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Abstract: Model order selection plays a crucial role in system identification. The existing model
order selection methods rely on finding the balance between fitting error and model complexity.
However, when the data contains large noise, the model order obtained by the existing methods
may not be reliable. To resolve this issue, we present a new model order selection method
based on trend error analysis. By making use of a specific property of trend extraction —
the insensitivity against noise, our method improves the accuracy of model order selection.
Numerical simulation results show the effectiveness of the proposed method and outperformance
over known heuristics under different noise levels.
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1. INTRODUCTION

System identification is a pragmatic method of construct-
ing the mathematical model of a dynamic system by
measuring its input and output signals. It is widely used
in the field of industrial control. System identification
mainly includes two parts: model structure identification
and parameter identification. System models include para-
metric models and non-parametric models. Unlike non-
parametric models, which do not require the prior knowl-
edge of model structure, parametric models cannot iden-
tify the model’s parameters without knowing its structure.
Thus, model structure identification is the basis of the
identification of parameter models. Specifically, for single-
input-single-output (SISO) systems, model order identifi-
cation is central to deciding the model structure (Herpen
et al. (2011); Yang et al. (2013); Varanasi and Jampana
(2016); Besanon et al. (2018); Liu et al. (2023a)).

The existing order identification methods of parameter
models mainly include the F-test method (Fu et al.
(2018)), Akaike information criterion (AIC) (Ninomiya
(2005)) and final prediction error criterion (Weerts et al.
(2018); Liu et al. (2021)). The F-test method deducts a
reasonable model order by testing how the fitting error
changes when the hypothetic model order increases. If the
fitting error changes significantly at one point, then the
corresponding model order of that point is the estimated
model order. AIC defines a function composed of the like-
lihood function and the model order, and the model order
is determined by minimizing the function. The prediction
error method defines a criterion function of the prediction
error. Similarly, the order that minimizes the criterion
function is selected as the model order. The essence of
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these methods is to select the model order according to the
change of fitting error. However, when the noise corruption
is heavy, the order selected by these methods may not be
accurate.

Considering that the data trend is an effective information
that can reflect the change of data and is less affected by
noise, we proposed a model order identification method
based on trend error analysis. First, we extract the trend of
the model output to obtain the trend error of the predicted
value. Then, the holistic error composed of trend error
and fitting error is defined. Finally, the most appropriate
model order is selected according to the curve of holistic
error changing with model order. To test the validity of the
method, we use a numerical case of auto-regressive moving
average with extra input (ARMAX) model to carry out the
experiment. The results show that the proposed method
performs better than the existing statistical-testing meth-
ods and information-theoretic methods, which are based
on fitting error analysis.

The remainder of this article unfolds as follows. Section 2
revisits the existing order identification methods and trend
extraction methods. In Section 3, an order identification
method based on trend error analysis is proposed. The per-
formance of the proposed method on numerical examples
is investigated in Section 4, followed by final conclusions.

2. PRELIMINARIES

2.1 The identification of ARMAX models

Identifying an SISO system involves finding the number
of model parameters and accurately estimating the value
of each parameter. In industrial processes, the ARMAX
model has been widely used to describe SISO systems.
The ARMAX model can be described as follows :



A(z−1)y(k) = B(z−1)u(k) +D(z−1)v(k) (1)

where u(k) and y(k) are the input and output respectively;
v(k) is a Gaussian white noise with a mean of 0 and a
variance of σ2

v . The delay operator polynomials A(z−1),
B(z−1) and D(z−1) of the model can be described as
follows:

A(z−1) := 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na

B(z−1) := b1z
−1 + b2z

−2 + · · ·+ bnb
z−nb

D(z−1) := 1 + d1z
−1 + d2z

−2 + · · ·+ dnd
z−nd

(2)

where na, nb and nd are the model orders. We define
n = na + nb + nd. Eq. (1) can be described as the least
square form:

yL = HLθ + eL, (3)

where L is the data length and

yL = [y(1), y(2), · · · , y(L)]⊤

eL = [e(1), e(2), · · · , e(L)]⊤

HL =


y(0) · · · y(1− na) u(0) · · · u(1− nb)
y(1) · · · y(2− na) u(1) · · · u(2− nb)
...

. . .
...

...
. . .

...
y(L− 1) · · · y(L− na) u(L− 1) · · · u(L− nb)


θ = [−a1, · · · ,−ana

, b1, · · · , bnb
]⊤

e(k) = v(k) + d1v(k − 1) + · · ·+ dnd
v(k − nd)

(4)
The purpose of system identification is to estimate the
parameters a1, · · · , ana , b1, · · · , bnb

, d1 · · · , dnd
from the

data. Representative identification methods of ARMAX
models include extended least squares (Ding and Ding
(2008)), maximum likelihood (ML) (Febrianti et al. (2021);
Madsen (2009); Michael et al. (2004)), prediction error
method (PEM) (Borjas and Garcia (2005); Nguyen and
Ohtsu (2000); Casas et al. (2002)) and so on. In the ex-
tended least squares method, the objective is to minimize
the criterion function J(θ):

J(θ) = (yL −HLθ)
⊤(yL −HLθ) (5)

In the ML method, the goal is to maximize the likelihood
function, while PEM aims at minimizing the conditional
expectation of error. However, these methods are build
upon the premise that the orders (na, nb, nd) of the model
are precisely known. In practice, however, it is non-trivial
to attain the model order in advance. Thus, an accurate es-
timation of model order is the prerequisite for a successful
identification of dynamic systems.

2.2 The criteria for order determination

The change of fitting error plays an important role in
the existing criteria for model order determination, such
as in the F-test method and AIC. Basically, the residual
variance Vn tends to decrease with the increase of the
order n, and the corresponding order at the inflection
point of Vn’s change curve indicates a proper choice of
the model order. However, due to the noise effect, the
uncertainty of the fitting error will increase, making it
difficult to determine the inflection point. Therefore, the
inflection point is generally determined by the F-test
method (Kabaila (2005)). This method introduces a t-
statistic for two candidate orders n1 and n2:

t(n1, n2) =
Vn1

− Vn2

Vn2

L− 2n2

2(n2 − n1)
(6)

where n2 > n1. When the noise v(k) is Gaussian
distributed, the t-statistic is known to follow an F -
distribution, i.e., t ∼ F (2(n2−n1), L−2n2). Let n2 = n1+
1, it then follows that:

t(n, n+1) =
Vn − Vn+1

Vn+1

L− 2n− 2

2
∼ F (2, L−2n−2) (7)

n0 is denoted as the true order of the model. If the
null hypothesis H0 : n ≥ n0 holds, then the residual
variance Vn+1 will not decrease evidently as compared to
Vn. Therefore, by setting the risk level α, one can test
whether the null hypothesis H0 holds:{

t(n, n+ 1) > tα, Reject H0

t(n, n+ 1) ≤ tα, Accept H0
(8)

where the threshold can be decided as tα = F (2(n2 −
n1), L − 2n2). However, one has to to manually set the
risk level α, and a different α may lead to a considerable
divergence in the selected order.

Alternatively, in AIC the following information-theoretic
objective is considered (Ninomiya (2005)):

AIC(n) = −2logL(θ̂ML) + 2n, (9)

where L(θ̂ML) is the likelihood function. AIC can be
interpreted as the sum of two terms; the first term is a

measure of model fit, as L(θ̂ML) is mainly affected by the
fitting error. The second term is a penalty for the number
of model parameters, The order n of the model represents
the number of parameters. The purpose of the AIC is to
find a balance between the fitting error and the model
complexity. Similar to AIC, there are other information-
theoretic such as the Schwarz Criterion (SC)(Lee (1995))
to select the model order. However, the increase of the
noise variance will lead to the uncertainty of the fitting
error. Thus, the accuracy of the AIC or SC will be affected
by the noise.

3. MODEL ORDER SELECTION BASED ON TREND
ERROR ANALYSIS

In open-loop industrial processes, the input does not
change at every moment but is piecewise constant. There-
fore, the output will show the characteristics of piecewise
monotonicity. We illustrate this by using an example of
actual process industry data. The example is the historical
data from a dichloroaniline production process in China.
The two main variables are manipulate variable (MV)
and process variable (PV). PV is usually the output in
industrial processes. MV and PV are shown in Fig. 1. As
the figure shows, there is a significant change in MV only
between the 200th and 300th points. Correspondingly, PV
changes monotonically when MV is changing. This feature
provides a possibility of detouring the inaccurate results in
real-world scenarios which are filled with uncertain noises.
Instead of imprecisely analyzing the prediction error based
on the real output and the predicted value, we use the
trend extraction of the output to help judge the prediction
accuracy. Starting from this point, we propose a new
method of selecting model order based on the trend error
in this paper.
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Fig. 1. MV and PV of the process

3.1 Output trend extraction

The central idea of trend extraction is to split a data
trajectory into multiple consecutive episodes, where data
points in each episode are locally approximated by simple
symbolic representations. Common options of symbolic
representations can be roughly classified into shape con-
strained splines Villez et al. (2013); Villez (2015) and low-
order polynomials Keogh and Pazzani (1998); Zhou and Ye
(2016); Keshani and Masoumi (2021); Liu et al. (2023b),
e.g. affine functions. Consider a scalar-valued time series

y = [y(1), y(2), · · · , y(L)]⊤ (10)

of length L. To divide y into M > 1 segments, we define
M+1 segmentation points {s0, s1, · · · , sM−1, sM} in total,
where s0 = 0 and sM = L, and {s1, · · · , sM−1} need to
be suitably chosen. The qth-order polynomial is used to
approximately capture the trend of y in each segment and
remove the noise:

ŷ(t) = β0 + β1t+ · · ·+ βqt
q, (11)

where ŷ(t) is the approximation of y(t), t = 1, · · · , L, and
β0, β1, · · · , βq are polynomial coefficients. Eq. (11) can be
further expressed as:

ŷ = [ŷ(1), ŷ(2), · · · , ŷ(L)]⊤ = Tβ, (12)

where β = [β0, β1, · · · , βq]
⊤, T is the time index matrix

with entries Ti,j = ij−1, 1 ≤ i ≤ L, 1 ≤ j ≤ q. For a
given number of segments M , we need to find the optimal
segmentation points to minimize the overall fitting error

f(M) = min
∑M

m=1 ℓ(ŷm,ym), where ℓ(ŷm,ym) is the
error loss function for the mth episode. To determine the
number M of segments, the bilateral criterion is adopted
in the GPTE method (Zhou et al. (2017)):

M∗ = arg max
1≤M≤Mmax

log[ f(M−1)
f(M) ]− log[ f(M)

f(M+1) ]

log[ f(M−1)
f(M) ] + log[ f(M)

f(M+1) ]
. (13)

A wide interval [1,Mmax] is necessary for optimally search-
ing for M∗. Since the GPTE method is easy to implement
and has been widely used in processing industrial data, it
is used in this paper for the sake of trend extraction.

3.2 Trend error and holistic error

We define the trend error TE as as the error between the
predicted value and the trend of the real output:

TE(ŷ,y) := ∥ŷ − ȳ∥2, (14)

where ŷ is the predicted value, and ȳ is the trend of the
real output. The holistic error HE consists of the fitting
error and the trend error:

HE(ŷ,y) := c1∥ŷ − y∥2 + c2TE(ŷ,y), (15)

where c1 > 0 and c2 > 0 are coefficients of fitting error and
trend error, respectively. The sum of c1 and c2 is typically
set to 1. The larger c2 is, the more the holistic error focuses
on the trend error. When the output z contains noise, c2
should be set close to 1.

3.3 A new approach to model order selection

Since we do not know the order of the model in advance,
we need to traverse all possible order combinations. For a
given order combination, we use the maximum likelihood
method to estimate the parameters and obtain the pre-
diction value ŷ. According to the predicted value and the
real output value, the fitting error can be obtained. The
two steps of selecting the model order combination are as
follows.

First, we extract the trend ȳ of the output. Second,
we calculate the trend error TE(ŷ,y) and the holistic
error HE(ŷ,y) under each order combination and draw
the curve of the holistic error along with the changing
hypothetic order. We find the inflection point of the
holistic error change curve and select the corresponding
order as the model order.

The rationale of the proposed method for selecting the
model order is as follows. When the model order is lower
than the real model order, the fitting error and trend
error manifest an obvious decrease with the increase of the
order. When the model order is equal to the real order,
the fitting error and trend error will reach a relatively
small value, which is not 0 because of the noise. With
the increase of the model order, the fitting error may still
be greatly reduced, but the trend error will not change
significantly since the trend of the predicted value is robust
to noise.

4. CASE STUDY

We consider the identification of the following ARMAX
system:

y(k) =1.7y(k − 1)− 0.7y(k − 2) + u(k − 1) + 0.5u(k − 2)

+ v(k)− 0.3v(k − 1) + 0.2v(k − 2).
(16)

Eq. (16) illustrates that the real order of the model is na =
nb = nd = 2. The model input is an M sequence, which is
a pseudo-random signal. Its characteristic polynomial is:
F (s) = s6 ⊕ s5 ⊕ 1. The data length is L = 1200. In the
experiment, we set the standard deviation σ to 0.6, 0.8
and 1 respectively, and compare the order identification
results of various methods. For a given order combination
(na, nb, nd), we use the maximum likelihood method to
estimate the model parameters and obtain the predicted
value ŷ. In the proposed method, we first use the GPTE
method to extract the trend of y(k); the parameter Mmax

is set to 50, and the trend error is obtained. Second, we
calculate the holistic error. The coefficients of the holistic
error are selected as c1 = 0.2 and c2 = 0.8, that is, we



take the trend error as the main part of the holistic error.
Each order(na, nb, or nd) varies from 1 to 4. In order to
facilitate the comparison of the comprehensive error under
different order combinations, we introduce the order sum
n, which is defined as:

n = na + nb + nd (17)

Next, we find the minimum holistic error under each order
sum and draw the change curve of the holistic error. Then
we find the inflection point and take the corresponding
order sum as the order sum of the model. Finally, under
the determined order sum, we select the order combination
that minimizes the holistic error as the model order. The
variation of the fitting error and the holistic error with the
order sum is shown in Fig. 2.

Fig. 2 demonstrates that when the noise standard devi-
ation σ = 0.6, the inflection points of the fitting error
and the holistic error curve clearly appear at the order
sum n = 6. With the increase of σ, the inflection point
of the fitting error variation curve appears at the order
sum n = 7, while the inflection point of the holistic error
variation curve is still at n = 6. Especially in the case of
σ = 1, when the order sum of the model exceeds the real
order sum n = 6, the fitting error is still greatly reduced
with the increase of n. However, the holistic error is not
significantly reduced. In this case, the method based on
fitting error analysis will estimate the inaccurate order sum
(n = 7).

After determining the order sum as 6, the order combina-
tion (na, nb, nd) is selected as the combination that mini-
mizes the holistic error. The results of fitting error, trend
error and holistic error are shown in Table 1. The results
in Table 1 illustrate that no matter σ is 0.6,0.8 or 1, the
holistic error is the smallest when the order combination
is na = nb = nd = 2. Therefore, the final model order
combination is selected as (na, nb, nd) = (2, 2, 2).

Next, we use the F-test method to select the model order
of ARMAX. We define the loss function as LVna=nb,nd

. For
the case of na = nb, LVna=nb,nd

and the statistic t can be
firstly calculated. Then the order na and nb are selected.
Finally, the order nd is determined. Taking σ = 0.6 as an
example, the loss function LVna=nb,nd

and statistics t when
na = nb are shown in Table 2. When the risk level α is
0.05, the threshold tα is 3.00. When (na, nb, nd) = (3, 3, 1),
statistics t(na, na + 1;nd) = 2.448 < 3.00. Therefore, we
select na = nb = 3 and then calculate t(nd, nd+1;na = nb)
when nd ranges from 1 to 4. When nd = 1, t(nd, nd +
1;na = nb = 3) = −6.665 < 3.00, so the choice of
the order combination is (na, nb, nd) = (3, 3, 1); When
α = 0.1, the threshold tα = 2.307; When (na, nb, nd) =
(2, 2, 2), statistics t(na, na + 1;nd) = −4.732 < 2.307.
Thus, na = nb = 2. When nd = 2, t(nd, nd + 1;na =
nb = 2) = −1.497 < 2.30, thus the order combination
is (na, nb, nd) = (2, 2, 2). We use the same method to
compare the loss function LVna=nb,nd

and the statistic t
when σ is 0.8 or 1. When the risk level α = 0.05 or 0.1,
in the case of σ = 0.8, the selected order combination is
(na, nb, nd) = (1, 1, 3); in the case of σ = 1, the selected
order combination is (na, nb, nd) = (2, 2, 3). Therefore, the
results of the F-test method may be greatly affected by
the selection of risk levels and noise.
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Fig. 2. The change of the fitting error, the trend error and
the holistic error.

Finally, AIC is used to select the model order. For the
ARMAX model, the AIC function is described as follows:

AIC(na, nb, nd) = −2Llogσ̂2
v + 2(na + nb + nd) (18)

For different order combinations (na, nb, nd), the val-
ues of the corresponding AIC functions are calculated
respectively. Taking σ = 0.6 as an example, the re-
sults are shown in Table 3. It can be seen that when
(na, nb, nd) = (3, 3, 3), the AIC value is the smallest, which



Table 1. Fitting error (FE), Trend Error (TE) and Holistic Error (HE)

Model order
(na, nb, nd)

σ = 0.6 σ = 0.8 σ = 1

FE TE HE FE TE HE FE TE HE

(1, 1, 4) 1.5459 1.4390 1.4604 2.0965 1.9693 1.9947 2.1622 2.3509 2.3131
(1, 2, 3) 1.026 0.9640 0.9763 1.5640 1.4904 1.5051 1.5935 1.7162 1.6917
(1, 3, 2) 0.8332 0.8105 0.8150 1.3586 1.3739 1.3709 1.4455 1.5679 1.5434
(1, 4, 1) 0.8008 0.8063 0.8052 1.3886 1.4367 1.4271 1.5880 1.8496 1.7973
(2, 1, 3) 0.7196 0.6867 0.6933 1.2092 1.1697 1.1776 1.2460 1.3775 1.3512
(2, 2, 2) 0.5398 0.5436 0.5429 1.0362 1.0592 1.0546 1.0863 1.3688 1.3123
(2, 3, 1) 0.6469 0.6482 0.6480 2.0972 2.0959 2.0962 1.3830 1.5848 1.5444
(3, 1, 2) 0.6164 0.6017 0.6047 1.2533 1.2025 1.2127 1.1558 1.3607 1.3197
(3, 2, 1) 0.5529 0.5511 0.5515 1.0605 1.0647 1.0638 1.2081 1.4226 1.3797
(4, 1, 1) 0.6403 0.6306 0.6325 1.2101 1.1907 1.1946 1.2267 1.4888 1.4364

Table 2. The loss function and statistics when σ = 0.6

nd 1 2

na = nb 1 2 3 4 1 2 3 4

LVna=nb,nd 2362.471 816.366 645.676 643.035 1994.673 647.803 652.978 642.117
t(na, na + 1;nd) 1132.544 157.822 2.448 - 1243.324 -4.732 10.081 -

na = nb 3 2

nd 1 2 3 4 1 2 3 4

LVna=nb,nd 645.676 652.978 637.195 723.768 816.366 647.803 649.434 740.214
t(nd, nd + 1;na = nb) -6.665 14.763 -71.291 - 155.084 -1.497 -73.094 -

is −741.602. Therefore, the order combination selected by
AIC is (na, nb, nd) = (3, 3, 3). We use the same method to
calculate the the AIC value when σ = 0.8 and 1. When
σ = 0.8, the selected order combination is (na, nb, nd) =
(4, 3, 2); when σ = 1, the selected order combination is
(na, nb, nd) = (3, 2, 4).

The results demonstrate that the F-test method and
AIC are greatly affected by noise when selecting the
model order. On the contrary, the proposed order selection
method can effectively reduce the impact of noise, and
assures the accuracy of the selected model order.

After selecting the model order, we estimate the parame-
ters by the maximum likelihood method. The estimation
results are shown in Table 4. The results show that the
maximum likelihood method can accurately estimate the
model parameters under different noise levels.

5. CONCLUSION

In this paper, we proposed a model order selection method
based on trend error criterion. Different from the exist-
ing statistical-testing methods and information-theoretic
methods, the proposed method selects the model order
according to the change of holistic error, which consists
of fitting error and trend error. The efficiency of the
proposed method is tested on a numerical example of the
ARMAX model. Compared with the existing statistical-
testing methods and information-theoretic methods, the
proposed method is less susceptible to noises, and the
selected model order is more accurate.

REFERENCES

Besanon, G., Voda, A., Becq, G., and Machado, M.M.P.
(2018). Order and parameter identification for a
non-integer-order model of an EEG system. IFAC-
PapersOnLine, 51(15), 772–777.

Borjas, S.D.M. and Garcia, C. (2005). Modeling of FCC
using identification methods based on prediction error
and sub-space. IEEE Latin America Transactions, 2(2),
108–113.

Casas, R.A., Bitmead, R.R., Jacobson, C.A., and Johnson,
C.R. (2002). Prediction error methods for limit cycle
data. Automatica, 38(10), 1753–1760.

Ding, J. and Ding, F. (2008). The residual based ex-
tended least squares identification method for dual-rate
systems. Computers & Mathematics with Applications,
56(6), 1479–1487.

Febrianti, R., Widyaningsih, Y., and Soemartojo, S.
(2021). The parameter estimation of logistic regression
with maximum likelihood method and score function
modification. Journal of Physics: Conference Series,
1725(1), 012014.

Fu, G., Zhang, L., Fu, J., Gao, H., and Jin, Y. (2018). F
test-based automatic modeling of single geometric error
component for error compensation of five-axis machine
tools. Springer London, (9), 4493–4505.

Herpen, R.V., Oomen, T., and Bosgra, O. (2011). A
robust-control-relevant perspective on model order se-
lection. In American Control Conference.

Kabaila, P. (2005). Assessment of a preliminary f-test
solution to the behrens-fisher problem. Communications
in Statistics. A, Theory and Methods, 34(2), p.291–302.



Table 3. The AIC value of different order combinations when σ = 0.6

nd 1 2

na

nb 1 2 3 4 1 2 3 4

1 818.864 355.434 -18.117 -254.620 617.791 137.452 -207.015 -406.087
2 -237.311 -452.257 -510.756 -487.772 -342.833 -727.789 -720.396 -713.178
3 -395.182 -699.021 -729.735 -729.892 -568.670 -647.230 -714.240 -703.904
4 -523.017 -730.047 -733.468 -730.653 94.492 -707.110 -718.199 -730.368

nd 3 4

na

nb 1 2 3 4 1 2 3 4

1 555.729 42.287 -322.182 -489.555 534.729 9.083 -363.309 -527.186
2 -382.889 -722.772 -723.325 -711.279 -78.344 -563.766 -491.532 -553.124
3 -414.309 -647.064 -741.602 -732.195 -169.440 -499.130 -586.727 -638.672
4 -291.114 -708.923 -724.231 -726.242 -237.333 -614.103 -667.916 -678.827

Table 4. Parameters estimation results under
different noise levels

Parameter a1 a2 b1 b2 d1 d2

True value -1.7 0.7 1 0.5 -0.3 0.2
σ = 0.6 -1.684 0.684 0.968 0.529 -0.320 0.159
σ = 0.8 -1.682 0.684 1.022 0.509 -0.315 0.229
σ = 1 -1.678 0.678 0.928 0.556 -0.266 0.224

Keogh, E.J. and Pazzani, M.J. (1998). An enhanced
representation of time series which allows fast and ac-
curate classification, clustering and relevance feedback.
In KDD, volume 98, 239–243.

Keshani, S. and Masoumi, N. (2021). The art of piecewise
linear approximation in MMSE estimator for most ac-
curate and fast frequency extraction in DIFM receivers.
IEEE Transactions on Instrumentation and Measure-
ment, 70, 1–9.

Lee, C.B. (1995). Estimating the number of change points
in a sequence of independent normal random variables.
Statistics & Probability Letters, 25(3), 241–248.

Liu, Q., Shang, C., and Huang, D. (2021). Efficient
low-order system identification from low-quality step
response data with rank-constrained optimization. Con-
trol Engineering Practice, 107, 104671.

Liu, Q., Shang, C., Liu, T., and Huang, D. (2023a). Effi-
cient relay autotuner of industrial controllers via rank-
constrained identification of low-order time-delay mod-
els. IEEE Transactions on Control Systems Technology,
31(4), 1787–1802.

Liu, Z., Chen, X., Xu, J., Zhang, C., Xu, L., Guo, N.,
Zhao, L., and Yan, R. (2023b). High-accurate robust
total variation denoising algorithm with adjustable ex-
ponential upper bound function for micro-thrust mea-
surement. IEEE Transactions on Instrumentation and
Measurement, 72, 1–18.

Madsen, L. (2009). Maximum likelihood estimation of
regression parameters with spatially dependent discrete
data. Journal of Agricultural, Biological, and Environ-
mental Statistics, 14, 375–391.

Michael, Lokshin, Zurab, and Sajaia (2004). Maximum
likelihood estimation of endogenous switching regression

models. The Stata Journal, 4(3), 282–289.
Nguyen, D.H. and Ohtsu, K. (2000). An adaptive optimal

autopilot using the recursive prediction error method.
IFAC Proceedings Volumes, 33(21), 185–190.

Ninomiya, Y. (2005). Information criterion for Gaussian
change-point model. Statistics & Probability Letters,
72(3), 237–247.

Varanasi, S.K. and Jampana, P.V. (2016). Parameter es-
timation and model order identification of LTI systems.
IFAC-PapersOnLine, 49(7), 1002–1007.

Villez, K. (2015). Qualitative path estimation: A fast and
reliable algorithm for qualitative trend analysis. AIChE
Journal, 61(5), 1535–1546.

Villez, K., Venkatasubramanian, V., and Rengaswamy, R.
(2013). Generalized shape constrained spline fitting for
qualitative analysis of trends. Computers & Chemical
Engineering, 58, 116–134.

Weerts, H.H., Van den Hof, P.M., and Dankers, A.G.
(2018). Prediction error identification of linear dynamic
networks with rank-reduced noise. Automatica, 98, 256–
268.

Yang, C., Le, Bouquin Jeannes, R., Bellanger, J.J., and
Shu, H. (2013). A new strategy for model order iden-
tification and its application to transfer entropy for
EEG signals analysis. IEEE Transactions on Biomedical
Engineering, 60(5), 1318–1327.

Zhou, B. and Ye, H. (2016). A study of polynomial fit-
based methods for qualitative trend analysis. Journal
of Process Control, 37, 21–33.

Zhou, B., Ye, H., Zhang, H., and Li, M. (2017). A new
qualitative trend analysis algorithm based on global
polynomial fit. AIChE Journal, 63(8), 3374–3383.


