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Abstract: The importance of the FDA PAT guidelines in pharmaceutical process design 
space can be influenced by the introduction of robust process malfunction and senor fault 
detection and diagnosis tools. The paper compares a multi-scale multi-block modelling 
approach with conventional multiway PCA approaches for batch process monitoring.  A 
benchmark penicillin fermentation simulation is used to evaluate the two methodologies.  
Contributions plots with confidence bounds enhance the fault diagnosis potential of the 
approaches studied. The methodology is in the process of being evaluated in fermentation 
and batch cooling crystallisation. Copyright © 2007 IFAC 
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1. INTRODUCTION 

 
This work uses a combination of multiblock 
statistical modelling approaches together with 
multiscale wavelet decomposition.  A number of 
multiblock algorithms have been proposed and 
investigated. Several algorithms have been proposed 
to deal with multiple data block including 
Hierarchical PCA (HPCA), Consensus PCA (CPCA) 
introduced by Wold et al., (1987), Hierarchical PLS 
(HPLS) and Multiblock PLS (MBPLS), e.g. 
Westerhuis et al., 1998; Qin et al., 2001; Smilde et 
al., 2003; Choi and Lee, 2004. Kourti et al., (1998) 
presented a theoretical review of MPCA and MPLS 
and compared the modelling capabilities of HPLS 
and MPLS on data from a multizone low-density 
polyethylene tubular reactor. Other applications have 
been to chemical process modelling and performance 
monitoring (e.g. Choi et al., 2004; Wong et al., 
2005).  It is suggested that as the FDA PAT 
guidelines are implemented the need for multiblock 
approaches will become even more important given  
 
 

the drive for deeper process understanding its 
implications for understanding the design space and 
the need to integrate properly large amounts of data 
collected using different sensors and analytical 
instruments including the integration of 
spectroscopic and process data. For example, Bra’s et 
al., (2004) evaluated the potential benefits of 
combining NIR and MIR spectra for the prediction of 
protein, moisture, fat and fibre content of soybean 
flour using PLS models with those obtained from 
MPLS.  
 
Chemical and biological processes typically exhibit 
dynamic behaviour with the measurements exhibiting 
autocorrelation (dynamics). Current multiblock 
approaches do not take into account such 
autocorrelated data structures, being based on the 
assumption that the process variables are stationary 
and normally distributed. In addition, process 
measurements are known to exhibit multi-scale 
behaviour as a consequence of representing the 
cumulative effect of a number of underlying process 
phenomena including process dynamics, 
measurement noise and disturbances. Thus a 
methodology is required to address (i) the multiscale 
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nature of batch process data, and (ii) the inability of 
the existing algorithms to handle auto-correlation.  It 
has been shown that frequency domain can be 
utilized to improve PCA based process monitoring 
and diagnosis (e.g. Bakshi, 1998; Misra et al., 2002). 
Multiresolution analysis based on wavelet 
decomposition can take into account the 
autocorrelated nature of the process data and that the 
process data can be decomposed into different scales. 
Coefficients from each decomposed scale are then 
used as the basis for statistical process monitoring 
taking into account process dynamics in an indirect 
way. In continuous processing examples have been 
presented by Bakshi, 1998; Misra et al., 2000; 
Teppola & Minkkinen, 2000; Rosen and Lennox, 
2001; Yoon and MacGregor, 2004; and Alawi et al., 
2005.  Bakshi’s work laid the groundwork for 
exploiting the benefits of multi-scale modelling and 
eliminating the risk of losing of useful information or 
changing the multivariate structure by pre-processing 
data through multi-scale PCA (MSPCA). MSPCA 
combines the ability of PCA to decorrelate variables 
by extracting a linear relationship with that of 
wavelets to extract deterministic features and 
approximately decorrelate auto-correlated 
measurement at each scale. The Multiscale nature of 
the MSPCA formulation makes it suitable to work 
process data that are typically non-stationary and 
represent a cumulative effect of many underlying 
process phenomena, each operating at different 
scales.  In this paper, a multiscale-PCA approach is 
proposed (figure 1) for process monitoring and fault 
detection of batch processes. At every time point, the 
batch process variables are decomposed into scales to 
the wavelet domain and then reconstructed back to 
the time domain. The scales/details and the 
approximations are collected into separate matrices 
(block). Multiblock PCA is then applied to the 
wavelets details and approximation. Fault detection 
based on the total Ts

2 and Qs statistics can then be 
used along with contribution plots incorporating 
confidence bounds to enhance fault diagnosis.  

     

 
 
 
 
 
 
 
 
Fig. 1: Multiscale batch monitoring scheme 

 
 
2. PROCESS MONITORING BASED ON MBPCA 
 
Model building commences by decomposing the 
batch block data sets into different scales through the 
application of wavelets. The batch data matrix is 
arranged in tri-linear form JKI ××ℜ∈X where K is the 
batch duration, J is the number of variables and I is  

the number of batches. First, a nominal operations 
model is constructed form historical data.  
 
2.1 The nominal operating condition (NOC) model 

1) I historical batches are selected which represent 
nominal operations and unfolded to give 
X )( KJI ××  to ( )KIj ×X , where J is the 

number of variables. The matrix contains 
each variable for all batches at all time point with 
each ith row, 

jX

Ii ,,L1=  of the individual variable 
matrix being decomposed by applying the 

discrete wavelet transform (DWT), 
jX

( )KK ×W  
with decomposition level L above. It is noted that 
the same wavelet transform with the same level, 
L is applied to each of the Jj L,1= variables. 
The wavelet reconstruction detail functions from 

( )KIiD
×

1
X  to ( )KIJ

LD
×X  and approximation 

( )KIJ
LA

×X are collected for each batch. The 

objective is to extract the correlation within the 
batch variables across the batch duration (c.f. 
Misra et al., 2002). 

2) Refold the wavelets detail transformation 
matrices ( )KIiD

×
1

X  to  and 

approximation 

( KIJ
LD

×X )

( )KIJ
LA

×X  to be of the form 

( )KJILD ×X  and . ( )KJI
LA

×*X

3) The unfolded wavelet transformation matrices 
(blocks), and  are 

normalized using the mean and the standard 
deviation of each reconstructed wavelets 
variables at each time in the batch cycle over all 
batches. Apply the multiblock PCA algorithms 
to the block matrices,

LKJI
D
×
1

X KJI
LD

×X KJI

LA
×
*X

[ ]LALDDB XXXX L1= . 
 
2.2. On-line monitoring  
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For on-line implementation, there are a number of 
approaches that can be used. The approach adopted 
requires that the measured data is decomposed within 
a window of dyadic length and only the last data 
point of the reconstructed signal is retained for on-
line monitoring. When the measured data becomes 
available, the window is shifted to include the most 
recent measurement whilst maintaining the same 
window length. Nounou and Bakshi (1999) used a 
similar scheme for on-line data rectification. An 
alternative approach is to use an autoregressive 
model or PCA model to estimate the unknown future 
variables. That is, a separate MPCA model is built on 
the original data using this model to estimate the rest 
of the batch using a missing data approach. Once the 
variables are estimated for the reminder of the batch, 
the wavelet transform is applied.  
 
Yoon and MacGregor (2004) discussed the effect of 
scaling before and after wavelet decomposition for 
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continuous processes. Their work concluded that 
scaling after the application of wavelets will place 
greater weight on the faults occurring at high 
frequency whereas scaling before the application of 
wavelets places greater emphasis on faults occurring 
at low frequency. In this work scaling was performed 
after the application of wavelet decomposition. 
1) For new batch data, a window of samples is 

recorded up to time point  such that the size of 

the window is , where is the number 
of decompositions.  

k
wLJ 2* wL

2) The resultant blocks of wavelet transformations 
are refolded batch-wise to obtain ( )kJnew

LD
×1x  

and , and then the missing values 

are in-filled up to 

( kJnew
LA

×1*x )

( )KJnew
LD

×1X  

and . ( )KJnew
LA

×1*X

The block of wavelet transformations are then scaled 
using the same mean and variance obtained from 
nominal operating conditions. 
3) The block of wavelets are projected on the 

CPCA model and the super, block scores and 
residuals are calculated: , 

, 

 

( ) T
new
B

new
S A Ptt =×1

b
new
bb A PXt =× )(1

bb
new
b

new
b JKe tPX −=× )( 1

4) Determine whether the super-block or block 
Hotelling’s T2 or Q-statistic exceed the 
confidence bounds.  

 
It is noted that there are two issues with regard to the 
application of multiresolution analysis using 
wavelets for batch processes: (i) identification of the 
optimal decomposition level, Lw and (ii) the on-line 
implementation. In the decomposition of the batch 
process variables, identifying the optimal wavelet 
decomposition level  is of particular importance.  
In the multivariate case, each variable may have a 
different optimal decomposition level. However, in 
most practical applications, only a single 
decomposition level will be applied to all variables 
for computational simplification (c.f. Bakshi, 1998; 
Wang and Romagnoli, 2005). Four monitoring 
statistics and their control limits were used (Table 1), 
where I is the number of batches, A bias the number 
of principal components, s is the sample variance of 
Q

wL

s, µ is the sample mean of Qs, Sb and bμ are the 
sample variance and mean for Qb respectively.  The 
optimal decomposition level is selected such that the 
underlying features of each variable are adequately 
preserved in the approximation function with 
minimum noise. Maulud et al. (2005) used PCA to 
identify ‘the optimal’ number of levels by examining 
the noise content of the PCA model residuals of the 
signal approximation at level Lw. In this work the 
level of decomposition is identified using the 
procedure proposed by Maulud et al., (2005).  More 
specifically, a PCA model is applied to the 
approximation reconstruction function. Recalling that 

the residual of the PCA relationship consists mainly 
of noise, as the wavelet decomposition is recursively 
applied (starting with lw = Lw), the magnitude of the 
residual is reduced as more noise is captured by the 
detail functions.  However, the A retained principal 
components remain more or less constant as the 
underlying features of the signal are adequately 
preserved (Maulud et al. 2005). As the 
decomposition level lw increases, some of the 
underlying features of the signal in the 
approximation function start to be lost to the detail 
function and the number of retained principal 
components, A, start to change significantly. This 
change can be detected by observing the explained 
variance of the first principal component of the 
approximation reconstruction function for different 
decomposition levels. 
 

Table 1 Summary of the monitoring statistics and 
their control limits
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3.    FED-BATCH PENICILLIN APPLICATION 

In the study presented, fermentation data are 
generated using a detailed mathematical model and a 
simulator PenSim (Birol et al, 2002)1, 2. In the final 
paper results will be presented from an industrial 
scale fed batch fermentation.  The model has five 
input variables, nine process variables and five 
quality variables. The variables can be categorized as 
follows - load variables including aeration rate, 
agitator power, and substrate feed rate and substrate 
feed temperature; manipulated variables includong 
acid/base flow rates and heating/cooling water flow 
rates; internal state variables such as culture volume, 
generated heat, carbon dioxide, dissolved oxygen, 
biomass, penicillin and substrate feed concentrations; 
and controlled variables such as pH and bioreactor 
temperature. A nominal operating data set from 50 
batches is generated with the process inputs small 
perturbations added to the inputs to mimic the 
variations in normal operating conditions 
encountered in the real process. In addition, 
measurement noise was added to the 14 monitored 
variables. All batches are assumed to have the same 

                                                 
1 Birol, G., Undey, C., Cinar, A., (2002). “A Modular 

Simulation Package for Fed-Batch Fermentation: 
Penicillin Production”. Comp. Chem. Eng., 26, 1553-
1565.  

2 http://www.chee.iit.edu~control/software.html
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length. The batch duration is 400 hrs comprises of 
two stages, pre-culture stage for about 45 hrs and a 
fed-batch stage of 355 hrs. The sampling period is 
two hourly. Three principal components were 
selected for both the multiscale and the conventional 
MPCA modelling using cross-validation.  
 
In the MSPCA methodology presented here, data 
collected during good operations (e.g. high yield 
batches) are decomposed into wavelet coefficients 
for the MSPCA model. The wavelet function and the 
decomposition level needs to be determined properly 
and needs to be consistent throughout the model 
building and application process. The choice of the 
wavelet is subject to many influential factors 
depending on process measurements and 
characteristics. Although the separation between 
deterministic and stochastic depends on the wavelet 
chosen; here the focus is on wavelet applications 
rather than the detailed characteristics. Selecting the 
decomposition level is based on frequency 
bandwidth and increasing the decomposition level 
gives better separation of high-frequency (noise) 
signals. In this study, the decomposition level was 
selected to be 2 using the method proposed by 
Maulud et al. (2005) and the data decomposed using 
the MATLAB Wavelet Toolbox. Two sets of 
experiments were conducted. In the first set, sensor 
faults (sensor drift and sensor degradation) were 
introduced and investigated; the second set examined 
process faults (process drift and process bias).  
 
In the fermentation studied, pH and bioreactor 
temperature were used for control purposes with 
other sensors used for process monitoring. Typically, 
four types of sensor faults are observed: complete 
failure, bias, drifting and degradation. Two sets of 
experiments were conducted. In the first set, sensor 
faults (sensor drift and sensor degradation) were 
introduced, whilst the second set consisted of process 
faults (process drift and process bias). The objective 
is the earliest possible detection and identification of 
abnormal conditions. A CPCA model based on the 
reconstruction approximation and detail blocks was 
then built as well as a conventional multi-way PCA 
model. Three principal components were selected for 
both the proposed multiscale method and the 
conventional MPCA using cross-validation.  
 
3.1 Sensor drift 
 
Space allows only a brief description of a dissolved 
oxygen (%DO) probe drift and a drift in the 
fermenter substrate feed rate. The impact of the 
probe drift is confined to the low frequency 
bandwidth. The drifting sensor was simulated to start 
at time 65 an eventual fault magnitude of .  Figure 
2 shows five different %DO2 drift fault magnitudes 
all starting at time point 65. The magnitude of this 
fault is confined to the low frequency bandwidth 

(approximation). This change in signal variance is 
difficult to detect because it is often masked by noise 
and other events.  

ϖ

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Time series plots of %DO2 for different 

magnitudes of drift from time 65 
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The study compared the proposed MSPCA and 
standard MPCA for 5 different drift fault magnitudes 
and which are summarised in Figure 3.  It can be 
observed that such faults can be detected much faster 
using the proposed multiscale approach. MPCA is 
generally better for capturing faults that contain 
contributions with the same localization everywhere 
in the time-frequency domain.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Comparison of fault magnitude  against 
fault detection time delay (sensor drift) 

ω

Figure 4 shows the results for a particular drift fault 
of magnitude 5ω. The fault was detected at  time 
point 65 in both the MSPCA Ts

2 and the Qs statistics 
in contrast to standard multiway PCA where it is 
only detected in the Q-statistic at time point 120.  To 
identify the fault, a hierarchical contribution plot is 
first investigated to identify the block which 
significantly contributes to the fault. In this case it 
can be seen from Figure 5 that the approximation 
block significantly contributes to the fault.  Drilling 
further down into the monitoring statistics for the 
individual blocks, figure 6, indicates that both blocks 
detect the fault with the approximation block 
significantly contributing to the fault.  In particular, 
the approximation block can be further interrogated 
to identify the root cause of the fault.  The approach 
used here is through contribution plots, where the 
contribution of each variable to Hotelling’s T2 is 
calculated in contrast to the convention contributions 
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approach of examining the contribution of the 
individual scores.  

 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 4: Monitoring charts for MSPCA (upper 

plots) for Super Ts
2  and super  Qs-statistic; 

MPCA (lower plots) T2 and Q – statistics 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5: Identification of the faulty block(s) 

contributing to the super  Ts
2 statistic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.6: Monitoring statistics for individual blocks 

 
Contribution plots based on the Q-statistic can also 
be derived. Figure 7 shows the contribution plots for 
the Q-statistic and Hotelling’s T2 for the first 
approximation respectively. It can be clearly 
observed that variable 7, dissolved oxygen 
concentration, breach’s the contribution plot 
confidence bounds and hence makes a major 
contribution to the out-of-control signal. 
 
3.2 Process drift 

Process drift is a complex fault whereby its effect can 
propagate to other measurements and which can be 
difficult to detect and diagnose as they affect the 

mass, energy and reaction kinetics of the process 
resulting in the fault eventually appearing in a 
number of variables. The process fault introduced in 
this case is a process drift in the substrate feed rate 
which leads to a change in DO2 which may affect the 
culture volume. Figure 8 shows the time series plot 
of the substrate feed rate with fault magnitude 5ω.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7: Upper Plots – MSPCA variable 

contributions to the Q-statistic (approximation 
block) at t = 67; Lower Plots – MPCA variable 
contribution to the Hotelling’s T2 at sample 
time point 130 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 8: Monitoring charts for a substrate feed rate 

drift: MSPCA Super Ts
2 and Qs statistics (upper 

plots);  MPCA T2 and Q statistics  (lower plots) 
 
Figure 8 shows the monitoring statistics for both 
MSPCA and MPCA. It can be seen that MSPCA 
outperforms conventional MPCA.  The fault was 
detected at sampling point 70 using multiscale PCA 
compared to sampling point 116 using conventional 
multiway PCA.  From the approximation block 
(Figure not shown) it was observed that variable 3 
(substrate feed rate), variable 7 (biomass 
concentration) and variable 9 (culture volume) 
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violated the confidence limits due to the control and 
process interactions and loops. From the contribution 
plots (not shown) the only variable that breached the 
confidence limits at time point 70 was that associated 
with variable 3, substrate feed rate – the primary 
contributor to the fault which has not, at this time, 
propagated to other process measurements. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.30 Variable contribution to the Q-statistic 
for drift type fault at sample time point 70 

     

 
3.3 Wavelets for Fault Detection 
 
There are many questions that can be raised with 
respect to multi-scale monitoring from which 
wavelet transform to use to false alarm rates. The  
basis function determines the information extracted 
from the data and allows study of different signal 
structures. The Haar wavelet provides orthogonal 
wavelets with features including compact support, 
symmetry and orthogonality at the expense of 
frequency localization and tends to emphasize 
discontinuities in the raw data. Other basis functions 
such as the Daubechies family are less discontinuous 
and probably better suited for representing smother 
variations. An investigation of the average detection 
delay for four wavelet functions computed over 100 
runs gave figures of - Haar (1), Daubechies 4 (10), 
Coiflet (1) and Symlet (1) compared to no detection 
using standard MCPA. In this particular study the 
detection delay was not greatly affected by the 
choice of the wavelets functions.   
 

 
4.    CONCLUSIONS 

 
The paper has presented some of the results of a 
larger study into assessing the characteristics of 
number different faults and to examine where 
multiscale PCA provides enhanced performance over 
conventional MPCA has been demonstrated to be 
superior in capturing faults that contain contributions 
with the same localization everywhere in the time–
frequency domain. Furthermore, since the drift 
behavior in the sensor outputs are separated from 
other events (e.g. noise) by wavelet decomposition, 
the sensitivity of detecting sensor drift can be 
increased and results in a more sensitive fault 
detection approach. The approach is being evaluated 
in fermentation and batch cooling crystallisation. 
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