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Abstract:
Exact discretization of continuous linear time-delay systems with quadratic objective functions,
under piecewise constant manipulated variables, is used to design and implement a novel
linear model predictive controller, termed the continuous-time linear-quadratic model predictive
controller (CT-LMPC). The key novelty in the paper is the exact numerical discretization of CT
time-delay linear-quadratic systems. The control model of the CT-LMPC is parameterized using
transfer functions with delays. We formulate linear-quadratic optimal control problems (LQ-
OCPs) with time delays for the CT-LMPC and derive their discretization under the assumption
of piecewise constant inputs. Time-delay systems are ubiquitous in process industries, such as
the cement industry, where conveyor belts introduce delays, making continuous-time modeling
advantageous. We illustrate the CT-LMPC with both SISO and MIMO examples inspired by the
cement industry. The results demonstrate that, for fixed parameters, the CT-LMPC outperforms
the conventional discrete-time LMPC as the sampling time increases.

Keywords: Linear-quadratic optimal control problems (LQ-OCPs), linear model predictive
control (LMPC), Time delay systems, Numerical discretization

1. INTRODUCTION

Consider the following continuous-time (CT) linear-quadratic
optimal control problem (LQ-OCP) with piecewise con-
stant inputs (Zhang et al., 2024a,b)

min ϕ =

∫ t0+T

t0

lc(z̃(t))dt (1a)

s.t. x(t0) = x̂0, (1b)

u(t) = uk, tk ≤ t < tk+1, k ∈ N , (1c)

ẋ(t) = Acx(t) +Bcu(t), t0 ≤ t < t0 + T, (1d)

z(t) = Ccx(t) +Dcu(t), t0 ≤ t < t0 + T, (1e)

z̄(t) = z̄k, tk ≤ t < tk+1, k ∈ N , (1f)

z̃(t) = z(t)− z̄(t), t0 ≤ t < t0 + T, (1g)

with the stage cost function

lc(z̃(t)) =
1

2
∥Wz z̃(t)∥22 =

1

2
(z̃(t)′Qcz̃(t)) , (2)

where z̄ is the reference and is assumed to be piecewise
constant. Qc = W ′

zWz is a symmetric positive semi-
definite weight matrix. T = NTs is the control horizon
and N = 0, 1, . . . , N − 1.

The corresponding discrete-time (DT) equivalent of (1) is

min
x,u

ϕ =
∑
k∈N

lk(xk, uk) (3a)

s.t. x0 = x̂0, (3b)

xk+1 = Axk +Buk, k ∈ N , (3c)

with the stage costs

lk(xk, uk) =
1

2

[
xk
uk

]′
Q

[
xk
uk

]
+ q′k

[
xk
uk

]
+ ρk, k ∈ N , (4)

where Q is a symmetric positive semi-definite matrix and

Q =

[
Qxx Qxu

Qux Quu

]
, qk =Mz̄k, ρk = lc(z̄k)Ts. (5)

LQ-OCPs are fundamental in optimal control theory due
to their simplicity and mathematical tractability (Frison
and Jørgensen, 2013; Jørgensen et al., 2012). They play
a central role in optimal control theory, analogous to the
role of quadratic programs (QPs) in optimization theory.
LQ-OCPs also have a strong connection with other ad-
vanced control algorithms, such as model predictive con-
trol (MPC). This relationship arises from using LQ-OCPs
as the optimization problem within the LMPC framework.
In this paper, we extend the LQ-OCP (1) to CT time-
delay systems and apply exact numerical discretization to
obtain the DT equivalent for numerical optimization (3).
The exact discretization of CT LQ-OCPs with time delays
was first introduced by Zhang et al. (2024a,b). We demon-
strate its application in process-industry-relevant model
predictive controllers for time-delay processes. The system
dynamics are described using a multi-input, multi-output
(MIMO) CT stochastic transfer function representation

Z(s) = G(s)U(s) +H(s)W (s), (6a)

Y (s) = Z(s) + V (s), (6b)

and the transfer function matrices, G(s) and H(s), for the
deterministic and stochastic systems are



G(s) =

 g11(s) · · · g1nu
(s)

...
. . .

...
gnz1(s) · · · gnznu

(s)

 , gij(s) = bij(s)

aij(s)
e−τijs,

(7a)

H(s) =

 h11(s) · · · h1nw
(s)

...
. . .

...
hnz1(s) · · · hnznw

(s)

 , hip(s) = dip(s)

cip(s)
. (7b)

The deterministic system elements gij(s) are proper ra-
tional transfer functions with time delays. The stochastic
system elements hip(s) are strictly proper rational transfer
functions without delays. W (s) and V (s) are the process
and measurement noise.

The objective function is

ϕ = ψ

{∫ t0+T

t0

lc(z̃(t))dt

}
, (8)

where ψ is some measure, i.e., in this paper the expec-
tation, ψ {·} = E {·}, z̃(t) is the tracking error (1g), and
lc(·) is the CT stage-cost function (2). Using the sepa-
ration theorem, the resulting OCP can be realized as a
Kalman filter and a certainty-equivalent linear-quadratic
controller. In this paper, we use previous numerical results
for the realization of such a system (Zhang et al., 2024a,b)
and demonstrate how it can be used for LMPC of CT
time-delay systems.

In practice, most LMPC applications employ DT LQ-
OCPs with diagonal weight matrices rather than the
CT formulation in (1). In the CT case, the correspond-
ing discrete weight matrix Q is full-element, as shown
in (5). Åström (1970), Åström and Wittenmark (2011),
and Franklin et al. (1990) explored the discrete equiva-
lent (1) (without time delays) and described the analytic
expressions of the discrete weight matrices Q and qk listed
in (5). Pannocchia et al. (2015, 2010) proposed a novel
computational procedure for the CT linear-quadratic reg-
ulator problem (CT-LQR). They noted that the discrete
weight matrix Q can be computed with one exponential
matrix instead of standard numerical discretization meth-
ods. The numerical experiments showed that CT-LQR of-
fers advantages over the standard DT-LMPC. However, no
results exist in the open literature on the exact numerical
discretization of linear-quadratic model predictive control
(with time delays) and its applications. We address this
gap by presenting a description of such a model predic-
tive controller and demonstrating its application through
examples inspired by processes in the cement industry.

This paper is organized as follows. Section 2 introduces
the design and discrete implementation of the CT-LMPC.
Section 3 presents numerical experiments comparing the
proposed CT-LMPC with the conventional DT-LMPC.
Conclusions are provided in Section 3.

2. DISCRETIZATION OF MODEL PREDICTIVE
CONTROL

In this section, we introduce the design and discretization
of CT-LMPC.

2.1 Discretization of control model

Based on the Noise-Separation (NS) state space realiza-
tion introduced by Hagdrup et al. (2016), the control
model (6a) may be converted into a deterministic part
Zd(s)=G(s)U(s) and a stochastic part Zs(s)=H(s)W (s)

Zd(s) ∼

{
ẋdij(t) = Ad

c,ijx
d
ij(t) +Bd

c,ijuj(t− τij),

zdij(t) = Cd
c,ijx

d
ij(t) +Dd

c,ijuj(t− τij),
(9a)

Zs(s) ∼
{
dxs(t) = As

cx
s(t)dt+Bs

cdω(t),

zs(t) = Cs
cx

s(t),
(9b)

with the system variables

xd =
[
xd11

′
xd21

′
. . . xdnznu

′
]′
, zdi (t) =

nu∑
j=1

zdij(t), (10a)

zd =
[
zd1 zd2 . . . zdnz

]′
, z(t) = zd(t) + zs(t), (10b)

where we convert Zd(s) into [i× j] SISO time-delay state
space models as they may have different time delays. The
system state is x(t0) = [xd0;x

s
0]. We define

xs(t0) ∼ N(x̄s0, Pxs), dω(t) ∼ Niid(0, Idt). (11)

Let the system sampling time be Ts, such that the corre-
sponding discrete-time systems equiavalent to (9) are

Zd(s) ∼

{
xdk+1 = Adxdk +Bduk,

zdk = Cdxdk +Dduk,
(12a)

Zs(s) ∼
{
xs
k+1 = Asxs

k +wk,

zs
k = Csxs

k,
(12b)

and

yk = zk + vk,

[
wk

vk

]
∼ N

([
0
0

]
,

[
Rww 0
0 Rvv

])
, (13)

where the deterministic system (12a) are obtained by
stacking the all [i × j] SISO deterministic models (9a)
diagonally (Zhang et al., 2024a,b).

The main advantage of using the NS state space realization
is that one may apply (9b) as the model in the Kalman
filter, while the controller applies (9a) as its model. Assume
that the initial states xdk and x̂sk|k of the deterministic

and stochastic models are available. The Kalman filter
algorithm can be performed as

ŷsk|k−1 = Csx̂sk|k−1, ysk = yk − ẑdk , (14a)

ek = ysk − ŷsk|k−1, x̂sk|k = x̂sk|k−1 +Kfxek, (14b)

with the measurement covariance and the Kalman gain

Re = CsP s(Cs)′ +Rww, Kfx = P s(Cs)′R−1
e , (14c)

where ẑdk = Cdxdk + Dduk is the estimated deterministic
output. The matrix P s indicates the stationary stochastic
state error covariance obtained by the solution of discrete-
time algebraic Riccati equation (DARE)

P s = AsP s(As)′−AsP s(Cs)′R−1
e CsP s(As)′+Rvv. (15)

The estimated output can be computed as

x̂sk+j+1|k = Asx̂sk+j|k, ẑsk+j|k = Csx̂sk+j|k, (16a)

ẑk+j|k = ẑdk+j|k + ẑsk+j|k, j = 1, . . . , N. (16b)

The process noise covariance Rww may be computed
numerically (Åström and Wittenmark, 2011; Zhang et al.,
2024a,b).



2.2 Reference tracking and input regularization objectives

Define the output and input reference tracking error z̃(t)
as

z̃(t) =

[
z(t)− z̄(t)
u(t)− ū(t)

]
=

[
z(t)− z̄k
u(t)− ūk

]
, for tk ≤ t < tk+1,

(17)
where we consider piecewise constant references z̄ and ū.
Note that the reference becomes z̄k+j = z̄(t) − ẑsk+j|k for

t ∈ [tk+j , tk+j+1) when using NS state space expressions.

We then define the following CT LQ-OCP for minimizing
the output and input reference tracking error as

min
x,u,z,z̃

ϕz + ϕu = E

{∫ t0+T

t0

lcz̃(z̃(t))dt

}
(18a)

s.t. x(t0) ∼ N(x̂0, P0), (1c), (9), (10), (17), (18b)

with the stage cost function lcz̃(z̃(t))

lcz̃(z̃(t)) =
1

2
∥Wz̃ z̃(t)∥22 =

1

2
z̃(t)′Qcz̃ z̃(t), (19)

where Qcz̃ = diag (Qcz, Qcu) = W ′
z̃Wz̃. Qcz and Qcu

are weight matrices for the reference tracking and input
regularization objectives.

The corresponding DT equivalent of (18) is

min
x,u

ϕz + ϕu =
∑
k∈N

lz̃,k(xk, uk) (20a)

s.t. x0 = x̂0, (12a), (16) (20b)

with the stage cost function lz̃,k(xk, uk)

lz̄,k(xk, uk) =
1

2

[
xk
uk

]′
Q

[
xk
uk

]
+ q′k

[
xk
uk

]
+ ρk, (21)

where

qk =M [z̄k; ūk], ρk = lcz̃([z̄k; ūk])Ts., k ∈ N . (22)

The DT system matrices (A,B,Q,M) may be described
as a system of differential equations

Ȧ(t) = AcA(t), A(0) = I, (23a)

Ḃ(t) = A(t)Bc, B(0) = 0, (23b)

Q̇(t) = Γ(t)′Qc̄zΓ(t), Q(0) = 0, (23c)

Ṁ(t) = −Γ(t)′Qc̄z, M(0) = 0, (23d)

where

Γ(t) =

[
Cc Dc

0 I

] [
A(t) B(t)
0 I

]
, (24)

and A = A(Ts), B = B(Ts), Q = Q(Ts), and M = M(Ts)
can be solved numerically (Zhang et al., 2024a,b).

Note that u = [u0;u1; · · · ;uN−1] and uk = Iku for
Ik = [0 · · · I · · · 0] and k ∈ N . The system state xk can
be expressed as

xk = bk+Γku, bk = Akx0, Γk =

k∑
i=0

Ak−1−iBIi. (25)

We then rewrite the LQ-OCP (20) in the form of a QP

ϕz + ϕu =
1

2
u′Hz̃u+ g′z̃u, (26)

where

Hz̃ =

N−1∑
k=0

[
Γk

Ik

]′
Q

[
Γk

Ik

]
, gz̃ =

N−1∑
k=0

[
Γk

Ik

]′ (
Q

[
bk
0

]
+ qk

)
.

(27)

2.3 Input ROM and economics objectives

We then consider the LQ-OCP for penalizing the input
rate-of-movement (ROM) and economic input cost

ϕ∆u + ϕeco =

∫ t0+T

t0

lcũ(u̇(t), u(t))dt, (28)

and the stage cost function is

lcũ(u̇(t), u(t)) =
1

2
∥Wc∆uu̇(t)∥22 + q′cecou(t), (29)

where Qc∆u = W ′
c∆uWc∆u and qceco are the weight

matrices of the input ROM and the economics objectives.

Hagdrup (2019) described the discretization schemes on
the input ROM penalty function using piecewise affine
functions (FOH) and zero-order hold (ZOH) discretization.
In this case, the discrete approximation of the input ROM
penalty with ZOH discretization is

ϕ∆u =
1

2

∫ t0+T

t0

∥u̇(t)∥2Qc∆u
dt

=
1

2Ts

∑
k∈N

∥uk − uk−1∥2Qc∆u
.

(30)

We perform the discretization of (28) as

ϕ∆u + ϕeco =
∑
k∈N

lũ,k(uk, uk−1), (31)

with the stage cost function

lũ,k(uk, uk−1) =
1

2

[
uk
uk−1

]′
Q̄∆u

[
uk
uk−1

]
+ q′ecouk, (32)

where

Q̄∆u =

[
Q∆u −Q∆u

−Q∆u Q∆u

]
, Q∆u =

Qc∆u

Ts
, qeco = qcecoTs.

(33)
Consequently, along with input box and input ROM con-
straints, the QP expressions of the input ROM and eco-
nomics objective are

min
u

ϕ∆u + ϕu =
1

2
u′Hũu+ g′ũu (34a)

s.t. umin,k ≤ uk ≤ umax,k, k ∈ N , (34b)

∆umin,k ≤ ∆uk ≤ ∆umax,k, k ∈ N , (34c)

where the quadratic and linear term coefficients

Hũ =

N−1∑
k=1

[
Ik
Ik−1

]′
Q̄∆u

[
Ik
Ik−1

]
+ I ′0Q∆uI0, (35a)

gũ =

N−1∑
k=0

−I ′0Q∆uu−1 + I ′kqeco. (35b)

2.4 Soft output constraint penalty

We then introduce the soft output constraints

zk+j|k ≥ zmin,k+j|k − ξk+j , k = 1, 2, . . . , N, (36a)

zk+j|k ≤ zmax,k+j|k + ηk+j , k = 1, 2, . . . , N, (36b)

ξk+j ≥ 0, k = 1, 2, . . . , N, (36c)

ηk+j ≥ 0, k = 1, 2, . . . , N, (36d)

where ξ and η are slack variables. The output zk is subject
to the deterministic system (12). zmin,k+j|k = zmin,k+j −
ẑsk+j|k and zmax,k+j|k = zmax,k+j− ẑsk+j|k are modified soft

constraints.



The corresponding penalty function

ϕξ + ϕη =

∫ t0+T

t0

lcξ(ξ(t)) + lcη(η(t))dt, (37)

with the stage cost functions

lcξ(ξ(t)) =
1

2
∥Wcξξ(t)∥22 + q′cξξ(t), (38)

lcη(η(t)) =
1

2
∥Wcηη(t)∥22 + q′cηη(t), (39)

where Qcξ = W ′
cξWcξ, Qcη = W ′

cηWcη, qcξ and qcη are
weight matrices.

We assume piecewise constant ξ(t) = ξk and η(t) = ηk for
t ∈ [tk, tk + Ts). The corresponding discrete equivalent is

ϕξ + ϕη =

N∑
k=1

1

2
(∥ξk∥2Qξ

+ ∥ηk∥2Qη
) + q′ξξk + q′ηηk, (40)

where Qξ = TsQcξ, qξ = Tsqcξ, Qη = TsQcη and qη =
Tsqcη.

The DT penalty functions (40) can be rewritten as

ϕξ + ϕη =
1

2

[
ξ
η

]′
Hs̃

[
ξ
η

]
+ g′s̃

[
ξ
η

]
, (41a)

where ξ=[ξ1; ξ2; · · · ; ξN ] and η=[η1; η2; · · · ; ηN ] and

Hξ = diag(Qξ;Qξ; · · · ;Qξ), gξ = [qξ qξ · · · qξ]′ , (42a)

Hη = diag(Qη;Qη; · · · ;Qη), gη = [qη qη · · · qη]′ , (42b)

Hs̃ = diag(Hξ;Hη), gs̃ = [gξ gη]
′
. (42c)

2.5 Design and implementation of CT-LMPC

Combining the objective functions and constraints intro-
duced previously, we have

min
{u,ξ,η}

ϕ = ϕz + ϕu + ϕ∆u + ϕeco + ϕξ + ϕη (43a)

s.t. x0 = x̂0, (12a), (16), (34b), (34c), (36), (43b)

where the objective functions ϕz, ϕu, ϕ∆u, ϕeco, ϕξ and ϕη
are the corresponding discrete equivalent of their original
CT problems.

The cost function ϕ can be expressed in the form of QP as

ϕ =
1

2

[
u
ξ
η

]′

H

[
u
ξ
η

]
+ g′

[
u
ξ
η

]
, (44)

where

H =

[
Hz̃ +Hũ 0

0 Hs̃

]
, g =

[
gz̃ + gũ
gs̃

]
. (45)

Consequently, we obtain the objective function (43) that
is the discrete-time equivalent of the CT LQ-OCPs intro-
duced in previous subsections.

3. NUMERICAL EXPERIMENTS

This section presents numerical experiments with the
following simulation model

Z(s) = G(s)U(s) +Gd(s)(D(s) +W (s)), (46a)

Y (s) = Z(s) + V (s), (46b)

where Gd(s) is the transfer function for the disturbance,
D(s), and the process noise, W (s).

The transfer function model can be discretized as

xk+1 = Axk +Buk + Edk +Gwk, wk ∼ N(0, Rww),
(47a)

yk = Cxk +Duk + vk, vk ∼ Niid(0, Rvv).
(47b)

We develop DT-LMPC based on previous work by Hag-
drup et al. (2016). The control relevant transfer func-
tion model (6) may be obtained by step response mod-
eling or prediction-error-methods for continuous-time sys-
tems (Jørgensen and Jørgensen, 2007a,b; Olesen et al.,
2013).

3.1 Closed-loop simulation - a SISO example

We perform a series of deterministic closed-loop simula-
tions for a SISO system with the transfer functions

g(s) =
10.12(−3.41s+ 1)e−2.5s

(15.9s+ 1)(24.2s+ 1)
, (48a)

gd(s) =
−0.5

(5.8s+ 1)(4.7s+ 1)
. (48b)

The above model is converted into state spaces (47) with
Ts = 1 [s]. The disturbance dk = 2.0 for 5 ≤ t ≤ 15 [min].

The estimated control model (6) for the MPC is

ĝ(s) =
10.12(−3.58s+ 1)e−2.5s

(18.9s+ 1)(22.2s+ 1)
, ĥ(s) =

1

s

0.6

(s+ 1)
, (49)

where we select ĥ(s) as an integrator to ensure the offset-
free control of the controller (Muske and Badgwell, 2002;
Pannocchia and Rawlings, 2003). In the SISO example, we
consider ϕz and ϕ∆u two objectives for both CT- and DT-
LMPC using the same tuning parameters. For DT-LMPC,
ϕz and ϕ∆u are defined as

ϕ =

N−1∑
k=0

∥zk+1 − z̄k+1∥2Qcz
+ ∥uk − uk−1∥2Qc∆u

. (50)

The prediction and control horizon is set to N = 20. The
weight matrices are Qcz = 20 and Qc∆u = 1. The target
is z̄ = 2 for t ≤ 10 [min] and z̄ = −2 thereafter. The input
constraints are −1 ≤ u ≤ 1.

To highlight the differences between CT- and DT-LMPC,
we discretize both using different controller sampling times
T c
s = {5, 15, 25} [s]. In Fig. 1a, the CT-LMPC (blue

curve) and DT-LMPC (black curve) effectively regulate
the system, allowing the output to track the target (red
dashed line). Overshoots occur at t = 5 and 15 [min]
due to an unknown disturbance, and the controllers can
correct them after a few iterations. As T c

s increases to 15
[s], no significant difference between the two MPCs can be
observed, except for additional overshoots appear at 1 and
10 [min], as shown in Fig. 1b. In Fig. 1c, both controllers
exhibit a significant decline in closed-loop performance
compared to the previous cases. Increased oscillations hin-
der their reference tracking ability. However, CT-LMPC
outperforms DT-LMPC, as its output oscillations have a
smaller amplitude. While CT-LMPC stabilizes the system
after 2-3 iterations, DT-LMPC fails to do so.

The simulation results of the SISO example indicate that
a large sampling time can degrade the closed-loop per-
formance of the predictive controller and may even lead
to system instability. For the same system parameters,



(a) Controller sampling time T c
s = 5 [s] (b) Controller sampling time T c

s = 15 [s] (c) Controller sampling time T c
s = 25 [s]

Fig. 1. SISO example deterministic closed-loop simulations with different controller sampling times T c
s = {5, 15, 25} [s].

The blue curves indicate the results obtained from DT-LMPC and the black curves are the results of CT-LMPC.

(a) The outputs of deterministic and stochastic simulations. (b) The inputs of deterministic and stochastic simulations.

Fig. 2. Closed-loop simulations of a simulated cement mill system with the CT- and DT-LMPC.

the proposed CT-LMPC outperforms the traditional DT-
LMPC, with the performance gap widening as the sam-
pling time increases.

3.2 Closed loop simulation - a MIMO example

The MIMO example concerns the cement mill system
introduced by Prasath et al. (2010) and also described in
Olesen et al. (2013). The simulation model (46) has the
following transfer functions

G(s) =


0.62e−5s

(45s+ 1)(8s+ 1)

0.29(8s+ 1)e−1.5s

(2s+ 1)(38s+ 1)
−15e−5s

60s+ 1

5e−0.1s

(14s+ 1)(s+ 1)

 , (51a)

Gd(s) =


−1.0e−3s

(32s+ 1)(21s+ 1)
60

(30s+ 1)(20s+ 1)

 . (51b)

The system inputs u = [feed flow rate (TPH); separator
speed (%)] and the system outputs z = [elevator load
(kW); fineness (cm2/g)]. The system disturbance D rep-

resents the clinker hardness (HGI). To simulate a real-
world scenario, we introduce plant-model mismatch in the
control model (6). The transfer functions are selected as

Ĝ(s) =


0.8e−5s

(30s+ 1)(15s+ 1)

0.45e−2s

30.0s+ 1
−17.7e−5s

(65s+ 1)(15s+ 1)

9.4e−0.3s

15s+ 1

 , (52a)

Ĥ(s) = diag

([
1

s

0.5

s+ 1
;
1

s

1

s+ 1

])
. (52b)

The system model (46) is discretized with the sampling
time Ts = 1 [min]. The covariances are selected as Rww =
1.0 and Rvv = diag([0.1; 50]). The disturbance dk = 8 for
0.5 ≤ t ≤ 1 [h] and dk = 0 otherwise.

For both CT- and DT-LMPC, the controller sampling time
is T c

s = 2 [min], the prediction and control horizon is
N = 60. The weight matrices for the reference tracking,
input ROM, economics and soft output constraints penalty
are Qcz = diag(200, 10), Qc∆u = diag(20, 10), qceco =
[2; 1], Qcξ = Qcη = diag(2000, 100) and qcξ = qcη =
[20; 1], respectively. The input hard constraints are umin =



[−10;−20], umax = [10; 20], ∆umin = [−5;−10] and
∆umax = [5; 10]. The soft output constraints are given as
deviation variables, zmin = [−2;−20] and zmax = [2; 20].

Fig. 2 illustrates the determinisitc and stochastic closed-
loop simulations of a simulated cement mill system with
CT- and DT-LMPC. Both the CT-LMPC (black curves)
and the DT-LMPC (blue curves) can effectively regulate
the outputs towards the desired targets (blue dashed
lines), while maintaining the outputs within given bounds
for most of the time. At the beginning of the simulation,
the outputs are outside the bounds due to initial states
and the plant-model mismatch. However, this problem is
corrected by both controllers after a few iterations. At t =
0.5 and 1.5 hours, overshoots occur due to the unknown
disturbance, which both CT- and DT-LMPC can reject
successfully. Additionally, a step change on the output
targets at t = 0.75 h induces an overshoot in Fineness,
with DT-LMPC exhibiting a slightly larger deviation than
CT-LMPC.

The MIMO closed-loop simulations indicate that CT-
LMPC and DT-LMPC achieve similar performance and
converge to identical optimal solutions when appropriate
sampling times and tuning parameters are used. This
outcome is consistent with the SISO example in Fig. 1a.
However, the CT-LMPC is easier to tune.

4. CONCLUSIONS

This paper presents the design, discretization, and imple-
mentation of CT-LMPC. We introduce various objective
functions for CT-LMPC and describe how these are dis-
cretized and implemented. Numerical experiments high-
light the following key observations:

1. With a small sampling time and identical (or well
tuned) weight matrices, the proposed CT-LMPC and
the DT-LMPC achieve similar control performance.
In the limit when the sampling approaches zero, they
converge to an identical optimal solution.

2. When the controller sampling time is large, the CT-
LMPC performs better than the DT-LMPC. This
performance gap increases as the sampling time
grows.

3. It is significantly easier to tune the CT-LMPC than
to tune the DT-LMPC.

Moreover, compared to conventional DT-LMPC, designing
a continuous-time LQ-OCP for MPC and then discretizing
it is a more natural and theoretically consistent approach.
Most Nonlinear Model Predictive Controllers (NMPCs)
are also designed using integrals (continuous-time) in the
objective fuction rather than sums.
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