
     

 
 
 

A FILTER BASED APPROACH FOR ESTIMATION OF 
PI ACHIEVABLE PERFORMANCE 

 
Mranal Jain and S. Lakshminarayanan * 

 
 

Department of Chemical and Biomolecular Engineering 
National University of Singapore, Singapore 117576 

*Corresponding Author. Telephone: +65-68748484 Email: chels@nus.edu.sg 
 

 
 
Abstract: We present a new filter based method for the calculation of PI achievable 
performance for simple feedback control systems. We also extend this new approach to 
multiloop systems and address some key questions such as (a) what would be the 
performance with alternate loop pairing? (b) what performance improvement will accrue 
through the use of decouplers in multiloop control systems? Copyright  2004 IFAC 
 
Keywords: Control loop performance, PI achievable performance, Multiloop systems, 
Pairing, Decouplers 

 
 
 

 
1. INTRODUCTION 

 
In a typical process plant, there are thousands of 
control loops designed and implemented in order to 
achieve specific objectives. Continuous good 
performance of existing controllers is indispensable 
to meet the demands of the consumer in a cost 
effective way and to generate sustained benefits.  
This indicates the need for control loop performance 
benchmarks and measures. Astrom (1970), Harris 
(1989) and Stanfelj et al. (1993) used minimum 
variance control as the benchmark to assess control 
loop performance. Since then, there has been an 
interest in the academia and the industry for 
developing measures and benchmarks for control 
loop performance. In addition to the minimum 
variance benchmark, several alternate benchmarks 
also exist (Tyler and Morari, 1996; Kendra and 
Cinar, 1997; Swanda and Seborg, 1999). 
Applications of performance assessment techniques 
can be found in Thornhill et al. (1999). Huang et al. 
(1996) and Harris et al. (1996) extended the 
performance assessment concepts to MIMO 
feedback controllers. These works employ the 
multivariable minimum variance controller as the 
benchmark.  
 
In the works described above, no restriction is placed 
on the form that the feedback controller Q can 
possibly take. If the structure of controller Q is 
complicated, it is not amenable for implementation 
on standard industrial DCS. Desborough and Miller 
(2001) surveyed the status of controllers employed in 
the chemical industry and concluded that a typical 
chemical plant has 98% PID type controllers and a 
vast majority of these controllers are PI controllers. 
Hence, it is essential to know to what extent can the 
given process be effectively regulated (for stochastic 
disturbances) with PI controllers. Therefore, the PI 
achievable performance is more realistic benchmark 

from the perspective of the chemical industry. The 
Approximate Stochastic Disturbance Realization 
(ASDR) technique developed by Ko and Edgar 
(1998) for estimating the PI achievable performance 
assumes that the process model is known. The ASDR 
method approximates the noise model from routine 
operating data. Recently, Agrawal and 
Lakshminarayanan (2003) described a method to 
determine the control loop performance achievable 
with PI type controllers, the optimal control settings 
that will yield the best performance and the expected 
robustness margins using closed loop transfer 
functions identified from closed loop experimental 
data.  
 
The objective of this article is to describe a method to 
calculate the PI achievable performance of feedback 
control systems using the knowledge of process 
model alone. The key idea is the derivation of a filter 
that can provide routine closed loop operating data 
for any controller Q* using information of the process 
model and original controller Q alone.  
 
The paper is organized as follows. Section 2 provides 
a brief overview of existing methods that are 
available for the calculation of the PI achievable 
performance. In section 3, we propose a new method 
for the calculation of the PI achievable performance 
in single input single output systems. The proposed 
method is extended to multiloop systems in section 4. 
In section 4, we also outline a method to obtain PI 
achievable performance for alternate control loop 
pairing and for multiloop control systems with 
decouplers. Examples to demonstrate the proposed 
method are shown in section 5, followed by 
conclusions. 
 

 
 



     

2. COMPUTATION OF PI ACHIEVABLE 
PERFORMANCE 

 
We assume the reader to be familiar with the basics 
of the control loop performance assessment theory 
that employs minimum variance controller as the 
benchmark. The interested reader is referred to the 
exceptional coverage provided by Qin (1998), Huang 
and Shah (1999) and Harris et al. (1999).  
 
The maximum control loop performance that can be 
attained by restricting the controller structure to PI 
type is called PI achievable performance. Assuming 
that the open loop model (including time delay) is 
known, Ko and Edgar (1998) used routine closed 
loop operating data (no set point change is made to 
excite the process) to estimate the PI achievable 
performance. Using an ARIMA (p,1,1) model with 2 
≤ p ≤ 5, they approximate the disturbance (noise) 
transfer function N by matching the first few 
coefficients of the estimated closed loop disturbance 
impulse response model. Once, the process and noise 
models are known, Ko and Edgar (1998) employ a 
numerical optimization procedure to estimate the 
highest control performance index reachable by 
restricting the feedback controller Q to a PI or PID 
form. 
 
Agrawal and Lakshminarayanan (2003) proposed an 
alternate way of determining the PI achievable 
performance from closed loop experimental data (set 
point excited data). Their method uses identified 
closed loop process as well as disturbance models. 
The relationship between the controlled variable and 
the set point under closed loop is: 
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In equation (1), Y represents the controlled variable, 
Ysp its set point; T is the open loop process model; Q 
is the feedback controller that is probably of the PID 
type; N is the open loop disturbance model; G is the 
closed loop servo response model and H is the closed 
loop disturbance model. 
 
From equation (1), we can write  
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Assuming time invariant process (T) and noise 
dynamics (N), for a new controller Q* the closed 
loop impulse response H* is given by 
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We know that the control loop performance index 
could be obtained from the estimated closed loop 
impulse response H and the process delay d.  
Equation (4) implies that with the knowledge of the 
current closed loop impulse response H, closed loop 
servo transfer function G and the current controller 
Q, it is possible to estimate the closed loop impulse 
response H* for any given controller Q*. Given that 
the process delay d remains constant, it is possible to 
determine the optimal PI type controller Q* that 
maximizes the performance. Hence, the PI 
achievable control loop performance can be 
computed from the knowledge of the current 
controller and current closed loop servo and 
disturbance transfer functions. Agrawal and 
Lakshminarayanan (2003) demonstrated the 
workability of the above scheme using several 
examples. They also ensured that deterministic 
control loop performance measures like the 
normalized integral absolute error, gain and phase 
margins are also within acceptable limits. 
 
 

3. THE PROPOSED METHOD FOR PI 
ACHIEVABLE PERFORMANCE 

 
Now, consider the process driven by white noise 
sequence at. The expression for the controlled 
variable Yt is given by 
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If the current controller Q is replaced by the new 
controller Q*, then new output data series *

tY  is 
given by  
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Again, assuming a time invariant process T and noise 
dynamics N, equations (5) & (6) can be used to 
derive the following expression 
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The right hand side of equation (7) represents the 
filter which gives the new “routine closed loop data 
series” *

tY  when the current output data series *
tY  

passes through it. For any new controller Q*, the 
filter is specified (if the open loop process model T 
and the original controller Q are known) and the 
original routine data Yt can be used to “generate” the 
routine closed loop data *

tY  that would be obtained 

with the controller Q*. Using this *
tY , one can 

calculate the control loop performance index 
corresponding to the new controller Q*. Incorporating 
this methodology in conjunction with an optimization 
routine, it is possible to determine the controller Qopt 
that provides the maximum possible control loop 
performance. In this work, we are interested in 



     

having the optimal controller Q* to be of PID type 
(more specifically PI type). 
 
Also, substituting the expression for T from equation 
(2) into equation (7) will result in 
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Equations (7) and (8) demonstrate that it is possible 
to obtain controllers that maximize the performance 
index with only the knowledge of the original 
controller and the open loop model T (equation 7) or 
the closed loop servo model G (equation 8). Notice 
that, in contrast to the earlier methods, we do not 
explicitly use the closed loop noise model H to 
determine the “best” controller. The noise 
component is implicit in the original closed loop data 
Yt and will reflect in the generated *

tY . *
tY is then 

modelled using an ARMA structure to get the 
performance index for controller Q*. Obviously, this 
method (like other methods which try to compute the 
PI achievable performance) requires fairly accurate 
open loop process model T or closed loop servo 
model G. This would inevitably require some 
experimentation on the process.  The proposed 
method is therefore most useful when a first level 
control audit indicates poor performance of this loop 
and one desires to improve its performance. 
 

4. EXTENSION TO MULTILOOP SYSTEMS 
 
The above-described method can be easily extended 
to multiloop systems. Again, the central idea is to 
estimate the output data series for the new controller 
using known process model (open loop process 
model or closed loop servo model) and the present 
controller. 
 
For the multiloop case, Equation (7) becomes  
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Equation (8) becomes 
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where I is the identity matrix of appropriate 
dimension. 
 
Consider the simplest multiloop example, i.e a 2 x 2 
system. In this case, G, T, Q, Q*, Yt and *

tY  take the 
following matrix form: 
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Again using equation (9) or equation (10), the output 
data series for any new controller Q* can be 
predicted. This predicted series can be used to 
estimate the control loop performance index if the 
controller Q* were in place. Using these equations 
within an optimization routine enables the calculation 
of the PI achievable control loop performance for the 
multiloop case.  
 
The key element again is the knowledge of the 
process model T or the closed loop servo transfer 
function model G. Estimating either of these will 
involve some experimentation on the process. Some 
experiment is indispensable because of the need to 
compute the interactor matrix (a generalization of the 
time delay for multivariate systems) for performance 
assessment of multivariate systems (Huang et al., 
1997).  
 
PI achievable with alternate pairing: In multiloop 
systems, the choice of input-output pairing is an 
important issue. Even after employing a certain 
pairing, one needs to ascertain if with alternate 
pairing the control loop performance can be 
improved. This question can be answered using the 
method proposed in this paper. 
 
Continuing with the 2 x 2 example, the alternate 
pairing is chosen by changing the Q* structure, i.e.  
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Equations (8) and (9) can still predict the data 
corresponding to any new controller with alternate 
pairing. Again, the use of an optimization procedure, 
will give us the optimal controller Q* (corresponding 
to alternate loop pairing) that maximizes the CLPI 
for the process. 
 
Optimal control loop performance with decouplers: 
Another well recognized problem in multiloop 
systems is that of interaction. Severe interaction 
among the loops deteriorates the performance. 
Decouplers can improve the performance in the 
interacting system by diagonalizing the plant 
effectively removing the interactions. The question 
of the extent of performance improvement possible 
with the use of decouplers is explored next. 
 
Assuming that decoupled process is T* is equivalent 
to the diagonalized T,i.e. 
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Now, for the process driven by white noise sequence, 
expression for Yt is given by 
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For the decoupled process driven by white noise 
sequence with new controller Q*, *

tY  can be written 
as  
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Using equations (12) and (13) gives  
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Utilizing the filter obtained in equation (14), the PI 
achievable performance with decoupler and the 
corresponding controller parameters for Q* can be 
found out by using an optimizer. 
 

5. CASE STUDIES 
 
The theory outlined thus far is validated with many 
examples in this section. For the SISO case, the 
process model is identified from the experimental 
data, obtained by set point changes in the plant. For 
the multiloop case, perfectly known process models 
are used just to demonstrate the efficacy of the 
developed theory. The developed method will be of 
greater practical relevance if identified models can 
be used. This will also demonstrate the robustness of 
the proposed method. Such investigations are 
currently in progress. The “fminsearch” routine 
available in the Optimization Toolbox (Matlab 
Version 6.5 Release 13) is employed in all the 
following examples.   
 
Example of a simulated SISO system: This is a 
simulation of the closed loop system for a first order 
plus time delay process regulated by a PI controller. 
In particular, the process, noise and controller 
transfer functions are given by  
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present controller CLPI is calculated to be 0.3922. 
 

 
Fig. 1: Closed loop experimental data for example 1 

  
With the experimental closed loop data shown in 
Figure 1, the closed loop servo transfer function G is 
identified. Standard tools from MATLAB’s System 
Identification Toolbox are employed for this purpose. 
This identified model is used in Equation (8) to 
determine the optimal PI controller Q* that 
maximizes the control loop performance. Using this 
approach, we predict the best possible performance 
for a PI controller (PI achievable performance) to be 
0.78 and the optimal controller to be 

1

1
1*

z1
z1.5431.568)(zQ −

−
−

−
−= . With complete 

knowledge of the open loop process model, we get 
the PI achievable performance to be 0.83 and the 
optimal PI controller is 

1

1
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−
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−= .  We therefore 

note that our method provides a very good estimate 
of what is theoretically achievable for this process 
with a PI controller. 
 
A Multiloop example: Consider a 2 x 2 example with 
the following models for the process and noise. Note 
that we have integrated white noise affecting the 
process.  
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Initially, the process is controlled using diagonal 
pairing (1-1/2-2).  The controller matrix Q is as 
follows 
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With the present PI controllers the obtained 
performance index is 0.0562. 
 
Using the theory described in section 4 and taking 
the present controllers as the initial guess, the PI 
achievable performance for multiloop system is 
estimated to be 0.3453. The optimal PI controllers 
obtained in this case are: 
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Further, for finding out the PI achievable 
performance with the alternate (1-2/2-1) pairing, a 
stable initial guess for controllers Q(1,2) and Q(2,1) 
are provided based on the knowledge of process 
model. In this example, the initial guess used is   
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With this initial guess, the performance index is 
0.1021. Again, proceeding with the developed 
equations, the PI achievable with alternate pairing is 
predicted to be 0.7217. The optimal controllers with 
off-diagonal pairing are: 
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 It is quite evident from the results obtained that the 
off-diagonal pairing gives a much better regulatory 
performance for this process than does the diagonal 
pairing. 
 
Finally, to estimate the effect of decouplers in 
improving the control performance of the process, 
the theory developed in section 4 is followed. 

Starting with the present controllers as the initial 
guess, the PI achievable performance obtained with 
decouplers is found to be 0.8472. The optimal 
controllers for this decoupled process comes out as  
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We therefore conclude that, for this example, the off-
diagonal control pairing can raise the PI achievable 
performance by more than 100%. Alternately, if the 
diagonal pairing is employed, the performance of the 
control system (for stochastic disturbances affecting 
this process) can be improved significantly (from 
0.35 to 0.85) if perfect decouplers are employed. All 
of these predictions are being made with only the 
knowledge of the process model T and current 
controller Q. It is possible to estimate the 
enhancement in the controller performance without 
actually implementing the decouplers. 
 
Another Multiloop example: We next consider the 
well-known Wood & Berry model of an 
experimental distillation column. The process and 
noise models are as follows 
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The Relative Gain Array (RGA) (Bristol, 1966) for 
this process is given by 
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The negative )2,1( element of the RGA matrix 
suggests that no PI controller can achieve stability 
when off-diagonal pairing is used. Also, the 
Niederlinski index (Niederlinski, 1971) for the off-
diagonal pairing turns out to be -0.9906, which 
confirms the instability. 
 
The initial controller for the process is given by 
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This controller gives a performance index of 0.5210. 
Further, using these present controllers as initial 
guess, the maximum performance index equal to 
0.54. Hence, we can say that present controller 
(initial controller) is quite good and controller tuning 
is not contributing to the poor loop performance. 
Also, the alternate pairing need not be considered as 
it points to potential instability.  
 
Interaction may be the factor for this low 
performance (0.54). Further analysis gives the PI 
achievable performance of 0.6627 with perfect 
decouplers in place. From the results obtained, it is 
quite evident that eliminating interaction does not 
significantly improve the loop performance. Further 
increase in performance may be possible with more 
complex controllers or by improved process design.  
 

6. CONCLUSIONS 
 
A novel method is developed to compute the PI 
achievable performance for SISO as well as 
multiloop systems. The effect of loop pairing and the 
implementation of decouplers are examined and the 
PI achievable performance is determined for these 
scenario in silico. The proposed method can 
therefore quantify the potential benefits in the 
performance that will result if alternate pairing or 
decouplers are employed. 
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