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Abstract: This work presents model-based strategies for on-board catalyst moni-
toring and fault detection using a simplified catalyst oxygen storage and reversible
deactivation model. The performance of the catalyst is inferred from the error
between the post-catalyst exhaust gas oxygen sensor measurement and the model
predicted value. Each of these strategies is based on the use of some test statistic
that is computed from a window of post-catalyst prediction error data updated in
real-time. A fault is reported when the value of this statistic exceeds a threshold
that is determined from some specified confidence level. We conclude with an
evaluation of these strategies.
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1. INTRODUCTION

In order to ensure that the components of a cat-
alytic automotive emission control system con-
tinue to operate properly with age, effective and
robust on-board system monitoring is essential.
Because emissions from a small fraction of mal-
functioning vehicles are believed to account for
a large fraction of the total automotive-related
emissions, on-board monitoring has the potential
to significantly reduce hydrocarbon and nitrogen
oxide air pollutants. This observation, along with
recent legislation such as SULEV and OBD-II
that mandate on-board diagnostic (OBD) systems
to monitor the health and performance of the
catalyst system, has led to interest in monitoring
strategies that are able to reliably indicate when
the emission control system is no longer meeting
specification or when a fault is present.

On-board monitoring of the three-way catalyst
component of catalytic automotive emission con-

trol systems is considered in this work. The speci-
fications for catalyst operation are set based on
the tailpipe hydrocarbon emissions. Under Eu-
ropean legislation, these emissions must remain
less than 0.4g/km during a specified test cycle.
In the United States, OBD-II legislation requires
hydrocarbon emissions to remain less than 1.5
times the 4000 mile emissions baseline. These
requirements are particularly challenging due to
the lack of a cost-effective and reliable automotive
hydrocarbon sensor. This limitation has led to
monitoring approaches that consider the oxygen
storage dynamics of the catalyst rather than the
hydrocarbon conversion efficiency. Although the
oxygen storage capacity of the catalyst can not
be measured directly, it can be inferred using
pre- and post-catalyst exhaust gas oxygen (EGO)
sensors. These sensors are often available as part
of the engine air fuel ratio (AFR) control system
making these monitoring approaches attractive.



2. CATALYST OXYGEN STORAGE

A key process in the reduction of tailpipe emis-
sions by the three-way catalyst is the ability to
store and release oxygen in response to the pre-
catalyst exhaust air fuel ratio. Under rich (excess
fuel) engine operation, the catalyst oxidizes the
hydrocarbons and carbon monoxide present in the
incoming engine exhaust by releasing previously
stored oxygen. This oxygen release maintains
stoichiometric combustion with commensurately
low levels of hydrocarbon and carbon monoxide
tailpipe emissions. Because of the finite storage
capacity of the catalyst, however, this process
cannot continue indefinitely. When the oxygen
release rate of the depleted catalyst can no longer
satisfy the demand, the post-catalyst air fuel ratio
will decrease below stoichiometric and hydrocar-
bon breakthrough will eventually occur. A typical
catalyst control system will therefore attempt to
switch to lean (excess air) engine operation be-
fore this rich breakthrough condition is encoun-
tered. Under lean engine operation, the excess
oxygen in the engine exhaust gas is now adsorbed
onto the catalyst resulting in near-stoichiometric
post-catalyst conditions and low tail-pipe emis-
sions. As the oxygen storage capacity of the cata-
lyst approaches its saturation condition, however,
the post-catalyst oxygen concentration increases
above stoichiometric and emission of nitrogen ox-
ides will eventually occur. A typical catalyst con-
trol system will then attempt to switch back to
rich engine operation before lean breakthrough.
Through this cycling of the pre-catalyst air fuel
ratio, the oxygen storage capacity of the catalyst
is a buffer against tailpipe emissions by compen-
sating for transient oxygen excess or deficiency.

Because of the nature of the three-way catalyst
operation, a measure of the catalyst oxygen stor-
age capacity would be expected to correlate well
with the hydrocarbon conversion efficiency. In
practice, however, the correlation is nonstationary
and highly nonlinear resulting from differences
in both the short-term and long-term dynamics
between oxygen storage and hydrocarbon conver-
sion. A further difficulty in the use of oxygen stor-
age capacity for catalyst monitoring lies in the use
of the post-catalyst EGO sensor. The sensor signal
is not only a function of the exhaust gas air fuel ra-
tio but also a function of the exhaust gas composi-
tion. In pre-catalyst applications, the dependency
on gas composition can be largely removed by
calibration. The composition of the post-catalyst
exhaust, however, varies dynamically according to
the reactions taking place on the catalyst. Static
calibration in this case is insufficient to correct for
composition dependent distortion. The resulting
error is difficult to distinguish from oxygen storage
and release effects and, unless treated explicitly,
will propagate to the catalyst monitoring strategy.

Despite these difficulties, oxygen storage capac-
ity (OSC) metrics for on-board monitoring have
been proposed based on the assumption that the
oxygen storage rate can be estimated from the dif-
ference between the pre-catalyst and post-catalyst
EGO sensor measurements of the air fuel ratio. In
order to measure catalyst OSC, the oxygen stor-
age rate must be integrated over an appropriate
time interval during which the catalyst oxygen
storage state changes from an initial to a final
state. It is the choice of the initial and final state
of the integration that distinguishes these meth-
ods. The repeatability of the metric also depends
on the accuracy with which the catalyst can be
driven to the initial state and the determination
of the point at which the catalyst has reached the
final state. Measurement of these conditions is not
straightforward because the level of stored oxygen
cannot be observed directly.

A summary of these OSC metrics, along with the
requirements on the engine and catalyst operation
necessary to determine their value, is presented
by Peyton Jones and Muske (2004). An inherent
difficulty with diagnostic strategies based on these
metrics is that they seek to encapsulate catalyst
behavior using a single oxygen storage capacity
determination method that is assumed indicative
of catalyst health. Because catalyst dynamics are
sufficiently complex, it is unlikely that such a
metric can adequately describe hydrocarbon con-
version efficiency for a variety of operating condi-
tions. For this reason, model-based strategies are
likely to be more accurate and discriminating.

A simple model-based monitoring strategy is to
use the error between a model predicted and
measured OSC metric as the catalyst diagnostic.
When the catalyst is healthy, the model prediction
and actual measurement should be in close agree-
ment resulting in small prediction errors. As the
catalyst performance degrades, the magnitude of
these errors would be expected to increase. The
effectiveness of this approach, however, depends
on the model and the accuracy of both the mea-
surement and the model prediction of the metric.
A second consideration is the engine and catalyst
operation that is necessary in order to provide suf-
ficient information on the catalyst performance.

3. OXYGEN STORAGE MODEL

The oxygen storage model of Peyton Jones et al.
(2000) is used in the monitoring strategies pre-
sented in this work. The catalyst oxygen storage
is represented by the nonlinear integrating model

φ̇ = Kλṁf (∆λ� −N (φ)) (1)

in which φ is the oxygen storage state of the
catalyst, ∆λ� is the pre-catalyst air fuel ratio
deviation from stoichiometric, ṁf is the fuel mass



flow rate to the engine, and N (φ) is the catalyst
oxygen capacity function. Here oxygen storage
and release rates depend on the difference be-
tween the forcing function ∆λ�, which promotes
adsorption under conditions of oxygen excess, and
the catalyst capacity N (φ), which represents the
desorption under similar conditions. This model
describes stored oxygen relative to the equilibrium
level when the pre-catalyst exhaust gas is stoichio-
metric, ∆λ� = 0. We note that the pre-catalyst
air fuel ratio deviation, ∆λ�, is denoted using a
left-facing triangle and that the post-catalyst air
fuel ratio deviation, ∆λ�, is denoted using a right-
facing triangle in this work.

The capacity function N (φ) has a nonlinear spring
characteristic. As φ increases from zero, it be-
comes progressively harder to store oxygen on the
catalyst. As φ decreases from zero, it becomes
progressively harder to remove oxygen from the
catalyst. In this work, N (φ) is parameterized us-
ing a polynomial expansion of φ.

N (φ) = a1φ+ a2φ
2 + a3φ

3 + a4φ
4 + a5φ

5 (2)

We note that the stored oxygen level does not
hit hard saturation/depletion limits as in limited
integrator models but instead attains an operating
condition that is dependent on the steady-state
pre-catalyst air fuel ratio. The oxygen satura-
tion/depletion limits are approached asymptoti-
cally as would be expected from theory.

The post-catalyst air fuel ratio deviation from sto-
ichiometric, ∆λ�, is determined from the capacity
function by the following relationship.

∆λ� =
{

0, (∆λ� < 0) and (φ > 0)
N (φ), otherwise

(3)

In the case of rich pre-catalyst exhaust gas, ∆λ� <
0, and an oxidized catalyst, φ > 0, where stored
oxygen is available for reducing the rich incoming
exhaust gas, oxygen release is limited by the ex-
haust gas oxygen demand resulting in stoichiomet-
ric post-catalyst exhaust, ∆λ� = 0. This effect is
clearly shown in Figure 1 where the post-catalyst
air fuel ratio remains at stoichiometric for sev-
eral seconds after the pre-catalyst air fuel ratio
makes a lean to rich step change. As the stored
oxygen becomes depleted from the catalyst, the
post-catalyst air fuel ratio becomes rich until it
eventually matches the pre-catalyst ratio. Oxygen
storage on the catalyst is clearly shown after the
pre-catalyst air fuel ratio rich to lean step change
made at approximately seventy seconds.

The separation between the actual and model
predicted air fuel ratios appearing after twenty
seconds in Figure 1 is due to sensor distortion in
the post-catalyst air fuel ratio sensor. As shown
by Peyton Jones (2003), post-catalyst EGO sensor
distortion under rich conditions can be related to
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Fig. 1. Pre- and post-catalyst air fuel ratio.

the hydrogen generated by catalytic promotion of
the water gas shift reaction.

CO + H2O � CO2 + H2

If the reaction proceeds in the forward direction,
the ability of hydrogen to diffuse faster than hy-
drocarbons and carbon monoxide results in a sen-
sor output that appears richer than the true value.
Reduced levels of post-catalyst hydrogen due to
a progressive inhibition of the water gas shift
reaction result in a sensor output that appears
leaner that the true value. The rise toward leaner
values of the measured post-catalyst air fuel ratio
in Figure 1 is due to this inhibition effect.

The reversible short-term catalyst deactivation
effects that inhibit hydrogen production through
the water gas shift reaction can also have an effect
on conversion efficiency particularly under rich or
rich-biased operation. This behavior suggests that
the gas-composition dependent error in the post-
catalyst air fuel ratio sensor measurement can
be used as a measure of this reversible catalyst
deactivation effect. If the degree of water gas shift
reaction inhibition is assumed proportional to the
deactivated fraction of the catalyst surface, ψ,
then the apparent post-catalyst AFR, ∆λ�

a, can
be related to the true post-catalyst AFR, ∆λ�, as

∆λ�
a = ∆λ� +KHψ (4)

where the constant KH represents the sensor
sensitivity to hydrogen concentration changes and
the inhibition of the water gas shift reaction due
to reversible catalyst deactivation.

Assuming that the rate of deactivation is pro-
portional to the post-catalyst oxygen deficiency,
−∆λ�, and the fraction of the surface that is
already deactivated, ψ, results in the following
model for the deactivated fraction of the catalyst
surface

ψ̇d = ṁfKd(−∆λ� − ψ) (5)

where Kd is the deactivation constant of propor-
tionality. The presence of pre-catalyst free oxygen,
∆λ� > 0, reverses the deactivation process at



a rate proportional to the supply of pre-catalyst
oxygen until the catalyst is reactivated, ψ = 0,

ψ̇r = −ṁfKr∆λ� (6)

where Kr represents the reactivation constant.
The resulting reversible deactivation model is

ψ̇ =



ψ̇d, (∆λ� < 0) and (∆λ� < 0)
ψ̇r, (∆λ� > 0) and (ψ > 0)
0, otherwise

(7)

where ∆λ� is the true post-catalyst AFR deter-
mined from the oxygen storage model in Eq. 3
and the sensor distortion of the measured post-
catalyst AFR is determined from Eq. 4.
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Fig. 2. Post-catalyst AFR model prediction.

Figure 2 presents a comparison between the mea-
sured post-catalyst air fuel ratio stoichiomet-
ric deviation and the combined oxygen storage-
reversible catalyst deactivation rate model pre-
diction for a series of step changes to the pre-
catalyst air fuel ratio. As shown in this figure,
the deviations at the end of each rich cycle are
accounted for in the combined model. In partic-
ular, the combined model now characterizes the
distortion that occurs in the post-catalyst sensor
since there are no longer significant unmodeled
dynamics. The close agreement between the pre-
dicted and actual measurements, especially during
the periods of rich operation, demonstrates that
the reversible catalyst deactivation dynamics are
well described by this model.

4. STATISTICAL MODEL-BASED
MONITORING STRATEGIES

In order to account for the uncertainty in both
the measured and model predicted OSC metric,
analysis of the prediction error is best carried out
within a statistical framework. Previous work in
statistical model-based monitoring strategies con-
sidered the Neyman-Pearson criterion to obtain a
diagnosis at a given level of confidence. Analysis of
the difference between the pre- and post-catalyst
AFR measurements is considered by Arsie et al.
(2000). The student t-test applied to multiple

samples of the time to empty/fill the catalyst
is presented by Brandt and Grizzle (2001). The
disadvantage of these methods is the Gaussian dis-
tribution assumption for the metric which is not
necessarily the case, especially given the biasing
effects of sensor distortion. Catalyst deactivation
effects may also change the distribution over time.

In this work, we consider the prediction error of
the post-catalyst AFR as the basis for OSC met-
rics. The prediction error is easily computed and
sensitive to both long-term catalyst deactivation
effects and short-term emission control system de-
vice failures. It does not require catalyst operation
that can result in increased tailpipe emissions or
disruption in driveability as is possible during the
direct determination of oxygen storage capacity.
The monitoring strategies are based on a sample
of the post-catalyst AFR prediction errors

e = [e1, e2, . . . , eN ]T (8)

where N is the sample population size, ek =
∆λ�

m,k − ∆λ�
a,k is the prediction error, ∆λ�

m,k is
the measured post-catalyst AFR, and ∆λ�

a,k is the
predicted post-catalyst AFR computed from Eq. 4
for samples k = 1, . . . , N . The sample may be
constructed using either a moving window or a
batch approach.

We begin our discussion of monitoring strategies
by analyzing the distribution of the post-catalyst
AFR prediction errors for the engine operation in
Figure 2. This distribution, shown in Figure 3, is
nonsymmetric with a greater proportion of rich
prediction errors but with larger lean prediction
errors on average.
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Fig. 3. Nominal prediction error distribution.

In order to estimate catalyst deactivation effects,
the capacity function in Eq. 2 is compressed as

Ñ (φ)=
a1

β
φ+

a2

β2
φ2 +

a3

β3
φ3 +

a4

β4
φ4 +

a5

β5
φ5 (9)

where 0 < β ≤ 1 is the fraction of oxygen storage
capacity remaining. Simulated post-catalyst AFR
operating data for a deactivated catalyst is con-
structed by computing the model predicted post-
catalyst AFR using the modified catalyst capacity
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Fig. 4. Deactivated catalyst error distribution.

function in Eq. 9 with the same pre-catalyst con-
ditions as Figure 2. The model prediction errors
from Figure 2 are then inserted into this simulated
data set. We choose these errors, as opposed to
the addition of white noise, because the model
prediction errors do show some correlation with
the pre-catalyst AFR and we wish to retain this
property. Figure 4 presents the prediction error
distribution between the simulated deactivated
operation with β = 0.8 and the model prediction
with β = 1. As shown in this figure, there is a
significant deviation from the nominal operation.

4.1 Mean Prediction Error Metric

In this section, we consider a statistical test on
the mean of the population of prediction errors
in the current sample as discussed by Christensen
(1996). Provided that the sample population is
large, a standard normal Gaussian distribution
can be reasonably assumed for the test statistic

Z =
ēY − ēX

s2Y/NY + s2X/NX
(10)

in which eY is the prediction error sample drawn
from the current operation with mean ēY, variance
s2Y, and sample size NY and eX is the nominal
operation prediction error sample with mean ēX,
variance s2X, and sample sizeNX. The null hypoth-
esis is ēY = ēX which indicates normal catalyst
operation and is accepted if the test statistic Z

is less than the threshold TZ(α) chosen based on
a significance level α. The alternative hypothesis
is ēY > ēX which indicates improper catalyst
operation. Because recursive estimates of the pre-
diction error and its variance are easily computed,
large sample populations are feasible which both
reduces the sensitivity to outliers and improves
the Gaussian distribution assumption made for Z.

The symmetry of the deactivated distribution
in Figure 4 suggests that the mean prediction
error may not be an effective metric and, in
this application, the mean absolute or squared
error would be a better choice. Table 1 presents

the value of the test statistic Z using each of
these metrics for varying levels of catalyst oxygen
storage capacity. A sample size of N = 1000
was used for each population where the samples
for eX were obtained by random sampling of the
prediction errors from the operation in Figure 2
and the samples for eY were obtained by random
sampling of the simulated deactivated operating
data with varying values of β. As shown in this
table, the metric based on mean absolute error is
quite sensitive to small reductions in the oxygen
storage capacity. Note that the threshold value is
TZ(0.025) = 1.96 for a 0.025 level of significance.

Storage Test Statistic Z

Capacity ē ¯|e| ē2

95% 0.55 2.42 1.21
90% 1.00 6.38 3.92
85% 1.33 10.6 7.64
80% 1.56 14.3 11.4
75% 1.69 17.2 14.5

70% 1.78 19.6 17.0
65% 1.83 21.7 19.0
60% 1.86 23.6 20.6
55% 1.90 25.3 22.2
50% 1.94 27.0 23.7

Table 1. Test statistic for mean error.

4.2 Prediction Error Distribution Metric

The monitoring strategy employed in this section
considers the distribution of the prediction errors
in the samples. The use of the error distribution,
as opposed to the mean, can increase sensitivity
in the presence of model inadequacy. Because of
the simplicity of the catalyst model, large model
errors may occur even when the catalyst sys-
tem is functioning properly. The error magnitude
may also not change significantly when a fault is
present. In this case, changes in the distribution of
the errors can provide additional information on
the catalyst operation. The Kolmogorov–Smirnov
test, a nonparametric test for comparing cumula-
tive distribution functions discussed by Conover
(1980), is used. Although no assumptions about
the form of the underlying distribution are nec-
essary, this test does assume that the sampling
is random from a continuously distributed pop-
ulation with sufficient measurement precision to
avoid tied observations. These assumptions are
well satisfied for catalyst system monitoring.

The cumulative distribution function (cdf) is the
mapping FX(z) that assigns the probability that
a random variable X is less than or equal to a
specific value z for all possible z values.

FX(z) = P{X ≤ z}, −∞ < z <∞
The nominal catalyst operation prediction error is
denoted by the random variable X and the current
operation prediction error by the random variable



Y. There are three test statistics that can be used
with the Kolmogorov–Smirnov test

K = sup
−∞<z<∞

|FY(z) − FX(z)| (11)

K+ = sup
−∞<z<∞

(
FY(z) − FX(z)

)
(12)

K− = sup
−∞<z<∞

−
(
FY(z) − FX(z)

)
(13)

where FY(z) is the cdf for the current opera-
tion prediction error and FX(z) is the cdf for
the nominal operation prediction error. The K

statistic in Eq. 11 is the maximum difference be-
tween the two distributions. The null hypothesis
is FY(z) = FX(z) for all z indicating normal
operation and is accepted if the test statistic K

is less than the threshold TK(α) chosen based on
a significance level α. The alternative hypothesis
is FY(z) �= FX(z) for at least one value of z. The
null hypothesis for the K+ statistic in Eq. 12 is
FY(z) ≤ FX(z) with the alternative hypothesis
FY(z) > FX(z) for at least one value of z. The
null hypothesis for the K− statistic in Eq. 13 is
FY(z) ≥ FX(z) with the alternative hypothesis
FY(z) < FX(z) for at least one value of z. The
threshold values for each statistic are available as
a function of the significance level and number of
samples in each population. The cdf for both the
nominal and current operation is approximated
by a normalized histogram of the prediction er-
rors in the corresponding sample. The normalized
histogram is computed by taking the proportion
of the sample population less than or equal to a
specified prediction error. These approximate dis-
tribution functions approach the true distribution
only in the asymptotic limit as the number of
samples goes to infinity when the true underlying
distribution is continuous. For large sample size,
however, the density function based on a finite
sample should be a reasonable approximation to
the asymptotic density function. Because the cal-
culations required to perform the test are rela-
tively trivial, each of the three statistics in Eqs. 11
through 13 can be tested. The requirement of
computing normalized histograms, however, will
limit the sample population sizes in practice.

Table 2 presents average values of the test statis-
tics K, K+, and K− for varying levels of catalyst
oxygen storage capacity. The nominal error sam-
ple eX was obtained by random sampling of the
prediction errors from the operation in Figure 2.
For each value of β, several current operation
samples eY were obtained by random sampling of
simulated deactivated operating data. A sample
size of N = 100 was used for each population and
the average test statistic values were determined
using 1000 tests. The threshold value for K is
TK(0.025) = 0.121 for a 0.025 level of significance.
Because of the smaller sample size, this test is
not as sensitive as the mean absolute error in this
example. When β = 0.9, the test statistic average

is just below the threshold with approximately
half of the samples above the threshold value.

Storage Test Statistic

Capacity K K+ K−

100% 0.058 0.041 0.050
95% 0.093 0.091 0.080
90% 0.115 0.108 0.081
85% 0.138 0.131 0.093
80% 0.164 0.159 0.094
75% 0.172 0.169 0.096
70% 0.208 0.208 0.099
65% 0.228 0.228 0.115
60% 0.247 0.247 0.117
55% 0.256 0.256 0.122
50% 0.274 0.274 0.134

Table 2. Kolmogorov–Smirnov statistic.

5. CONCLUSIONS

A model-based automotive catalyst diagnostic
and fault detection methodology based on the
error between the measured and model predicted
post-catalyst air fuel ratio is developed. Hypoth-
esis tests using the mean absolute error and the
Kolmogorov–Smirnov nonparametric test for cu-
mulative distribution functions are used to de-
termine statistically significant changes between
the current and nominal catalyst operation. This
methodology is demonstrated using engine data
with simulated oxygen storage capacity reduction
and shows promise for on-board application.
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