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Abstract: Identifiability is a structural property of mathematical models. A model
is identifiable if the model parameters can be uniquely identified from input-output
behaviour. This work focuses on the application of a novel methodology for testing
differential algebraic equation systems for identifiability. In this work, a non-linear,
differential algebraic model of a liquid-liquid phase-transfer reactor is tested for
identifiability using a linearization-based approach. This approach is shown to
be useful for the testing of identifiability even for inherently non-linear models.
Furthermore, this approach allows the effect of system parameters on the non-
linear system to be qualitatively analyzed.

1. INTRODUCTION

Mathematical models are commonly used in al-
most every area of science and engineering. These
models are often characterized by unknown pa-
rameters. In order to predict the behaviour of
physical systems, these parameters must often be
determined experimentally from the input-output
behaviour of physical systems. Lack of ability to
estimate parameters may be due to several reasons
including noisy data, plant-model mismatch, poor
choice of experiments, or poor choice of models.
In this last case, the model itself is deficient and
model parameters cannot be estimated regardless
of the quality or quantity of input-output data
obtained.

One common model deficiency is lack of identifia-
bility. Consider a mathematical model

M(p) : U → Y
mapping from a set of input signals to a set of
output signals and depending on a parameter vec-
tor p ∈ P ⊆ Rs. Note that this representation of
an input-output behaviour implies the existence
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Figure 1.1: Idealized Input-Output Framework

of a mapping M : p → M(p) that takes a
particular parameter p and maps to a particular
input-output behaviour M(p). The situation is
summarized in Figure 1.1. It is the properties
of the mapping M that describe the effect of
the system parameters on the input-output be-
haviour. Indeed, Walter and Pronzato (1995) have
proposed the following definition for identifiability



Definition 1. (Structural Global Identifiability). A
model M is structurally globally identifiable if for
almost any p̄, p̂ ∈ P,

M(p̄) = M(p̂) ⇒ p̄ = p̂

where the words almost any imply that the identi-
fiability condition holds at every point on a dense
subset of P.

Similarly, viewing P as a subset of Rs we can
define the property of local identifiability as

Definition 2. (Structural Local Identifiability). A
model M is structurally locally identifiable if for
almost any p̄ ∈ P, and p̂ such that ‖p̄− p̂‖ < ε for
any ε > 0 the following holds

M(p̄) = M(p̂) ⇒ p̄ = p̂

2. LINEAR TIME-INVARIANT
DIFFERENTIAL ALGEBRAIC MODELS

Consider the following system.

E(p)x′(t) + M(p)x(t) + B(p)u(t) = 0 (1a)
y(t) = C(p)x(t) (1b)

where x(t) ∈ Rn, u(t) ∈ Rγ , y(t) ∈ Rm and E(p),
M(p), B(p) and C(p) are appropriately sized ma-
trices whose entries are continuously differentiable
functions on P. It has been shown by Brenan et al.
(1989) that System 1 has a solution if and only if
there exists a scalar λ ∈ C such that

det(E(p)λ + M(p)) 6= 0

From now on, it will be assumed that System 1 is
solvable for every p ∈ P.

We now turn to the problem of expressing M(p)
for system 1 in terms of the system equations.
We may take the Laplace transform of System 1,
starting from the steady state solution x(0) = 0,
u(0) = 0, x′(0) = 0 to obtain the following
Laplace-domain input-output representation.

Y (s) = C(p)(E(p)s + M(p))−1B(p)U(s)

where the transfer function T (p, s) = C(p)(E(p)s+
M(p))−1B(p) can be seen as taking an input U
to an output Y . For finite dimensional, multi
input, multi output (MIMO) systems, T (p, s) can
be represented by a a matrix of rational trans-
fer functions. Without loss of generality, we may

assume that each of the transfer functions has a
monic denominator, and no poles that are also
zeros (i.e., all of the possible pole-zero cancel-
lations have been carried out) . Let sij(p) =
[cij1(p), . . . , cijαij (p)]T ∈ Rα be a vector whose
entries are the coefficients of the ijth entry in
T (p, s). It has been shown by Bellman and Astrom
(1970) that

M(p̄) = M(p̂) ⇔ sij(p̄) = sij(p̂)
i = 1 . . . m, j = 1 . . . γ

which implies that, by definition 1, for identifiabil-
ity one need only check that for every i = 1 . . . m,
j = 1 . . . γ,

sij(p̄) = sij(p̂) ⇒ p̄ = p̂ (2)

The above computations have the advantage that
they are relatively easy to perform using computer
algebra software such as MapleTM .

3. THE PHASE-TRANSFER CATALYZED
REACTOR SYSTEM

Chen et al. (1991) proposed a model to describe
the behaviour of a liquid-liquid phase-transfer cat-
alyzed reactor (PTC) system. The reactor system
and kinetic scheme are shown schematically in
Figure 3.1. The model proposed by Chen et al.
(1991) is batch, however, in this work, the model
is extended to a continuous stirred tank reactor
(CSTR) model. A more comprehensive discussion
of the model is available in Ben-Zvi et al. (in
press 2004). The corresponding model is shown
in Table 1. Equations f1 to f6 in Table 1 are
first-order ordinary differential equations (ODEs),
and equations g1 to g6 are algebraic. Equations
f1, f2 and f3 are organic-phase dynamic mate-
rial balances for the reactant (benzyl chloride,
RXo), the phase transfer catalyst (tetrabutylam-
monium bromide, QYo) and the product (benzyl
bromide, RYo), respectively. Equations f4, f5 and
f6 are total balances on the number of moles of
bromine atoms (nY ), chlorine atoms (nX) and
tetrabutylammonium (TBA) groups (nQ), respec-
tively, present in all forms, in both phases of the
reaction mixture. Equations g1, g2 and g3 define
nY , nX and nQ, respectively, in terms of the moles
of pertinent species in both phases. Equation g4

describes the ionization equilibrium between TBA
bromide (QYw) and its ions in the aqueous phase,
and g5 describes the ionization equilibrium for
TBA chloride (QXw). g6 describes equilibrium
partitioning of TBA chloride between the two
phases. Equation y defines measured outputs as
RXo, and RYo, the organic phase concentrations
of benzyl chloride and benzyl bromide, respec-
tively.
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Figure 3.1: PTC Reactor Schematic

Table 1. Continuous PTC Reaction
Model

dRXo

dt
= −k1RXoQYo + k−1RYoQXo +

Fo

Vo
RXin

− Fo

Vo
RXo (f1)

dQYo

dt
= −k1RXoQYo + k−1RYoQXo

+ V −1
o AKQY (mQY QYw −QYo)− Fo

Vo
QYo (f2)

dRYo

dt
= k−1RXoQYo − k−1RYoQXo − Fo

Vo
RYo (f3)

dnY

dt
= FwYin + FcQYin

− (Fc + Fw)(Y −w + QYw)− Fo(QYo + RYo) (f4)

dnX

dt
= FoRXin − Fo(RXo + QXo)

− (Fc + Fw)(X−
w + QXw) (f5)

dnQ

dt
= FcQYin − Fo(QXo + QYo)

− (Fc + Fw)(QXw + QYw + Q+
w) (f6)

0 = nY − Vo(RYo + QYo)− Vw(Y −w + QYw) (g1)

0 = nX − Vo(RXo + QXo)− Vw(X−
w + QXw) (g2)

0 = nQ − Vo(QYo + QXo)

− Vw(Q+
w + QXw + QYw) (g3)

0 = Q+
wY −w −KD

QY QYw (g4)

0 = Q+
wX−

w −KD
QXQXw (g5)

0 = QXo −mQXQXw (g6)

y(t) = [RXo RYo]T (y)

The batch-reactor model originally developed by
Chen et al. (1991) is a special case of this con-
tinuous model. Their batch reactor model can be
obtained by setting inflow rates Fo, Fw and Fc in
the model to zero, along with the accumulation
terms in equations f4 to f6. In their batch reactor
experiments, Chen et al. (1991) also observed nY ,
nX and nQ, the total number of moles of bromine
atoms, chlorine atoms and TBA groups in the
system, which remained constant over time.

Chen et al. (1991) performed a number of dynamic
experiments in a liquid-liquid phase-transfer cat-
alyzed (PTC) reactor operated in batch mode.
The data from these experiments were used to
estimate the kinetic and equilibrium parameters

Table 2. Parameter Values

Estimated parameters from Chen et al. (1991) and
specified quantities for PTC reaction model.

Variable Value Units

Parameters

k1 2.51× 10−2 m3/mol ·min
k−1 1.68× 10−1 m3/mol ·min

V −1
o AKQY 1.42× 105 mol/m3 ·min

mQY 6.96× 10−1 −−
mQX 6.60× 10−2 −−
KD

QY 6.89× 105 m3/mol

KD
QX 8.373× 105 m3/mol

Known Quantities

Vo 7.50× 10−5 m3

Vw 1.50× 10−4 m3

in their model of the system. These parameters are
listed in Table 2. Chen et al. (1991) had difficulties
estimating the parameters in their model, so they
resorted to a two-stage systematic search tech-
nique. Initial values of parameters were selected
using a priori information about the magnitudes
of the model parameters. Parameter estimates
were refined using a DSC-Powell direct search
method. Their goals were to develop a model that
can predict the behaviour of the system, and to
obtain “representative and physically meaningful
parameters” (Chen et al., 1991). Comparison of
the predictions of their model with experimental
data confirmed that the model could capture the
behaviour of the PTC reactor system. However,
it is not known whether alternative sets of pa-
rameter values could give exactly the same model
predictions. Indeed, for the parameter estimates
obtained by Chen et al. (1991) to be meaningful,
the parameter estimates obtained must be unique.

4. LINEARIZATION OF THE PTC MODEL

The reactor equations listed in Table 1 were
linearized about the nominal parameter and state
values listed in Table 3. Note that the parameter
values listed in Table 3 match those estimated by
Chen et al. (1991).

The resulting linear time-invariant (LTI) DAE
system is given by

Eẋ(t) + M(p)x(t) + B(p)u(t) = 0 (3a)
y(t) = Cx(t) (3b)

where ẋ(t) = dx
dt (t), M(p) = −[∂f/∂x, ∂g/∂x]Tt=0,

B(p) = −[∂f/∂u, ∂g/∂u]Tt=0, and



Table 3. State and Input Values

Symbol Definition Initial Value Units

States

RXo BzClo 9.82× 102 mol/m3

QYo TBABro 1.40× 10−1 mol/m3

RYo BzBro 1.02× 103 mol/m3

nY Clboth 2.99× 10−1 mol/m3

nX BRboth 1.50× 10−1 mol/m3

nQ TBAboth 1.41× 10−2 mol/m3

QYw TBABrw 1.40× 10−1 mol/m3

QXw TBAClw 5.69× 10−2 mol/m3

QXo TBAClo 3.76× 10−3 mol/m3

Y −w Br−w 1.49× 103 mol/m3

X−
w CL−w 5.09× 102 mol/m3

Q+
w TBA+

w 9.37× 101 mol/m3

Inputs

Fo feed flow 2.08× 10−7 m3/min
Fw feed flow 3.96× 10−7 m3/min
Fc catalyst feed 2.08× 10−8 mol/m3

RXin reactant in feed 2.00× 103 mol/m3

QYin catalyst in feed 1.88× 103 mol/m3

Yin reactant in feed 2.00× 103 mol/m3

x(t) = [RXo, QYo, RYo, nY , nX , nQ, QYw, Y −
w

(4)

, X−
w , Q+

w , QXw, QXo]T

u(t) = [Fo, Fw, Fc, RXin, QYin, Yin]T

p =[k1, k−1, V
−1
o AKQY ,mQY ,mQX , KD

QY ,KD
QX ]T

E =
[

I6 0
0 0

]
C = [I2 0] (5)

where Ij is the j by j identity matrix. The values
of x(t) and u(t) are the deviation in value of the
states and parameters, respectively, from the val-
ues, listed in Table 3, about which the system was
linearized. Note that the column-rank of the ma-
trix B(p) is five, although B(p) has six columns.
This is because the effect of a change in the value
of one of the inputs to the aqueous phase, for
example the catalyst inlet concentration Yin, can
be offset by varying the other three aqueous-phase
inputs and consequently the effective number of
input degrees of freedom is five. As a result, for the
rest of this work, the value of Yin will be fixed at
the nominal value listed in Table 3, and we will as-
sume, without loss of generality, that the other five
inputs given by u(t) = [Fo, Fw, Fc, RXin, QYin]T

are adjusted during experimentation.

This system is an index one LTI DAE system
that is solvable when evaluated at the nominal
parameter values listed in Table 2.

5. IDENTIFIABILITY ANALYSIS OF THE
PTC SYSTEM

The identifiability of (the linearized) System 3
was checked using Condition 2. However, using
modest computational tools, including a Toshiba
Satellite laptop running at 2.66 GHz, and 512Mb
of RAM memory, the computation involved in
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Figure 5.1: Simulation Results

checking Condition 2 became intractable. How-
ever, locally in the parameter space, Condition
2 can be checked by examining the rank of the
Jacobian matrix

J0 =
∂[s11(p), . . . , smγ(p)]T

∂p

∣∣∣∣
p=p0

at p0, the nominal values listed in Table 3. This
computation can easily be carried out numerically
even using modest computer hardware. Using
Matlab version 6.5, it was found that the rank of
J0 was six, up to the limit of machine precision.
It was therefore determined that the PTC system
is not identifiable.

The null-space of the matrix J0, which is the set
of all vectors w in R7 such that J0w = 0, was
found to be spanned by the vector

v = −[−3.71×10−12,−5.41×10−10,−1.46×10−8

, 1.90× 10−9, 7.89× 10−8, 2.38× 10−3, 1.00]T

which implies that, M(p0 + εv) → M(p0) as
|ε|2 → 0. This behaviour is illustrated in Figure
5.1 where ε values of 8.37 × 102 and 4.19 × 105

were used to perturb the parameters, and the
resulting step response of the original, nonlinear
PTC model was plotted. As can be seen from
Figure 5.1, even for large values of ε, the system
behaviour remained virtually identical. This fact
shows that even if the system parameters were
identifiable, they are not practically estimable, up
to machine precision. This is especially relevant
in light of the fact that the simulations were
performed using no plant-model mismatch, and
no added noise.
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6. IDENTIFIABILITY ANALYSIS OF THE
ORIGINAL, NONLINEAR PTC SYSTEM

Lack of identifiability of the linearized system does
not, in general imply lack of identifiability of the
original, nonlinear system. Although the param-
eter estimates obtained by Chen et al. (1991)
have been shown, by example in Figure 5.1, to
be suspect, the simulation results themselves do
not prove lack of identifiability. In addition, even
if the original, nonlinear system is assumed to be
un-identifiable, it is not clear from the results of
the rank test done on the linear system what is
the cause of this lack of identifiability and what
can be done to correct this problem.

In order to get some insight into whether the
PTC system is identifiable, we make note of the
following fact: The largest entry by far in v,
both in absolute terms, and relative to the size
of the nominal parameter estimates, corresponds
to the value of KD

QX . According to Equation
g5, KD

QX affects the ionization of QXw in the
aqueous phase. In addition, we note that none
of the aqueous phase concentrations have been
directly measured by Chen et al. (1991). In order
to determine the effect of different values of ε on
QXw, the trajectory of the System in the QXw −
−QXo plane, in response to a step input was
examined. This trajectory is shown for different
values of ε in Figure 6.1.

The observed response of the PTC system cor-
responds to the horizontal axis in Figure 6.1.
This implies that the experimenter would observe
only the horizontal coordinate of the trajectories
depicted in Figure 6.1. The trajectories shown
in Figure 6.1 are identical except for a vertical
translation at every point. This suggests that the

trajectories of the PTC system are different for
different ε values, but produce identical input-
output behaviour because the effect of varying ε
lies entirely in the unobserved states.

In order to test whether some alternative state
trajectories can be generated using parameter val-
ues different than the ones estimated by Chen
et al. (1991), we define new variables describ-
ing the unmeasured aqueous-phase concentrations
Q̃+

w , X̃−
w , and Q̃Xw. We also define new, alter-

native parameter values K̃D
QY and m̃QX . Using

Equations g4 to g6, and insist that Q̃+
w + Q̃Xw =

Q+
w +QXw and X̃−

w + Q̃Xw = X−
w +QXw so that

the input-output behaviour of System 3 remains
the same (Ben-Zvi et al., in press 2004), we obtain
the following set of five algebraic equations

0 = Q+
w/KD

QY − Q̃+
w/K̃D

QY (6)

0 = Q̃+
wX̃−

w − (KD
QX + ε)Q̃Xw (7)

0 = m̃QXQ̃Xw −mQXQXw (8)

0 = Q̃+
w + Q̃Xw − (Q+

w + QXw) (9)

0 = X̃−
w + Q̃Xw − (X−

w + QXw) (10)

in the five unknowns Q̃+
w , K̃D

QY , X̃−
w , Q̃Xw, and

m̃QX . Solving the Equations 6 to 10 we have

Q̃+
w = Q+

w + (QXw − ψ(ε))

K̃D
QY = KD

QY

Q+
w + QXw − ψ(ε)

Q+
w

X̃−
w = X−

w + (QXw − ψ(ε))

Q̃Xw = ψ(ε) (11)

m̃QX = mQXQXwψ(ε)−1

where ψ(ε) is the solution to

0 = ψ2 − ((KD
QX + ε) + Q+

w + 2QXw + X−
w )ψ

+ Q+
wQXw + QX2

w + Q+
wX−

w + X−
w QXw) (12)

Equation 12 has two roots for each value of ε. For
ε = 0, these roots are 0.569mol

m3 and 8.38×105 mol
m3 .

The first of these roots corresponds to the nominal
value of QXw, while the second is an un-realistic
concentration. We will therefore consider only the
values of Ψ which correspond to the lower root of
Equation 12.

The value of ψ(ε) is a measure of how different
the new and old variables are. Note that, given
ε = 0, the quantity ψ(ε) = QXw, and the old and
new parameter and state values are the same. Also
note that changing the value of ψ(ε) amounts to
scaling of the unobserved state QXw. Given small
values of ε, Equation 12 can be solved for ψ so
that new values of parameters KD

QY , mQX , along
with KD

QX +ε will generate the same input-output
behaviour as the nominal parameter values.



Several conclusions can be drawn from the above
result. First, System 3 is not strongly locally
identifiable. Secondly, if one is not interested in
estimating every parameter, but rather in de-
scribing the input-output behaviour of the sys-
tem, then the value of ψ(ε) can be fixed at the
nominal value of mQX so that mQX , which is
the extractive-equilibrium constant, is effectively
set to unity, and removed from the the model
equations. Note that this re-parameterizations is
not unique. An alternative re-parametrization is
obtained by setting the value of ψ(ε) to (KD

QY )−1

in order to eliminate the parameter KD
QY from

the model equations. This action corresponds to
setting the dissociation constant KD

QY to unity.
A third alternative is to set the value of ψ(ε) to
ψ(KD

QX −1) in order to eliminate the dissociation
constant KD

QX by arbitrarily setting it to unity.
Each of the proposed re-parameterizations will
yield parameter estimates that describe the input-
output behaviour, are unique to that input-output
behaviour, but are, almost certainly, not close to
the true values of the system parameters.

It the experimenter wishes to estimate the value
of each parameter accurately then additional in-
formation about the system is needed. Specif-
ically, if the value of the aqueous phase TBA
chloride, QXw, at some time (for example, at the
initial condition) is obtained then the value of
ψ(ε) would be known and it would be possible
to determine unique estimates for all parameter
values. Furthermore, given an appropriate experi-
mental design, the parameters could be accurately
estimated. Once again, the additional information
required to accurately estimate the system param-
eters is not unique. One could also use measure-
ments of Q+

w , or X−
w at some time to accurately

estimate each of the model parameters.

7. CONCLUSIONS

Identifiability is a desirable property of a math-
ematical model. Each of the parameters in an
identifiable model can be uniquely identified from
input-output data. A continuous nonlinear PTC
reaction model based on the batch reactor model
proposed by Chen et al. (1991) was tested for
identifiability using a linearization based ap-
proach. The linearized system was found to be un-
identifiable. The information gathered from the
linearized system coupled with additional insight
into the model equations was used to show that
the continuous nonlinear PTC reaction model is
also un-identifiable. Simulation results were used
to illustrate this lack of identifiability. This lack of
identifiability implies that several parameter val-
ues produce identical input-output behaviour in
the model. Furthermore, this lack of identifiability

in the parameters also implies lack of identifiabil-
ity of a subset of the un-observed states.
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