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Abstract.  Fresh challenges are now arising for the bio-industries as a consequence of 
advances in Process Analytical Technologies (PAT) and the resulting generation of 
high dimensional spectral data. In particular, there is a need for analysis algorithms 
that realise information that will provide new and enhanced insights into bioprocess 
development. In this paper, a methodology is proposed which involves the 
application of Independent Component Analysis (ICA) to spectral signatures, 
following the appropriate pre-processing of the signals. An evolving window 
approach is considered to identify the number of key components present and serves 
to indicate critical operational points, i.e. their limitation or appearance within a 
batch. Also of interest is the use of the technique as a finger printing tool to help 
identify differences between batches as they evolve. The critical challenge is to make 
use of such methods in early stage development where typically only limited data is 
available. To place the technique proposed in context, the methodology is applied to 
NIR spectra generated from a pilot scale industrial antibiotic fermentation. Copyright 
© 2007 IFAC 
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1. INTRODUCTION 
 
In the bioprocess development environment, 
understanding the predominant reactions that are 
taking place at various stages throughout the course 
of a batch is a key knowledge objective. As changes 
in operating policy are explored, it is necessary to 
determine when important reaction pathways are 
significant and when they are impacted on by 
nutrient limitations or excessive accumulation. From 
such knowledge, operational policy changes can be 
made and new avenues of operation explored. The 
approach traditionally adopted involves the use of 
off-line sample analysis to identify the concentrations 
of nutrients that are perceived to be influential by the 
process scientists. Off-line sample analysis has its 
limitations, particularly with regard to the limited 
frequency at which data is available. Furthermore, 
the predominant reactions, and the reactants that 
drive them, can change significantly over the 
duration of a batch. A move towards more innovative 
solutions, to further the understanding of the 
chemical process, is of crucial importance if more 

rapid progression through the development cycle is to 
be achieved.  
 
Bioprocess systems are typified by complex reaction 
mechanisms where, as of necessity, over-simplified 
kinetic descriptions are hypothesised. Even then 
bioprocess understanding of such mechanisms has 
traditionally been limited by the lack of informative 
on-line measurement.  This situation has started to 
change as a result of the FDA initiatives in Process 
Analytical Technology (PAT). More specifically, the 
implementation of spectroscopic instrumentation 
alongside the application of advanced chemometric 
tools provides a real opportunity for the extraction of 
information that is both accepted by the regulatory 
authorities and which can be acted on. Furthermore it 
provides a route to deliver enhanced levels of 
bioprocess understanding.  
 
Researchers have considered how PAT can be 
implemented to provide an on-line indication of 
products and metabolites through the construction of 
multivariate calibration models (Vaidyanathan, 
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2001). Although such information can be extremely 
useful, the focus of this paper differs in that it aims to 
identify the appearance or limitation of critical 
components.  Based on knowledge of their spectral 
signatures, it can be ascertained how the influential 
components vary and hence how reaction schemes 
change throughout the progression of a batch. The 
methodology applied involves the initial application 
of Independent Component Analysis (ICA) to the 
spectral signatures, following appropriate pre-
processing of the signals. In this paper an evolving 
window approach is considered.  
 
A limitation of ICA is that the ordering of 
independent components, in terms of their extraction 
from the data, is not unique. This is in contrast to the 
multivariate statistical projection based technique of 
principal component analysis (PCA). In PCA the first 
principal component explains the greatest amount of 
variability in the data set with the next principal 
component defining the next greatest amount of 
variability and so on. Consequently there is natural 
ordering of the components. In ICA, the ordering of 
the ICs can change for each application of the 
algorithm as no constraints are imposed that ensure 
natural ordering.  Consequently to understand the 
changes in behaviour over time, an analysis of the 
independent components for each window requires to 
be undertaken that recognises and addresses this 
limitation of ICA.  
 
 

2.  INDEPENDENT COMPONENT ANALYSIS 
 
From the analysis of the signals obtained in neural 
activity assessment (Vigario et al, 1998; Ladroue et 
al, 2002) to the interpretation of financial information 
(Back and Weigend, 1997), there is a need to 
understand the underlying fundamental signals and 
the deviations that materialise in system changes. 
One technique that addresses these challenges that 
has recently been receiving significant interest in the 
literature is that of Independent Component Analysis 
(ICA). ICA was first proposed by Comon (1994).  
More recently Hyvärinen et al (2001) provided a 
comprehensive description of the theoretical 
background to ICA.  
 
In the bio-industries, the application of ICA to 
provide an indication of the presence of key analytes 
from signals generated from complex measurement 
devices has been considered by a number of 
researchers. For example, Sholtz et al (2004) used 
ICA to fingerprint biological samples from a plant 
test system using spectral data from microchip-based 
nanoflow-direct-infusion QTOF mass spectrometry. 
The application of ICA was motivated by its ability 
to handle small data sets and it was shown to 
outperform principal component analysis (PCA). Lee 
and Batzoglou (2003) also showed that ICA 
outperformed PCA when applied to the analysis of 

clusters obtained from micro-array data generated 
from two example micro-organisms.  
 
In this paper, the application of ICA to NIR spectral 
data is proposed. The hypothesis is that through the 
application of ICA, a linear transformation of the 
original spectral data will reveal the individual 
spectral signature of the pure compounds present 
within the process.  
 
In terms of the basic ICA algorithm, the observed 
spectral data is assumed to arise as a consequence of 
a weighted linear combination of the pure individual 
species, the so called independent components, that 
are denoted by s. The weightings are termed the 
mixing coefficients (A). Thus the observed spectra, x, 
is denoted by: 
 

Asx =  (1) 
 
Using the observed variables, i.e. the spectra in this 
paper, there is a requirement to estimate both the 
independent components that refer to the pure 
components together with their corresponding mixing 
coefficients. The ability to estimate s without prior 
knowledge of A requires a number of assumptions to 
be made. The two key assumptions are that the 
independent components are statistically independent 
and that they have non-Gaussian distributions which 
need not be known.  The problem necessitates the 
determination of ŝ : 
 

Wxs =ˆ  (2) 
 
where W is the separating matrix which is a linear 
transformation of x.  However since it is assumed 
that the independent components are uncorrelated, W 
can be calculated such that the mutual information of 
s is minimised. The problem can also be defined in 
terms of entropy, that is, from an information 
theoretic perspective.  This approach results in the 
same solution strategy. The ICA algorithm involves a 
numeric search for a separating matrix which 
satisfies the information theoretic objectives. Since 
the search for W is typically initialised from a 
random starting position, the resulting solution is not 
unique. Furthermore, in the search for W, the sign is 
not relevant as it is the magnitude that is important. 
The search algorithms used in ICA are mainly 
divided into two types, gradient and fixed point. A 
typical example of the latter is the FastICA algorithm 
(Hyvärinen 1999). FastICA is used in the study 
reported in the paper. 
 

 
3. EXPERIMENTAL DATA AND RESULTS 

 
NIR spectra generated from a series of experimental 
design trials, undertaken on a pilot scale industrial 
antibiotic fermentation, formed the basis of the study 
into the applicability of ICA for spectral data 
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interpretation. The process used in the study is an 
industrial pilot-plant scale fermentation involving 
two stages, a seed stage and a production stage. 
Biomass is grown in the seed stage before being 
transferred to the final stage for the production of the 
desired product. The final stage is a fed batch process 
and lasts approximately 140 hours.  
 
NIR measurements were collected on-line from the 
final stage of the process and formed the basis of the 
subsequent analysis.  The spectral data were recorded 
every fifteen minutes using a Zeiss Corona 45 NIR. 
The instrument was operated in reflectance mode 
with the measurements lying in the range 950 – 1700 
nm with a resolution of 6 nm. The instrument was 
equipped with a diode array detector of focal length 
13 mm with a sampling area diameter of 15 mm and 
15 detection fibres were situated around the inner 
edge of the lens. Multiple analyte concentrations, 
such as product, sugar, phosphate, lipids, ammonia, 
pH, viscosity and urea, were measured by off-line 
assay during the course of the fermentation. Data was 
available from seven batches in which natural 
variation resulted in a degree of variability.  These 
batches potentially provide insight into behaviour 
that might be expected in a production environment 
where consistency of operation is sought. It is 
important in such operations to understand the causes 
of variation and act to reduce deviations. ICA offers 
the opportunity to gain insight into possible causes. 
 
3.1 Spectral Data Pre-treatment 
 
Fig. 1 shows the raw NIR spectra as gathered from 
the instrument after pre-treatment for an example 
batch. An outlier was removed using linear 
interpolation and the region 1650-1700nm was cut 
from the data set as it was at the extreme range of the 
instrument’s detectability and was subsequently 
noisy. The multiple curves correspond to the NIR 
signals recorded throughout the evolution of the 
batch.  
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Fig. 1. Evolution of raw NIR spectra throughout a 

batch 
 
First derivatives of the spectra (as shown in Fig. 2) 
were taken to remove the baseline drift that can occur 
with such instruments. The first derivatives were 

calculated using Savitsky-Golay smoothing (Gorry, 
1990) for an 11 point window and a second order 
polynomial. These settings were found to be 
sufficient to achieve noise reduction whilst 
maintaining signal information content.  
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Fig. 2. First derivatives of NIR spectra 
 
3.2 Independent Component Analysis Results 
 
The next step in the analysis was to apply ICA to the 
pre-treated NIR data.  The focus of the analysis was 
to ascertain the functionality of the ICA approach.  
Initially it was applied to verify whether it could 
extract the component spectra for compounds that are 
present throughout the course of the batch.  It was 
applied to examine whether it is possible detect the 
appearance of a compound, in this case the product 
of interest.  Finally by adopting a reverse approach, 
the algorithm was applied to see if it could detect the 
limitation of a compound. In this case, sugar was 
considered. 
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Fig. 3. All independent components for all windows 

for a single batch 
 
An expanding window approach was utilised where 
the data presented to the ICA algorithm was the 
spectra from 0-10 hours, 0-20 hours until the window 
expanded to cover the whole batch, Fig. 3. Adopting 
this approach, in theory the spectra relating to those 
compounds present throughout the batch would be 
expected to be present in all windows, while the 
spectra relating to the product should appear later in 
the batch. The number of ICs retained for a particular 
window differed, likewise the number of IC’s 
differed between batches for a particular window, 
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and was selected using both process understanding 
and through the examination of the IC’s, i.e. only 
those IC’s were retained where the information 
content was significant and no noise was captured.  
As discussed earlier, the functionality of the ICA 
algorithm is such that the ordering of the ICs is not 
consistent and the sign of the ICs is not significant. 
Consequently the results shown in Fig. 3 require 
further processing and interpretation to realise 
information extraction. 
 
For this case study, it is known that biomass and 
lipids are present in significant concentrations 
throughout the course of the batch. Biomass can be 
predominantly detected at 1386nm and lipids at 
1139nm. Figs. 4 and 5 show the ICs that have 
significant peaks in these two regions.   
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Fig. 4. ICs corresponding to lipids evolving over the 

course of a batch  
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Fig. 5.  ICs corresponding to biomass evolving over 

the course of a batch 
 
Since the IC refers to the pure compound spectral 
signature, it would be expected that the magnitude of 
the IC would be consistent throughout the batch. 
However the results in Figs. 4 and 5 indicate 
variations do occur. At 1139 nm in Fig. 4 there is 
some variation in the magnitude of the IC signal and 
at 1386 nm in Fig. 5 there is somewhat greater 
variation in the biomass signal. This is to be expected 
as the changing conditions in the reactor such as 
biomass morphology impacts on the light scattering 
characteristics and therefore the IC signal obtained. 
 
Figs. 6 and 7 show the magnitude of absorbance at 
1386nm and 1139nm for all ICs, respectively. In 
Figs. 6 and 7, the dashed vertical lines separate the 

ICs for the expanding window (e.g. 0-10 hours, 0-20 
hours etc). Around six ICs are obtained for each time 
window. It should be noted that as the sign of the IC 
is not significant, the absolute value has been 
reported. If the IC relating to product was present 
then it would be expected that one of the set of six 
ICs obtained for a specific time window would be of 
large magnitude, i.e. lie above the 95% confidence 
limit (horizontal line) whilst the remaining IC’s for 
that window would be small. If the product 
wavenumber was not present then all ICs in the time 
window would be of low magnitude, i.e. below the 
95% confidence limit. Fig. 6 shows the IC moving 
window results for lipids at 1139 nm and Fig. 7 the 
corresponding results for biomass at 1386 nm. In 
both cases it can be observed that a peaks lies above 
the confidence limit for each window for the duration 
of the batch.  
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Fig. 6. Expanding window results for lipids. 
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Fig. 7. Expanding window results for biomass. 
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Fig. 8. Off-line assays of sugar and product 
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Fig. 9. Absorbance at 1224nm for all ICs over the 

course of batch 1 
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Fig.10. Absorbance at 1224nm for all ICs over the 

course of batch 2 
 
To investigate whether ICA can be used to detect the 
appearance or disappearance of a compound, product 
and sugar are investigated. Product can be detected at 
1224 nm. Currently, product assays are undertaken 
from around thirty hours as prior to this high 
substrate levels inhibit product formation. Fig. 8 
shows the product and sugar profiles that occur over 
a typical batch as measured by off-line laboratory 
assay. It would thus be expected that the product 
spectra would not appear until thirty hours into the 
batch. 
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Fig. 11. Product spectra obtained via ICA from 0-30 

hours onwards 
 
Figs. 9 and 10 show the magnitude of absorbance at 
1224 nm for all ICs for two batches. Both figures 

clearly indicate that a signal is not present until 
independent component 24 which lies in the 0-30 
hour time window and subsequent windows show its 
presence. No spectra are obtained in the 0-10 and 0-
20 hour windows. The spectra obtained by ICA from 
the time window 0-30 hours and subsequent windows 
are shown in Fig. 11. Again some variation in the 
peak height is observed due to changes in broth 
characteristics. 
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Fig. 12. Reverse extending window showing 

disappearance of sugar 
 
The expanding window concept can be applied to a 
component that disappears towards the end of the 
batch if the window is expanded from the end of the 
batch to the start. For a batch that ends at 140 hours 
the windows would be 130-140 hours, 120-130 
hours, etc. This concept is applied to detect the 
disappearance of sugar.  Fig. 12 demonstrates that the 
sugar spectrum disappears at around 80 hours which 
is consistent with the off-line assay profile shown in 
Fig. 8.  
 
3.3 Application of PCA to Independent Components 
from Multiple Batches 
 
The preceding discussion focussed on the analysis of 
single batches to understand the onset and limitation 
of critical components. Building on this concept, the 
next step was to consider the application of ICA to 
multiple batches and investigate if the methodology 
could be utilised as a finger printing technique.  One 
of the issues that needs to be addressed with respect 
to the comparison of the independent components 
generated from different batches is that they are not 
uniquely ordered. Thus to undertake a comparison, 
there is a need to address the lack of ordering with 
regard to the ICs.   
 
One possible methodology to undertake this is that of 
principal component analysis (PCA). PCA is a 
multivariate statistical projection technique that 
identifies, in the data being analysed, the direction of 
greatest variability by defining a new set of latent 
variables that are a linear combination of the original 
variables, in this case IC’s. Thus the ordering of the 
ICs will cease to be of any consequence and hence it 

31



will be possible to extract information regarding the 
similarity of the batches.  
 

 
 

Fig. 13. Comparison of the IC’s for all batches for 
principal component one 

 
Fig. 13 illustrates the results from the application of 
PCA to the retained independent components, 
calculated for the five batches for the time period 0-
10 hours.  From these results it is evident that batch 
96 differs to the other four batches.  The interesting 
aspect of this is that through adopting this finger 
printing strategy, there is clear evidence in the first 
10 hours of the batch that it exhibits different 
behaviour to the others and hence a more detailed 
study can be undertaken to isolate the cause of the 
difference and either corrective action can be 
undertaken or the batch terminated. 
 
 

4. CONCLUDING COMMENTS 
 
This paper has set out to demonstrate the capabilities 
of ICA for the interpretation of on-line NIR spectral 
data gathered from a fermentation process. The 
objective was not to construct spectral calibration 
models but to identify the presence or not of key 
compounds in the batch broth. This is important from 
a general operational perspective as compound 
limitations or excesses as a batch progresses can 
potentially cause product losses. In this study known 
compounds have been considered and it was found 
that it was possible to detect the appearance of a new 
IC relating to product concentration whereas other 
compounds were correctly identified as being present 
throughout the batch. Likewise, the limitation of a 
particular product, sugar was also identifiable from 
the analysis of the IC’s. In the longer term, the 
benefits from applying ICA to NIR spectral 
signatures will be found in the detection of abnormal 
independent component profiles and since the IC is 
related to pure components, the peaks resulting will 
provide insight into the causes of deviation.  
 
It was also observed that the IC derived pure 
component spectra show changes in peak magnitude 
as the batch progresses. If the ICs are utilised for 

compound detection then this is not a severe problem 
but if they are used as part of a calibration modelling 
procedure then such deviations will impact on 
prediction accuracy. In that case, the causes of 
variation such as scattering would need to be 
accounted for in the modelling algorithm.  
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