,……, SCST  Then any gene that appears 
in all the SCSt lists is deemed to be self-consistent 
across all strains and time points.  These genes are 
then used to normalise the data by dividing each 
column of data by the sum of the SCS genes in that 
column. 
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The process is then iterated k times by repeating each 
step from the calculation of the contributions until no 
change is seen between SCSk and SCSk-1.  
 

Part A - Exclude genes with 
extreme expression

Part B - Identify Self-
consistent Set From 
Remaining Genes

Part C - Iterate and 
Normalise Data

Find each gene's contribution to
its array by dividing its

expression value by the array
total, for each array

Calculate the average
contribution for each gene based

on all strains and time points.

Sort the genes from lowest to
highest average and exclude the

top and bottom 'x'  percent.

Rank gene contribution
values in ascending order

on each array.

For the first time point compare
the differences in ranks
between all the strains.

If the rank difference for any
given gene is below parameter
'a' in all comparisons, then the

gene passes the first filter

Any gene that passes all the
filters is placed in the self-

consistent set.

Repeat for all
other time

points

Correct for genes with large
contributions to the array by

dividing the original data on any
given array by the total of the

current self-consistent set on that
array.

Repeat from Part A using data
generated in Part B until the
self-consistent set does not

change between two sucessive
iterations

Normalise data by dividing the
original expression values by
the total of this self-consistent

set on each array.
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points
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dividing the original data on any
given array by the total of the
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array.
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generated in Part B until the
self-consistent set does not

change between two sucessive
iterations

Normalise data by dividing the
original expression values by
the total of this self-consistent

set on each array.

 
 
Fig. 1. Flow diagram of the SCS normalisation 

technique. 
 
 

5. RESULTS 
 
The number of SCS genes identified by the algorithm 
in the B. subtilis data set is largely dependant on the 
two user defined parameters, a, the absolute rank 
difference limit and x, the proportion of genes 
excluded. Figures 2 and 3 show how the number of 

genes identified as SCS changes depending on the 
values of a and x.  
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Fig. 2. Number of SCS genes identified with 

increasing value of parameter a. 
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Fig. 3. Number of SCS genes identified with 

increasing value of parameter x for three settings 
of parameter a. 

 
It is clear that parameter a has a greater influence 
over the size of the SCS than x. As a increases so 
does the number of genes which pass the filters and 
end up in the final SCS whereas when x is increased 
the stringency of the algorithm is increased as there 
are less potential SCS genes to start with. A wide 
range of a and x was investigated in this case to 
establish the sensitivity of the algorithm to these 
values, although it is clear that excessively large 
values of a result in an unrealistically large SCS gene 
sets.  
 
The impact of increasing SCS set was assessed by a 
non-parametric Park score test (Park et al, 2001) 
which was used to assess the differential expression 
of the genes in strain-wise comparisons. In this case a 
comparison between sets obtained when parameter a 
values were set to 200, 400 and 600 was performed 
using the improvements in the number of 
differentially expressed genes (only data for genes 
scoring an extreme Park score of either 0 or 16 is 
shown here). Here 0 represents a gene overexpressed 
in strain 1 compared to strain 2, whereas a score of 
16 refers to the opposite situation.  
 
The bar chart in Figure 4 shows that there is no 
detectable improvement in using a = 600 (resulting in 
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132 SCS genes). There is a more notable difference 
in the number of genes with an extreme` Park score 
when a = 200. However this only results in 11 SCS 
genes, which is a rather low proportion of the total 
number of genes spotted on the array. Thus the value 
of a = 400 (63 SCS genes) was chosen for the future 
analysis of this data set. 
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Fig. 4. Park scores for all strain comparisons using 

data normalised with SCS sets identified with 
three different settings of parameter a. 

 
The application of the SCS algorithm, using a = 400 
and x = 1 %, to the full B. subtilis data set resulted in 
63 SCS genes (2% of the total number of genes 
spotted on the array). These genes are shown in 
Figure 5, grouped into functional categories as 
defined in SubtiList World-Wide Web Server, 
Institut Pasteur.  
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Fig. 5. Functional categories of the 63 SCS genes 

identified with a = 400 and x = 1%. 
 
From the pie chart in Figure 5 it can be seen that the 
first category (Cell Envelope and Cellular Processes) 
is the most represented category, with 30% of the 
SCS genes belonging to it.  A quarter of the SCS 
genes currently have an unknown function and 
category 4 (Other Functions) is the least represented 
with only 10% of the SCS genes being from this 

category.  Category 2 (Intermediary Metabolism) and 
category 3 (Information Pathways) are evenly 
represented with 17% of SCS genes belonging to 
each of them.  
 
This set of genes was compared to scientific 
literature reports describing the identification of 
genes that are essential for the survival of B. subtilis  
grown under nutritious conditions (Kobayashi, et al, 
2003). In their study, following a systematic 
investigation, 271 genes were found to be essential to 
the organism.  Of these 271 genes a small number are 
picked out by the SCS algorithm (namely dnaE, ftsZ, 
pgk, rplD, rplJ and yurV). Further to this, around 
30% of the SCS genes are either located in close 
proximity in the genome or part of the same operon 
as genes listed as essential to the organism.  
However, the SCS genes are not expected to match to 
the list of essential genes too closely as these genes, 
critical to the organism’s survival, were identified by 
culturing B. subtilis in nutritious conditions.  
Therefore some of these genes may behave 
differently in the phosphate limiting conditions or the 
mutant strains used in these experiments.  For 
example, tagA, B, D and F are listed as essential 
genes but they are also under the control of phoR 
(Pragai and Harwood, 2002) which is inactivated in 
the phoR-null mutant and therefore would not be 
expected to fulfil the self-consistent criteria defined 
in this work. 
 
 
5.1. Noise reduction by normalisation 
 
The raw expression values for SCS genes vary over 
the time course of the experiments, however the rank 
positions of the contributions of these genes are 
similar for any given time point in each experiment.  
Therefore the SCS algorithm results in a set of genes 
which behave similarly in each strain (genotype) 
over the time course of the experiment. This enables 
the SCS data set to account for the biological 
variability between the time points in each strain 
series as shown in Figure 6. 
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Fig. 6. Totals of gene expression on each array 

shown for raw data (diamonds) and for SCS 
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normalised data (squares) using 63 SCS genes 
described above. 

 
Figure 6 shows that the variability of the normalised 
data is much lower than that of the raw MTM density 
data (here MTM stands for Median-based Mean 
Trimmed Density, an output from ArrayVision™  as 
a measure of spot intensity). The change in total 
expression over time is biologically more plausible 
when the data is normalised using this algorithm.  
 
The three mutants initially have a lower total gene 
expression than the wildtype strain. The phoR strain 
and the double mutant show a similar pattern of total 
expression over time compared to the wildtype and 
the sigB strain. This can be expected as the organism 
does not have the mechanism to specifically cope 
with phosphate stress in the phoR-null mutant or the 
double mutant. The wildtype strain shows decrease 
in total gene expression over time when the data is 
normalised. It is expected that under phosphate 
limited conditions the organism will eventually 
sporulate and so will down regulate a number of 
metabolic pathways, hence reducing the overall 
amount of mRNA in the cells. The sigB strain also 
shows a decrease in total gene expression, when the 
data is normalised, up to the last time point, where 
the total gene expression increases. A biological 
explanation for this could be related to the hyper-
induction of the phoR operon or the onset of 
sporulation. Upon inspection it transpires that 124 
genes are up-regulated by at least 3 fold between the 
last two time points of the SCS normalised data in 
the sigB-null mutant. Of these genes 32% are either 
related to sporulation or involved in reaction 
pathways that result in the release of phosphate. A 
further 37% of these up-regulated genes currently 
have an unknown function.  The remaining 31% 
have varying functions but mainly belonging to 
functional categories 1 and 2 (see SubtiList for 
functional category classification). 
 
In the three mutant strains, overall gene expression 
was lower at the outset (as indicated in Figure 6). 
This is clearly not the case with the non-normalised 
data, where the total gene expression in the phoR 
strain and the double mutant is relatively high at the 
outset (shown by diamonds in Figure 6). 
 
 
5.2. Differential gene expression 
 
In the absence of technical replicates in the data set 
studied, it has proved difficult to apply the common 
methodologies usually employed to identify 
differentially expressed genes such as the t-statistic 
or Wilcoxon test. Instead, each gene’s Park score has 
been calculated for every strain-wise comparison for 
both the nMTM and SCS normalised data sets. There 
is variation in the Park scores between the two 
normalisation methods and the results indicate 
differentially expressed genes are more likely to be 
correctly identified when the data is normalised with 
the SCS method rather than the nMTM. To illustrate 

this, a subset of 33 genes known to be under the 
control of the Pho regulon is focussed on since the 
expression of the Pho-regulated genes is expected to 
be notably lower in the phoR-null mutant compared 
to the wildtype or the sigB-null mutant. Therefore the 
Park scores for the sigB/phoR and the wildtype/phoR 
comparisons are shown (Figures 7 and 8). These 33 
genes (with the exception a small number of genes in 
the Pho regulon that are repressed by phoR) are 
expected to have a high Park score in the two 
comparisons, indicating that they are expressed to a 
greater degree in the wildtype or sigB strain 
compared to the phoR strain. 
 

 
 
Fig. 7. Parity plot of Park scores of 33 genes in Pho 

regulon for sigB/phoR comparison using nMTM 
and SCS normalised gene expression data. 

 

 
 
Fig. 8. Parity plot of Park scores of 33 genes in Pho 

regulon for wildtype/phoR comparison using 
nMTM and SCS normalised gene expression 
data. 

 
The parity plots (Figures 7 and 8) show the Park 
score for the selected genes using the two 
normalisation techniques. For the SCS normalisation, 
the Park scores for different values of parameter a 
(200, 400 and 600) are also shown. If the two 
normalisation techniques (nMTM and SCS) were 
equal, all the symbols are expected to lie on the 
parity line. Of the 33 Pho-regulated genes shown in 
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Figure 7 (the sigB/phoR comparison) 58% have a 
higher Park score with the SCS normalisation (a = 
400), so that the points lie below the parity line. A 
further 36% have equal Park scores for data using 
either of the normalisation techniques and only 1 
gene has a higher Park score when normalised using 
the global scaling method. No major improvement is 
seen when parameter a is set to 200 or 600.  
 
A similar result is seen in Figure 8 (the 
wildtype/phoR comparison). In this case 42% of the 
Pho-regulated genes have equal Park scores in both 
normalisation techniques and the remaining 58% 
have a higher Park score with the SCS normalisation 
(a = 400). This indicates that the SCS normalisation 
allows a clearer discrimination of the genes which 
are known to be differentially expressed in this 
experimental system. 
 
 

6. CONCLUSIONS 
 
A non-parametric normalisation method is proposed 
for multi-condition time series gene expression data. 
This method is based on a series of comparisons of 
ranked gene expression contributions on the 
individual arrays. If the rank position of a gene 
contribution to the array total does not change within 
specified limits across all the arrays, then that gene is 
included in the self-consistent set (SCS) of genes. 
The total expression of these genes on each of the 
arrays is then used to normalise the expression data 
of the rest of the genes. The algorithm depends upon 
two user defined parameters, a, the absolute rank 
difference limit and, to a lesser degree, x, the 
proportion of genes excluded. Current work 
concentrates on robustness studies of the SCS 
normalisation in order to assess the sensitivity of the 
algorithm to experimental data corrupted by known 
random and systematic noise. Also the application of 
this method to other gene expression data containing 
a number of technical replicates, which exhibits the 
same structure shown in this manuscript, is being 
investigated. 
 
We believe that the proposed normalisation method 
may be useful in other cases of single colour DNA 
array analysis with a combination of multiple strains, 
conditions and/or time points.  The method provides 
a way of normalising using all the data 
simultaneously without having to assign a baseline 
array or using complex statistics that require 
replicate data. Using this approach will allow us to 
apply further data analysis techniques with more 
confidence in the biological plausibility of the 
results. Therefore the time, money and effort that 
have been put into producing this data set in the first 
place will not be entirely lost due to unavailability of 
technical and biological replication and therefore 
some useful knowledge may still be gained from the 
data.   
 
From the results presented here it appears that the 
new normalisation technique has successfully 

decoupled the experimental and biological variations 
in the array data.  Such decoupling would be critical 
in bioprocess development environment, where rapid 
learning from a limited number of experiments is 
required. Deep process understanding, enabled by 
advanced analytical techniques like DNA array 
measurements, has the potential to significantly 
reduce lead times and speed up regulatory approval. 
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