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Abstract: The evolution of the chemical engineering discipline motivates a reevaluation of
the process dynamics and control curriculum. A key requirement of future courses is the
introduction of theoretical concepts and application examples relevant to emerging areas
such as complex biological systems. We outline the critical concepts required to integrate
biological content within the traditional framework of process dynamics and control. Our
initial experience with three courses is outlined to demonstrate alternative approaches
to achieve this integration. The paper concludes with a discussion of open issues which
require further attention from the process control and biological systems communities.
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1. INTRODUCTION

The discipline of chemical engineering is evolving,
as evidenced by the recent wave of departmental
name changes. These have primarily focused on the
addition of “bio”, such as “biomolecular” (Cornell,
Illinois, Notre Dame, Pennsylvania), “biological”
(Colorado, Northwestern, Rensselaer Polytechnic
Institute, Wisconsin), and “biochemical” (Rutgers).
Such name changes reflect both the increasing number
of chemical engineering faculty involved in research
on biology-oriented topics, and the fact that the
percentage of chemical engineering undergraduates
going to work for companies in the biotechnology and
biomedical sectors has increased from 4.6% in 1998
to 10.3% in 2001-02 (AIChE, 2002).
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A series of MIT-organized workshops, supported
by the National Science Foundation, examined the
current state of undergraduate chemical engineering
education and recommended a sweeping set of content
and delivery changes (Massachusetts Institute of
Technology, 2003). Foremost among the proposed
changes were the introduction of biology as a core
science, the importance of addressing complexity, and
the expanded use of the systems approach. The present
discussion focuses on these three elements within the
context of the traditional process dynamics and control
curriculum.

The dynamics and control course usually taught
in the late junior year or senior year is a natural
point for including biological systems content along
with chemical process material. Due to the focus
on key principles rather than specific case studies,
biological systems can be integrated seamlessly
without detracting from the coverage of more tradi-



tional applications. The study of complex biological
systems often necessitates the integration of concepts
from other undergraduate courses such as mass and
energy balances, heat and mass transfer and reaction
engineering. As a result, the integration of biological
systems content has the potential to further expand the
role of the dynamics and control course as a capstone
experience in the chemical engineering curriculum.
Due to their inherent complexity, biological systems
offer a rich set of dynamic problems to which well
trained chemical engineers can make a significant
contribution.

This expanded vision of the system dynamics and
control curriculum requires the following difficult
issues to be addressed: (1) how can these complex
systems be introduced in a meaningful way to un-
dergraduate chemical engineers with little background
in biology?; and (2) what changes are required to
include biological content without sacrificing the
traditional core of process dynamics and control? The
objective of this paper is to provide some answers
to these questions through the discussion of three
courses taught at our respective institutions. The first
two examples illustrate the introduction of biological
content into the traditional process control course,
while the third example focuses on the development of
a new course in which the systems approach is applied
to a diverse set of biological problems.

2. INTEGRATION OF BIOLOGICAL SYSTEMS
CONTENT

As with most other courses in the undergraduate
chemical engineering curriculum, the process dynam-
ics and control course contains a large span of new
material that is covered at a rather brisk pace. To
produce students who can apply their knowledge of
single- and multi-variable analysis and control in an
industrial context is a formidable challenge even when
the focus is purely on chemical process systems.
The addition of biological content along with the
requisite modeling and analysis techniques requires
a carefully crafted course to avoid overwhelming
students. A possible structure for a semester long
system dynamics and control course is illustrated by
the syllabus in Table 1 where NL is the number of
lectures allotted to the specific topics listed in ALL
CAPS. Bold entries represent new topics specific to
biological systems. Italicized entries are theoretical
topics often considered optional in a traditional
control course but which are viewed as important for
a biologically oriented course.

The introduction of state-space models and associated
analysis tools is essential for the treatment of
biological systems due to their complexity (e.g., high
order, multivariable, highly nonlinear) often precludes
simple Laplace-based analysis. Because students often
retain little of the mathematics “learned” in their lower
level courses, a few lectures on matrix algebra and
linear state-space systems are required to review core

Table 1. Proposed syllabus for a biologi-
cally oriented dynamics and control course.

NL | Topics

4 DYNAMIC MODELING

Principles of fundamental modeling; chemical and
biological process examples; introduction to empirical
modeling

7 LINEAR AND NONLINEAR SYSTEMS ANALYSIS
Matrix algebra and linear state-space systems; linear
systems theory; introduction to nonlinear systems theory;
dynamic simulation; chemical and biological process
examples; introduction to the Laplace transform

7 FEEDBACK SYSTEMS

Basis principles of feedback; physiological control
systems, homeostasis as a setpoint-free feedback
system; feedback in biochemical reaction networks;
closed-loop response analysis; servo vs. load behavior;
feedback control of chemical process systems; closed-
loop drug delivery

8 FEEDBACK CONTROL SYNTHESIS

Basic principles of model-based controller design; PID
controller design & tuning; advanced single-variable
control techniques; multivariable control techniques;
model predictive control; chemical and biological
process examples

4 | ADVANCED TOPICS

Large-scale systems & plant-wide control; parameter
estimation and experimental design; state estimation;
introduction to systems biology

material and to ensure that students with deficient
backgrounds understand the basic concepts. When
combined with the linear systems analysis lecture,
this material allows the calculation of eigenvalues to
determine stability and matrix rank for the analysis
of controllability and observability. The nonlinear
systems theory lecture includes the traditional topic
of Jacobian linearization as well as introductory
coverage of phase plane analysis, multiplicity and
bifurcations.

Feedback is a concept easily introduced in the context
of biological system examples. Consider the healthy
human body versus the insulin-dependent diabetic
as a case study. Circulating glucose concentrations
are sensed by pancreatic (B-cells. Based on these
measurements, 3-cells release an appropriate amount
of insulin to maintain the glucose concentration at
a physiological reference value. Increasing glucose
concentrations lead to increased insulin release and
vice versa. The representation of biological control
systems using various elements of the traditional block
diagram is an appealing framework for presenting
biological content. However, this approach can fail
to reveal the complexity of the underlying biological
processes. In the case of circulating glucose control, a
limited degree of complexity can be incorporated by
utilizing a nonlinear proportional-derivative controller
to represent the pancreatic response to glucose
concentration (Nomura et al., 1984). Additional
complexity can be added as necessary to allow
the application of increasingly advanced closed-loop
analysis tools.



Table 2. Possible case studies for the
process dynamics and control course.

Chemical Processes

Continuous and/or fed-batch polymerization reactors; distilla-
tion column; continuous pulp digester; paper machine; simple
plantwide example (e.g., reactor & separator); semiconductor
process (e.g., lithography); photovoltaic film processing; fuel
cell

Biotechnological Systems

Continuous and/or fed-batch fermentors; yeast energy
metabolism; cell stress response (e.g., heat shock); eukaryotic
cell cycle; bacterical chemotaxis

Biomedical Systems

Baroreceptor vagal reflex (blood pressure control system);
insulin-dependent diabetic patient (glucose-insulin
metabolism/control); circadian rhythm gene regulatory
network; anesthesia control; drug delivery for HIV treatment;
drug delivery for cancer treatment

Throughout the topic sequence in Table 1, a
number of examples serve to highlight the breadth
of opportunities for application of the theoretical
concepts presented in the course. Table 2 provides
a list of case studies that could be integrated into
a typical dynamics and control class. For each
topic where examples are listed in the syllabus,
two chemical process and two biological system
examples could be used to develop lecture material,
in-class exercises and recitation problems. Ideally the
biological problems are divided equally between the
biotechnology and biomedical lists. However, some
material may be illustrated more clearly by selecting
both biological examples from the same list. For
example, homeostasis is most easily discussed within
the context of biomedical processes.

One similarity between the traditional chemical
and biological examples listed in Table 2 is the
scale on which these systems can be analyzed.
Polymerization reactor models can be developed using
input-output representations (Parker et al., 2001a)
or based on detailed descriptions of the individual
polymer particles and their interactions (Immanuel
et al., 2003). Analogous models can be developed
for microbial fermentors where lumped descriptions
of cellular process are provided by unsegregated
models (Henson and Seborg, 1992) and detailed
descriptions of the individual cells are provided
by cell population models (Henson, 2003). A
major conclusion of the MIT-organized education
workshops was that multi-scale phenomena should be
incorporated throughout the undergraduate chemical
engineering curriculum (Massachusetts Institute of
Technology, 2003). Several of the biological examples
listed in Table 2 are well suited for studying system
level phenomena characterized by events at small
length scales. For example, the baroreceptor vagal
reflex can be used to illustrate how activity at the
single cell level affects systemic blood pressure
control (Doyle Il et al., 1997). From the controller
design perspective, different types of biological
complexity can be examined with the goal of
determining the model structure required to synthesize

effective controllers for specific bioprocesses. While
the introduction of biological systems content is
not necessarily required to illustrate these concepts,
we feel that an integrated program of chemical
and biological examples will reinforce key concepts
and demonstrate that these diverse examples are
conceptually similar.

3. SYSTEM DYNAMICS AND CONTROL

The process control course at the University of
Massachusetts has traditionally focused on Laplace
transform analysis and chemical process applications.
This course usually represents the only extensive
exposure to dynamic modeling and feedback control
in the undergraduate curriculum. While classical
material must be covered for students to gain a
working knowledge of the field, advanced control
techniques and emerging applications also must
be emphasized to reflect current industrial trends.
Biological systems were chosen as an appropriate
vehicle for introducing the key elements of biological
transformations, multi-scale phenomenon and systems
level analysis identified in the MIT-sponsored
education workshops (Massachusetts Institute of
Technology, 2003). Rather than completely change the
existing course content, a more conservative approach
based on the integration of biological systems and
the requisite analysis techniques is being pursued.
The short-term objective is to utilize biological
system dynamics and feedback to demonstrate the
wide applicability of the analytical and computational
techniques covered in the course.

The current syllabus for the UMass process control
course (ChE 446) is shown in Table 3 where new
topics introduced in the past year are italicized.
The first few weeks are focused on fundamental
modeling because undergraduate students typically
have little experience formulating dynamic balance
equations. A case study approach with traditional
chemical process examples and biochemical system
examples focusing on yeast metabolism is utilized.
A continuous yeast fermentor model is introduced
and revisited in lectures and homeworks throughout
the semester. Both time domain and Laplace domain
analysis techniques receive extensive coverage. An
introduction to matrix algebra is necessary since this
material is not covered in the required mathematics
courses. A major focus is the formulation and stability
analysis of linear state-space models.

Engineered and natural feedback systems are intro-
duced in parallel to highlights their common features
and unique properties. Multi-scale characteristics of
biological control systems are covered by discussing
feedback in a yeast metabolic network and the
architecture of the baroreceptor reflex. Closed-loop
stability is analyzed in both the time and Laplace
domains. While most of the material on single-loop
controller synthesis is traditional, an introduction to



Table 3. Syllabus for UMass Course ChE
446: Process Control.

NL | Topics

5 FUNDAMENTAL MODELING

Basic principles; chemical process examples (non-
isothermal chemical reactor; binary flash unit; binary
distillation column); biochemical system examples
(continuous fermentor model; metabolically structured
yeast cell model)

7 DYNAMIC SYSTEM ANALYSIS

Linear algebra (solution of matrix equations, state-space
models; eigenvalues & eigenvectors); time domain anal-
ysis (basic stability concepts, linearization of nonlinear
models, linear stability analysis, continuous fermentor
example); Laplace transforms; transfer functions models;
empirical models

6 FEEDBACK SYSTEMS

Process control systems; biological feedback systems
(engineered versus natural feedback systems, yeast
sulfate assimilation pathway, baroreceptor vagal reflex);
closed-loop transfer functions; closed-loop stability

7 FEEDBACK CONTROL SYNTHESIS

PID controller tuning; internal model control; time
domain controller design (state feedback, pole place-
ment, model matching, continuous fermentor example);
feedforward control; cascade control

5 MULTIVARIABLE CONTROL

Control loop interactions; decentralized control;
discrete-time models (discretization of continuous-time
models; convolution models, prediction models); model
predictive control (controller design & tuning, constraint
handling, real-time optimization; continuous fermentor
example)

time domain controller design techniques is provided
to parallel the Laplace domain methods. The final
few weeks are focused on the analysis and design
of multivariable control systems. The main emphasis
is linear model predictive control since many
students entering the oil refining, petrochemical and
chemical industries will encounter this technology.
The continuous yeast fermentor model is used to
illustrate the controller design techniques introduced
throughout the course.

To accommodate new material on biological systems
and time domain analysis and design techniques,
some material typically covered in the process control
course had to be deemphasized or virtually eliminated.
Topics which received reduced coverage included
transfer function models, Laplace domain analysis
and design techniques, advanced single loop control
strategies and traditional chemical process examples.
Frequency domain analysis and design techniques
received very limited coverage. While these topics
are admittedly valuable, a broader view of dynamic
systems and feedback control was deemed to be
more important given current trends in the chemical
engineering profession.

As part of the ABET mandated evaluation process,
students are requested to complete an assessment
concerning the course objectives. Four new objectives
pertaining to the biological systems content were
included in the assessment for the fall of 2003.
Each student provided a score ranging from “5” if

Table 4. Student Responses to Biological
Systems Content in the UMass Process
Control Course.

Score | Question

3.83 I can construct a dynamic model of a biological system.

3.78 | can perform dynamic system analysis and controller
design in the time domain.

3.89 | I can apply dynamic system analysis techniques to
biological systems to evaluate properties such as
stability.

3.83 | can describe the relevance of feedback control theory
to biological systems.

they strongly agreed the objective was achieved to
“1” if they strongly disagreed the course objective
was achieved. Results obtained from the twenty
one respondents are summarized in Table 4. The
average scores are similar to those obtained for the
other course objectives, thereby indicating that the
biological content was successfully integrated into the
course. Continued improvements in student learning
and satisfaction are anticipated as the course content
is further developed in the spirit of Table 1.

4. SYSTEMS-LEVEL BIOMEDICINE

The University of Pittsburgh Medical Center is a re-
search active hospital system, and the medical doctors
collaborate actively with faculty from engineering,
business, and the sciences. The biology component
in the dynamics and control course (ChE 1034) at
Pittsburgh focuses on the analysis of, and controller
synthesis for, biomedical systems at the whole-
organism level. By integrating the research activities
in modeling and control of diabetic and cancer case
studies within the undergraduate class, students are
exposed to a component of chemical engineering they
might otherwise overlook. This format has resulted
in a steady flow of undergraduates interested in
undergraduate research, and an increased interest in
graduate study.

ChE 1034 is approached from a model-based
perspective; approximately half of the course is
focused on modeling systems using both fundamental
to empirical approaches, in both continuous and
sampled-data (discrete) domains. From the fundamen-
tal modeling perspective, the students are taught to
distinguish pharmacokinetics (the time profile of a
drug) from pharmacodynamics (the disease dynamics,
effect of the drug on the disease, and toxicity) in much
the same way valve dynamics and process output
response are captured by separate blocks in a block
diagram. In an input-output framework, these two
physiologically-motivated effects are indistinguish-
able, as the pharmacodynamic effect is the observed
response. The remainder of the course focuses on the
model-based synthesis and analysis of classical and
advanced control systems, as in Table 1.

As a case study, consider the insulin-dependent
diabetic patient depicted in Figure 1. The fundamental



model usually covers a recitation session, introducing
the students to the key variables of the diabetic
patient problem and demonstrating the utility of skills
developed elsewhere in the curriculum (e.g. dynamic
mass balance with reaction, transport resistance) in
the modeling of biomedical problems. As homework
or an in-class exercise, the students are asked to
reduce this model to a low-order equivalent and justify
any assumptions made. The usual result is a model
structure containing two differential equations, one
each for glucose and insulin, which is conceptually
similar to that published in (Bolie, 1961).

The dynamics and control course material is often
challenging to the students, who have had a limited
introduction to dynamical systems prior to the course.
One classical approach to address the challenge of
depth of treatment versus limited classroom time is
the case study method (Mustoe and Croft, 1999).
To provide the students with a consistent example,
a collection of case study examples that correspond
to the various sections of the curriculum outlined in
Table 1 is required. To this end, selections from the
insulin-dependent diabetic patient literature have been
mapped onto the course outline, as shown in Table 5.

For an expert in the field of diabetic patient modeling
and control, this table is fairly straightforward to
construct. For the faculty member less familiar with
biology, or the diabetic patient problem, the map
provides a guide to focused literature reading to
quickly bring biomedically motivated problems into
the classroom. This aspect is most useful for faculty
who are not dynamics and control experts, but who
are responsible for teaching the course. This course is
challenging for non-experts to teach, and is often rated
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Fig. 1. Open-loop schematic of the diabetic patient.
Small solid blocks represent the fundamental
model, with manipulated input insulin delivery
rate, meal disturbance, and glucose concentration
measurement.

Table 5. Integration of sample case study
(insulin-dependent diabetic patient) with
course outline topics.

DATA-DRIVEN MODELING

Sorensen FOTD (1985), Bolie two-state linear (1961),
Bergman “Minimal” Model (1981)

FIRST PRINCIPLES MODELING

Physiologically—based Pharmacokinetic / Pharmacodynamic
(Sorensen, 1985; Parker et al., 2000b)

LINEAR SYSTEMS ANALYSIS

Bolie two-state linear ODEs (1961)

LINEAR SYSTEMS ANALYSIS w/ LINEARIZATION
Linearize and analyze Bergman “Minimal” (1981)
DYNAMIC SIMULATION

All models, including AIDA as a different performance
classification (Sorensen, 1985; Bolie, 1961; Bergman et al.,
1981; Parker et al., 2000b; Lehmann et al., 1994; Agar et
al., 2002)

FEEDBACK SYSTEMS

Glucose-insulin interactions (Bolie, 1961); nonlinear feedback
response (Bergman et al., 1981), healthy pancreas response
(Sorensen, 1985; Nomura et al., 1984)

CLOSED-LOOP ANALYSIS

Sorensen healthy patient (Sorensen, 1985)

PID CONTROL

Controller design from FOTD (Sorensen, 1985), low-order
ODEs (Bolie, 1961), and linearized systems and/or effects of
nonlinearity (Bergman et al., 1981)

ADVANCED CONTROL

Feedforward for meal disturbances (Lehmann and Deutsch,
1992) and exercise (Lenart and Parker, 2002), with simple
(Bolie, 1961; Bergman et al., 1981) or complex (Sorensen,
1985) case studies

MULTIVARIABLE CONTROL

MISO (glucose and insulin inputs; G, | and exercise inputs)
(Parker et al., 2000a) or MIMO (glucose and insulin control)
for a variety of systems (Sorensen, 1985; Bolie, 1961;
Bergman et al., 1981)

MODEL PREDICTIVE CONTROL

Linear MPC in analytical (Bolie, 1961) or data-driven (Parker
et al., 1999) forms; MPC with a linearized model (Sorensen,
1985; Bergman et al., 1981; Parker et al., 2001b; Lenart and
Parker, 2001); nonlinear MPC if desired (Sorensen, 1985;
Bergman et al., 1981; Parker et al., 2001b; Lenart and Parker,
2001; Rubb and Parker, 2003)

the “least desired teaching assignment” (based on a
three-university non-randomized sample of chemical
engineering educators). A collection of these paper-
topic maps, for traditional and biological case studies,
would provide those teaching the dynamics and
control course a variety of examples tailored to each
section of the course.

5. SYSTEMS BIOLOGY

In addition to the required dynamics and control
course, described in Section 2, there is a demand
in many chemical engineering programs for elective
courses that facilitate specialization in either systems
engineering or biotechnology/biomedical engineer-
ing. At UCSB, a new course has been offered
in the Spring 2004 quarter, entitled “Engineering
Approaches to Systems Biology”. The course is
taught at a dual-level (seniors and new graduate
students), and fulfills the track requirement for both



systems and biology emphases in the undergraduate
chemical engineering program. In addition, it will
be cross-listed, in its subsequent offering, with
the biomolecular science and engineering (BMSE)
program. The current syllabus is listed in Table 6,
detailing the topics for a single quarter course (20
lectures of duration 75 minutes).

The course focuses on the emerging problems in
systems biology and computational biology. There is a
substantial level of effort being invested in these areas
in both academia and industry, and the demand for
the training of students has increased in proportion.
These advances have been facilitated by developments
in both computational modeling and high throughput
biology — enabling a systematic approach to analyzing
complexity in biophysical networks, which was
previously untenable. Advances in molecular biology
over the past decade have made it possible to
probe experimentally the causal relationships between
microbiological processes initiated by individual
molecules within a cell, and their macroscopic
phenotypic effects on cells and organisms. These
studies provide increasingly detailed insights into
the underlying networks, circuits, and pathways
responsible for the basic functionality and robustness
of biological systems and create new and exciting
opportunities for the development of quantitative
and predictive modeling and simulation tools. Model
development involves translating identified biological
processes into coupled dynamical equations which
are amenable to numerical simulation and analysis.
These equations describe the interactions between
various constituents and the environment, and involve
multiple feedback loops, responsible for system
regulation, and noise attenuation and amplification.

The discipline of Systems Biology has emerged in
response to these challenges (Kitano, 2002), and
combines approaches and methods from systems en-
gineering, computational biology, statistics, genomics,
molecular biology, biophysics, and other fields. The
recurring themes include: (i) integrative viewpoints

Table 6. Syllabus for UCSB Course: ChE
154 — Engineering Approaches to Systems
Biology.

NL | Topics

6 CELLULAR REGULATION

Central dogma; genome sequences; genome expression;
genomic circuits; protein, metabolic, signaling networks;
high throughout biological data; biological databases

6 MATH MODELING AND SYSTEMS ANALYSIS
TOOLS

Modeling strategies; boolean models; nonlinear ODE
models; discrete stochastic models; systems biology
modeling packages; network analysis — robustness,
identifiability; design of experiment issues

6 BIOSYSTEMS CASE STUDIES

Bacterial chemotaxis; lambda phage; circadian rhythm;
caspase signaling cascade; pap pili phase variation

2 COURSE PROJECTS

Midterm progress reports; final presentations

towards unraveling complex dynamical systems, and
(if) tight iterations between experiments, modeling,
and hypothesis generation.

In response, there have been a number of courses
introduced in a variety of departments across the
country that address elements of systems biology and
computational biology. These have been targeted at
both undergraduate and graduate audiences, and in
some cases involve continuing education participants
from industry. The balance of topics in the syllabus in
Table 6 is approximately one third on basic cellular
regulation, one third on applications of systems
engineering tools to biological problems, and one
third on detailed case studies to illustrate current
methodologies and future challenges. Although the
UCSB curriculum is based on quarters, the same
general template could be extended to a semester-long
course, without significant modification.

Assignments for this course consist of short home-
work problems, primarily at the beginning of the
course, and a major course project. The project entails
a midterm progress report, a final presentation, and
a written report. The case study offers a mechanism
to tailor the course to a diverse student population —
seniors work on teams with a reduced scope, while
graduate students work as individuals on a more
detailed project.

6. OPEN ISSUES IN UPDATING THE PROCESS
DYNAMICS AND CONTROL COURSE

6.1 Reducing the Emphasis on the Laplace Domain

Traditional process control courses emphasize the
Laplace transform for solution of dynamic models
as well as for the analysis of open- and closed-
loop systems. In the coverage of multivariable
systems, a common approach is to construct single-
input, single-output (SISO) transfer function models
for each input-output pair and then combine the
SISO models into a transfer function matrix. While
classical analysis may be facilitated by using
Laplace domain system representations, inherent
limitations (e.g. linear system, deviation variables,
“small” input-output dimension) severely restrict
the utility of this approach for complex systems
commonly encountered in biological applications.
Biological systems are inherently nonlinear with
phenomena ranging from protein interactions in
gene regulatory networks to adaptation in systemic
reflexes. Furthermore, modeling of biological systems
at resolutions below the macroscopic scale often leads
to high state dimension (Henson, 2003; Parker et
al., 2000b).

>From this perspective, complex dynamic systems
are most effectively addressed in the time domain.
Nonlinear analysis techniques can be introduced
explicitly in the time domain (see Section 3), thereby
exposing students to theoretical concepts and analysis



tools with wider applicability than Laplace domain
methods. Moreover, the formulation of large-scale
system models (in terms of state and/or input-output
dimensions) is more readily performed in the time
domain via conservation equations. Consequently, the
syllabus in Table 1 focuses on the derivation and
analysis of linear and nonlinear state-space systems.
Connections with the corresponding Laplace domain
concepts can be introduced as necessary (e.g. stability
via eigenvalues vs. poles).

As is evident from Table 1, frequency domain analysis
and design techniques have been effectively removed
from the proposed curriculum. While we do not
dispute the potential value of these methods, our
experience is that this material is difficult for most
students to understand and apply. Because frequency
domain analysis often starts with the substitution of
s = jw into the transfer function model, the removal
of frequency domain material is consistent with the
reduced emphasis on the Laplace transform. On the
other hand, the syllabus in Table 1 is sufficiently
flexible that limited coverage of frequency domain
methods at the expense of other topics is possible.
For instructors interested in including these tools, brief
coverage of the fast Fourier transform (FFT) and pulse
testing may be represent a suitable compromise.

The Laplace transform is particularly useful for
the analysis of systems with time delay and/or
zero dynamics. While numerical simulation of these
systems is straightforward, analysis in the time
domain is more difficult. Computational tools such
as the FFT can be employed, but such methods are
not well suited for use in conventional written exams.
Analytical treatment of zeros in the time domain is
more involved than the corresponding Laplace domain
methods for SISO linear systems.

Time domain analysis of transportation and measure-
ment delays is most conveniently performed using
a discretized framework. Linear state-space models
without delay can be constructed by performing
state augmentation and using shift matrices. While
this approach can lead to potentially large state
dimensions, properly formulated exam problems can
partially mitigate this problem. Multiple delays and
delays between blocks in a closed-loop system
produce more complicated state-space models that
are problematic in the context of written exams.
Consequently, evaluating student understanding of
this material can be challenging. Two possible
approaches are: (i) prepare challenging problems and
conduct exams in computational classrooms where
students have access to the tools necessary to complete
the analysis; and (2) construct two-part problems with
the first part focuses on problem formulation and
the second part addresses the analysis problem on a
related but simplified problem.

6.2 Multivariable Control

While most traditional courses treat multivariable
systems as a straightforward extension of SISO
systems, a more comprehensive approach which
addresses the unique challenges of multivariable
controller design is required. A formal introduction
to decentralized control would support the “systems
viewpoint” when performing control relevant analysis
of multivariable processes — a set of optimal SISO
feedback loops generally does not result in overall
system optimality. While coverage of this material
is relatively straightforward, the vast majority of
multivariable systems are suboptimally controlled
when single-loop controller design techniques are
employed. Furthermore, students working in the
chemical process industries will invariably encounter
model predictive control applications. While com-
prehensive treatment of model predictive control
is beyond the scope of this course, students need
to develop a working knowledge of this high
performance control technology. As outlined in the
course syllabus in Table 3, the introduction of this
topic necessitates limited coverage of discrete-time
models and real-time optimization.

6.3 Robustness

A critical topic in the analysis of both process control
systems and biological regulation is robustness. The
remarkable levels of robust performance attained in
nature is enviable from an engineering perspective
and is not a well understood issue in biology.
The importance of robustness in understanding
disease states, as well as evolution and development,
motivate its incorporation in the dynamics and
control curriculum. Of course, a detailed theoretical
treatment, such as that provided in (Skogestad and
Postlethwaite, 1996), is beyond the scope of a typical
undergraduate course. However, key concepts of
robustness can be emphasized using simple tools
such as sensitivity analysis — effectively capturing
the gains from uncertain elements in a system
to the controlled output or performance measure.
Analysis can include the closed-loop strategies that
have been adopted in nature to deal with robustness,
such as redundancy, feedback, filtering and modular
protocols.

6.4 Teaching Control for Non-Expert Faculty

Our experience indicates that the process dynamics
and control class is not a popular choice as a teaching
assignment among non-experts in the field. The lack
of interest is due to a variety of issues, including
the mathematical complexity of the material and the
significant focus on feedback controller synthesis. An
additional concern is that the material is challenging
to students, who have had a limited introduction to
dynamical systems prior to this course. The syllabus
in Table 1 represents a significant departure from the



traditional controller synthesis dominated course to a
more balanced presentation of system dynamics and
feedback.

A notable benefit of the proposed syllabus is the
degree of potential customization. While our focus
has been on the introduction of biological systems
content, the treatment of other application areas such
as advanced materials or microelectronics can be
accomplished in a similar manner. This flexibility
provides an excellent opportunity for instructors to
integrate their research interests into the course.
The three courses described in Sections 3-5 were
heavily influenced by the work performed in the
corresponding research groups. Possible benefits of
such integration include: (i) increasing the diversity
of application examples by encouraging non-experts
to teach the course; and (ii) introducing students to
cutting edge engineering research which influences
their perception of the field and may affect their future
career directions.

Experts in process dynamics and control can con-
tribute to the development of instructional materials
in a variety of ways. The construction of extended
case studies such as Table 5 for different applications
(e.g. electronic materials) would ease the burden on
non-experts to incorporate novel examples into the
curriculum. Software tools such as the Process Control
Modules (Doyle 1Il et al., 2000) and Java-based
Control Modules (Yang and Lee, 2002) are well suited
for introducing traditional concepts and applications.
New software tools are needed to increase the
exposure of chemical engineering undergraduates to
biological complexity and to allow the application
of the theoretical concepts introduced in the course
to representative biological systems. Ongoing efforts,
such as those organized by MIT and the CACHE
organization, are focused on the development and
refinement of biologically-relevant systems courses.
A task force headed by the second author of this
paper is currently working on course revisions as
well as software module design as a means to
integrate biological content throughout the chemical
engineering curriculum. More details will be made
available at wwv. cache. or g.
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