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Abstract: A novel time delay estimation method for SISO control loop monitoring
has been introduced. The proposed method requires a process regulated by a SISO
controller during routine operation to be temporarily switched to relay control. The
input and output data gathered from the process under relay control can be used
to produce a time delay estimate.
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1. INTRODUCTION

Many important contributions have been made
in the area of control performance monitoring in
recent years. These include a method for the com-
putation of a minimum output variance bench-
mark from closed-loop data of a SISO process
(Harris, 1989). From this benchmark, engineers
can evaluate the performance of feedback con-
trollers of the SISO process. This algorithm as-
sumes an a priori knowledge of the process time
delay. Because the process time delay is a lim-
iting factor for feedback controller performance,
the computed minimum variance benchmark is
sensitive to the estimated time delay. Reliable and
unobtrusive techniques for estimating the process
time delay in the closed-loop are necessary to
utilize the existing performance assessment tech-
niques.

To address this issue, Lynch and Dumont (1996)
make use of a closed-loop time delay estima-
tion technique presented by Elnaggar (1990)
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known as fixed model variable regressor esti-
mation (FMVRE). The FMVRE method deter-
mines the delay by minimizing the expectation
of the model prediction error in a least squares
square sense. Candidate models for FMVRE have
a known ARMA structure, but an unknown delay.
The time delay and model parameters are decou-
pled, and any parameter estimation technique can
be used to estimate these quantities. Although
this method is straightforward to implement and
converges quickly, it has some limitations. One
limitation of this method is the ARMA model
structure must be known before the time delay
and model parameters can be estimated. Elnaggar
(1990) demonstrates FMVRE for a first-order plus
dead time model. A flexible implementation which
does not require process knowledge would make
time delay estimation more widely applicable. An-
other limitation in employing FMVRE for time
delay estimation is the process input must be
sufficiently rich at high frequencies. This require-
ment means another design factor for engineers
implementing time delay estimation; it is desirable
to have a method which requires minimal user
input.



Owing to the fact that relay-based auto-tuning is
very popular in practice, we propose a new delay
estimation method based on a relay (Yu, 1999).
The new estimation method addresses the limi-
tations of the previous methods. It requires the
process, which is regulated by a feedback con-
troller during routine operation, to be temporarily
regulated by a relay controller. The input and
output data collected from the process under relay
control can be used to obtain a process time delay
estimate. As a byproduct of this approach, an
estimate and confidence limits for the minimum
variance benchmark can be established.

2. CLOSED-LOOP TIME DELAY
ESTIMATION

Since the closed-loop impulse response coefficients
before the time delay are feedback-invariant, they
should remain unchanged even if the controller
is changed dramatically. Therefore, we can cal-
culate the impulse responses from two different
controllers, one from the current controller and
another from the relay controller. The delay can
be determined by examining the impulse response
coefficients from both controllers. The proposed
method for time delay estimation consists of the
following steps:

(1) Collect output history from the SISO process
under routine feedback control.

(2) Form several windows of output history, fit
an ARMA model from the output history in
each window.

(3) Calculate an impulse response from each of
the ARMA models identified in Step 2.

(4) Calculate the mean and confidence interval
for each coefficient of the impulse responses
calculated in Step 3.

(5) Switch control of the process to a relay con-
troller. Collect input and output history of
the process under relay control.

(6) Form several windows of input and output
history, fit an ARMAX model to obtain the
process transfer function from each window.

(7) Extract the average time-delay estimate from
the models in Step 6.

(8) Determine the number of the feedback-
invariant impulse response coefficients in the
mean impulse response found in Step 4 by
comparing coefficients with the mean impulse
response found in Step 6. This calculation
will provide another time delay estimate,
which will confirm the value found in Step
7.

2.1 Computation of a Mean Impulse Response for
a Closed-loop Process Using Routine Operation
Data

The closed-loop SISO system is described by the
following equations:

y(t) = H(q−1)u(t) + N(q−1)a(t) (1a)

u(t) = −K(q−1)y(t) (1b)

where K is the linear transfer function for a PID
controller:

K(q−1) =
κ0 + κ1q

−1 + κ2q
−2

1− q−1
(2)

It is assumed H is stable, N can be either stable
or with integrating elements, and a(t) is white
noise. The closed-loop transfer function, which
is determined by applying feedback to the linear
process, is given by the following expression:

y(t) =
N(q−1)

1 + K(q−1)H∗(q−1)q−1−f
a(t) (3)

where b=1+f is the time delay. As shown by
Harris (1989), the structure and parameters of
the closed-loop transfer function are found by
fitting a time-series model, typically a model of an
ARMA process, to the closed-loop output data.
The impulse response coefficients of the closed-
loop process can be determined by performing
long division on the closed-loop transfer function.
The result will have the following form:

y(t) =




(
1 + ψ1q

−1 + ... + ψfq−f
)

︸ ︷︷ ︸
Feedback - Invariant

+

(
ψf+1q

−f−1 + ψf+2q
−f−2

)
+ ...︸ ︷︷ ︸

Feedback - Varying


 a(t)

(4)

The first f+1 coefficients of the impulse re-
sponse from the closed-loop transfer function are
feedback-invariant. They are identical to the first
f+1 impulse response coefficients that determined
by performing long division on the disturbance
transfer function N(q−1) (Harris, 1989).

We desire to obtain an estimate of the impulse
response of closed-loop process under PID control
from the available output history. The following
assumptions are made to make this task more
tractable:

(1) The plant dynamics and time delay are ap-
proximately constant over the time period
over which the closed-loop data is collected.



(2) The disturbance dynamics are approximately
constant over the time period in which the
closed-loop data is collected.

To obtain an estimate, we first use many sample
sets of the output history to obtain estimates of
the closed-loop transfer function of the process. A
moving window approach is applied to obtain the
sample sets of output history. From these closed-
loop transfer functions, samples of the impulse re-
sponse are collected, and a mean impulse response
and its confidence limits are determined. As more
samples of the impulse response are collected, the
estimation error in the mean impulse response and
its confidence limits will decrease. Knowledge of
the confidence limits will allow for the uncertainty
in the minimum variance benchmark to be deter-
mined once the time delay is known.

2.2 Estimation of Time Delay by Switching to a
Relay Controller

After a mean impulse response and its confidence-
limits have been established for the closed-loop
process under PID control, it is necessary to
switch the process controller to an on-off relay
controller. Implementation of this controller re-
quires that a relay of magnitude h be used as the
input u in the feedback control system. Initially,
the input is at 0. If the output is increased above
its setpoint (y=0) by a disturbance, then the input
u is switched to -h. As the output decreases below
its setpoint, the input is switched to h. At some
time after the time delay b has elapsed, the output
will begin to increase. As the output crosses zero,
the input is switched back to -h, and the cycle
continues in this manner (Yu, 1999). Since the
output lags behind to input by at least −π radi-
ans, a limit cycle will be present in the output. In
the limit cycle, the output period is the ultimate
period. The time delay of the process along with
the process time constant(s) will determine the
length of the ultimate period according to the
standard phase angle equation (Yu, 1999). If we
neglect the contribution of the time constant(s)
in the standard phase angle equation, half of the
period will provide an upper bound on the time
delay for the SISO process:

Delay ≤ π

ω
=

1
2
Period (5)

The on-off relay controller is a nonlinear con-
troller. This characteristic of the relay controller
will result in there being no linear correlation
between the output and input used to provide
feedback. For modeling purposes, we treat the
closed-loop data as though it were collected from
an open-loop process. Thus, an average time delay
of the process can be extracted by fitting time

series models to the closed-loop input and output
history of the process under relay control.

Another means of determining the time delay in-
volves the calculation the mean impulse response
of the disturbance model of the transfer function
of the closed-loop process identified under relay
control. The impulse response coefficients from
the disturbance model can be superimposed on
the mean impulse response and its confidence lim-
its identified from the process under PID control.
Before the time delay has elapsed, the impulse re-
sponse coefficients not affected by feedback should
be the same for both impulse responses. An es-
timate of the time delay can be determined by
observing where the impulse response identified
under relay control has deviated two standard
deviations from the mean impulse response iden-
tified under PID control. This analysis is use-
ful for verifying the average time delay estimate
extracted from fitting closed-loop data obtained
relay control to time series models.

2.3 Calculation of an Estimate of the Minimum
Variance Benchmark

At this point, a time delay estimate b has been ob-
tained from the process in a non-invasive manner.
According to Harris (1989), the performance of
the minimum variance controller can be calculated
from the first f+1 coefficients:

var {y(t)} =
(
1 + ψ2

1 + ... + ψ2
f

)
σ2

a (6)

In addition, the uncertainty in the minimum
variance benchmark can be obtained by using
the mean impulse response and confidence limits
found under PID control.

3. SIMULATION RESULTS

3.1 Closed-loop Time Delay Estimation for a
Stable Plant with an Added Stationary Disturbance

The proposed approach for closed-loop time delay
estimation was applied to a process with a stable
plant model and time delay and a stationary
disturbance driven by normally distributed, white
noise. Assume the process model with delay is
given by

H(q−1) = H∗ (
q−1

)
q−1−f =

[
0.1

1− 0.5q−1

]
q−6

(7)

Further, assume the stationary disturbance is
given by



N(q−1) =
1

(1− 0.5q−1)
, σ2

a = (0.01)2 (8)

In routine closed-loop operation, it is assumed
that the process is regulated by a PID controller.
The tuning constants for the PID controller are
(κ0, κ1, κ2) = (2,−2, 0.2), and are chosen so as to
give closed-loop poles that stabilize the system.
Upon implementing the chosen PID controller, the
process is an ARMA process. In order to estimate
the impulse response and confidence limits of
the closed-loop transfer function, we fit multiple
ARMA models to a time series of output data
collected in the closed-loop. To accomplish this
task, a moving window of 1000 discrete time steps
is used over 3000 time steps of the process to
collect the process output history. After the first
1000 steps of output history have been collected,
an ARMA model is fit to this data, and the
corresponding estimate of the impulse response is
calculated. The window of data is shifted forward
100 time steps each time 100 additional time steps
have been collected, so that 21 time series are
collected. In each window, an ARMA model is fit
to the data and, and the corresponding estimate
for the impulse response is calculated.

A common approach to selecting the time se-
ries model structure is to use Akaike’s final pre-
diction error (FPE) as criterion. This criterion,
which consists of a loss function quantifying the
candidate model fit to the training data and a
penalty for a candidate model of higher complex-
ity, is minimized to determine model structure
(Ljung, 1999). A linear search over the range of
possible orders of polynomials A, B, and C to
find the minimum FPE for the ARMAX model
(Ljung, 1995):

A(q−1)y(t) = B(q−1)u(t− k) + C(q−1)a(t) (9)

For the particular case in which the process is
known to be an ARMA process, the order of
polynomial B is assigned to be 0, and the orders
of A and C are varied in the minimization of
the FPE. The output, white noise, and input
sequences for the process under PID control are
shown in Figure 1.

A moving window is applied to obtain sets of time
series by which to determine the mean impulse
response. To simplify the ARMAX model identi-
fication, the polynomial orders are assumed to be
equal, so that it is only necessary to search for
two parameters. In each window, the polynomial
orders of A and C were varied from 1 to 6, and the
time delay k was varied from 1 through 12. The
mean impulse response and its confidence limits
are displayed in Figure 2.
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Fig. 1. Output, white noise, and input sequences
for the stable plant with stationary distur-
bance under PID control
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Fig. 2. Mean impulse response and its σ and 2σ
confidence limits for the stable plant with
stationary disturbance under PID control

In order to obtain the time delay estimate, the
controller of the process is switched to an on-
off relay controller. The control amplitude must
chosen large enough so that the process output
exhibits a limit cycle. In this simulation, the
control amplitude is chosen to be 0.8 in the relay
controller. The output and input history of the
process under relay control, featured in Figure 3,
is collected for 200 time steps.

A moving window of 100 time steps is used to ob-
tain the mean impulse response of the disturbance
model from this closed loop data. The moving
window is slid every 10 samples after 100 sam-
ples have been collected, so that 11 estimates of
the disturbance model are obtained. The process
history within each window is fit to an ARMAX
model, where the orders of polynomials A, B, C
and the time delay are determined by minimizing
the FPE. The polynomial orders of A, B, and C
were varied from 1 through 6, and the time delay k
was varied from 1 through 12. The mean impulse
response of the estimated disturbance model is
superimposed on the impulse responses obtained
under PID control in Figure 5.
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Fig. 3. Output and input history for base case
of stable plant with stationary disturbance
under relay control
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Fig. 4. Impulse response of the disturbance model
estimated under relay control (200 time
steps)

The 2σ confidence limit is used as the crite-
rion for deciding which coefficients of the impulse
response identified relay control are feedback-
invariant. From Figure 5, it can be seen that this
criterion indicates the first 5 to 6 coefficients are
feedback-invariant. The average of the time delay
given by the ARMAX models fit in each of the
windows is found to be 5.7273.

To determine the effect of lowering the estimation
error of the mean impulse response of the dis-
turbance model on the time delay estimate, 2000
time steps of the base case for the process were
simulated under relay control. A moving window
of 1000 steps was implemented with the window
being slid forward every 100 time steps collected
after 1000. The mean impulse response of the
estimated disturbance model is superimposed on
the impulse responses obtained under PID control
in Figure 6.

From Figure 6, it is observed that the more accu-
rate impulse response estimate for the disturbance
model yields a time delay estimate between 5 and
6. The average time delay estimated by the AR-
MAX models fit to process data is approximately
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Fig. 5. Impulse response of the disturbance model
estimated under relay control (2000 time
steps)

6 if 200 time steps are used and 5 if 2000 time
steps are used. The time delay estimates for this
process are summarized in Table 1. The minimum
variance benchmarks for time delays of 5 and 6 are
shown in Table 2.

Table 1. Time Delay Estimate for Base
Case

Amount of Data Feedback-Invariant Average ARMAX
(Time Steps) Coeff. Approach Model Estimate

200 5-6 5.7273
2000 5-6 5.3636

Table 2. Output Variance Summary

MV Benchmark MV Benchmark
(b=5) (b=6)

µ+2σ 0.001368 0.001657
µ 0.001184 0.001406
µ-2σ 0.001015 0.001179

Output Variance of
Current PID control: 0.002305

If a time delay estimate of 5 is considered, the
current output variance is much greater than the
upper 2σ confidence limit. This result indicates
the current control strategy can likely be improved
by retuning the PID control or by using a different
controller. For the more conservative time delay
estimate of 6, the current output variance is
still much greater than the upper 2σ confidence
limit, which provides further support to the claim
that controller performance can be improved. The
time delay estimates obtained from averaging the
time delays extracted from the identified ARMAX
models of the process underestimate the actual
delay in this case. This result suggests the next
highest integer delay is the better choice for the
delay estimate.

3.2 Effect of Process Time Constant on Time
Delay Estimate

We now consider a more general representation for
the stable, minimum phase plants in the process:



H(q−1) =
[

0.1
1− αq−1

]
q−6 (10)

If α = 0.01 is used to simulate the process, the
plant dynamics will be fast as compared to the dis-
turbance dynamics. As a result, the disturbance
dynamics will dominate the output response. If
α = 0.99 is used to simulate the process, the plant
dynamics will be slow as compared to the distur-
bance dynamics. As a result, the plant dynamics
will dominate the output response. The time de-
lay estimates obtained by applying the proposed
method to these two processes are featured in
Tables 3 and 4.

Table 3. Time Delay Estimate for Case
of α = 0.01

Amount of Data Feedback-Invariant Average ARMAX
(Time Steps) Coeff. Approach Model Estimate

200 5-6 5.7273
2000 5-6 5.2727

Table 4. Time Delay Estimate for Case
of α = 0.99

Amount of Data Feedback-Invariant Average ARMAX
(Time Steps) Coeff. Approach Model Estimate

200 7-8 5.0000
2000 8-9 4.6364

The results of Table 3 indicate the time delay
estimation method performs well when the plant
dynamics are faster than the disturbance dynam-
ics. In Table 4, we observe the accuracy of the time
delay estimates are poorer when the plant dynam-
ics are slower than the disturbance dynamics. In
general, the average time delay estimate obtained
from the ARMAX models is robust to processes
with varying plant dynamics.

3.3 Upper Limit of Time Delay Estimate from
Standard Phase Angle Equation

As mentioned previously, the standard phase an-
gle equation gives an upper limit on the time delay
as half of the period of the output response for
the process under relay control. The upper limit
on the time delay for the three simulated process
is shown in Table 5. The period is an average over
five oscillations of the output response.

Table 5. Upper Limit of Time Delay
from Standard Phase Angle Equation

α = 0.01 α =0.5 α =0.99

6.0 6.7 10.8

As observed in Table 5, the upper limit on the
time delay approaches the time delay if the plant
dynamics are much slower than the disturbance
dynamics. In this situation, the upper limit pro-
vides a convenient technique for estimating the
process time delay.

4. CONCLUSIONS

A novel time delay estimation method for SISO
control loops has been introduced. The proposed
method requires a process regulated by a PID con-
troller during routine operation to be temporarily
switched to relay control. The input and output
data gathered from the process under relay control
can be used to produce a time delay estimate.

The proposed time delay estimation method
yields an average time delay estimate from the
fitting of time series models to the input and
output data. A time delay estimate can also be
gleaned from application of the feedback-invariant
property of the impulse response of the closed-
loop transfer function. The latter time delay es-
timate is less reliable than the former estimate,
but is useful for verifying the first estimate. An
upper limit to time delay is obtained by calculated
the period of the output response for the process
under relay control.

Future studies should be focused on determining
the robustness of the time delay estimates for
processes with higher order plant models, higher
order disturbance models, nonstationary distur-
bances, and higher white noise variances.

5. ACKNOWLEDGEMENTS

Financial support from the National Science
Foundation Graduate Research Fellowship Pro-
gram and the National Defense Science and Engi-
neering Fellowship Program is gratefully acknowl-
edged.

REFERENCES

Elnaggar, A. (1990). New method for delay esti-
mation. In: Proc. 29th Conf. on Decision and
Control. Honolulu, HI. pp. 1629–1630.

Harris, T.J. (1989). Assessment of control
loop performance. Can. J. Chem. Eng.
67(10), 856–861.

Ljung, L. (1995). System Identification Toolbox
User’s Guide. The MathWorks, Inc. Natick,
MA.

Ljung, L. (1999). System Identification: Theory
for the User. Prentice-Hall, Inc. Englewood
Cliffs, NJ.

Lynch, C.B. and G.A. Dumont (1996). Control
loop performance monitoring. IEEE Trans.
Cont. Sys. Tech. 4(2), 185–192.

Yu, C. (1999). Autotuning of PID Controllers.
Springer-Verlager London Limited. London,
UK.


	MAIN MENU
	PREVIOUS MENU
	---------------------------------
	Search CD-ROM
	Search Results
	Print



