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Abstract: Modern day industries invest heavily on looking for various methods for timely and
accurate fault detection and diagnosis. Since training a model to learn all possible faults is
challenging and impractical, developing an active learning based methodology which is capable
of learning about any new faults arriving in the plant in the due course of operation is the main
objective of this paper. This objective is achieved through a two staged methodology where in,
an unsupervised learning strategy using one-class SVM is considered in the first stage to detect
the presence of a new fault. In the second stage a multi-class classifier of Wavelet Neural Network
is utilized to detect the nature of fault. The efficacy of the proposed method is demonstrated
on a benchmark Tennessee Eastman Process and the results are compared with the existing
methods.
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1. INTRODUCTION

In recent years, many process-industries want to minimize
their costs associated with the process safety and focus
on maximizing their profits while using the available
resources at the most optimal level and ensuring the
safe operation of process. To achieve this goal, early
detection of fault(s) and providing the root cause for the
same (diagnosis) becomes very crucial. Fault detection
and diagnosis is the process of identifying deviation from
normal behavior caused in the process plant, along with
finding the root cause of this deviation. This identification
is carried out using various techniques like model based
(Gupta et al., 2022; Venkatasubramanian et al., 2003c),
rule based (Xing and He, 2023; Venkatasubramanian et al.,
2003a) and process history or data driven based (Yadav
et al., 2020; Venkatasubramanian et al., 2003b). The
early research focused on model based approaches which
involved development of a mathematical model to replicate
the normal behavior of the plant and any deviation from
this would raise a fault (Raveendran et al., 2018). While
the rule based methods relied on defining a thresholds over
various process parameters or variables and once these
thresholds were exceed it was flagged as fault.

As the emergence of more reliable data acquisition systems
along with the boom of modern techniques like Artificial
Intelligence in the Industries (Industry 4.0) became evi-
dent, researchers started to look into the possibilities of
implementing data-driven methods in the field of fault
detection and diagnosis (Mahadevan and Shah, 2009; Jack
and Nandi, 2002; Don and Khan, 2019; Amin et al., 2018).
Based on the conclusions from (Goetz et al., 2015), data-
driven approaches are further classified into statistical and

novel learning based methods. The traditional statistical
methods involve methods like Principal Component Anal-
ysis (PCA) (Qin, 2012) and Dynamic Principal Compo-
nent Analysis (DPCA) (Kodamana et al., 2017) for fault
detection and diagnosis. Novel learning based approaches
used various machine learning algorithms like Support
Vector Machines (SVM) (Yin and Hou, 2016) and also
some deep learning methods like use of Neural Networks
(NNs) (Sorsa and Koivo, 1993; Chalapathy et al., 2018).

It was observed that although majority of data-driven
methods for fault diagnosis are based on supervised learn-
ing, the problem lies in generating the dataset for all
possible faults that may occur in the process plant. As it
is utterly impossible and impractical for process industries
to generate this datasets for all possible faults and as the
range of fault categories are wide and different, training
a model apriori incorporating all the categories would be
challenging (Arunthavanathan et al., 2020). Hence, it is
necessary to develop an active learning based methodology
which is capable of learning about any new faults arriving
in the plant in the due course of operation and is the main
ideology behind this study.

In this paper, a two staged methodology inspired from
the approach presented in Arunthavanathan et al. (2020)
is proposed. In the first stage, an unsupervised learning
strategy using one-class SVM is considered in this paper to
detect the presence of an existing or new fault. The second
stage involves use of a multi-class classifier using Neural
Network like Wavelet Neural Network (WNN) to detect
the nature of fault. The novelty for this work over Aruntha-
vanathan et al. (2020) holds in using a special kind of single
hidden layer feedforward neural network known as Wavelet



Neural Network(WNN) as a classifier for identifying the
type of fault. The advantage of the proposed WNNs are
unique in the way that the parameters in the hidden
layer are assigned using Wavelet decomposition, thereby
the model becomes linear-in parametric form. WNNs can
handle non-linearity while the structure being linear with
respect to their parameters, making them faster to train
and implement. Hence, in this study WNN is used as a
classifier. A comparison between the two classifiers (NN
and WNN) is also made to demonstrate the efficacy of the
proposed approach.

The rest of paper is organized as follows. Section 2 explains
about the proposed approach starting with the problem
statement in Section 2.1 and Section 2.2 briefly explains
about the preliminaries required for the paper. In Sec-
tion 2.3, the details of the proposed methodology for Data-
based adaptive fault detection and diagnosis is detailed
followed by a case study on Tennessee Eastman Process
in Section 3 and finally the paper ends with Section 4 as
Conclusions.

2. DATA-BASED FAULT DETECTION AND
DIAGNOSIS

2.1 Problem Statement

Developing an effective methodology for fault detection
and diagnosis which is able to adapt to any new faults
occurring during the operation of a process becomes es-
sential and is the main objective of this paper. Inspired by
the work in Arunthavanathan et al. (2020), a two staged
strategy is adopted, wherein the first step involves uti-
lization of an unsupervised learner like one-class SVM for
detecting the presence of any new fault in the due course
of operating a plant. The second step involves a multi-
class classifier using Wavelet Neural Network (WNN) for
identifying the class of a given fault. A brief introduction
about the one-class SVM and WNN and detailed proposed
methodology is provided in the subsequent sections of the
paper.

2.2 Preliminaries

One-class SVM: Soft margin classifiers or Support Vec-
tor machines (SVMs) is traditional machine learning al-
gorithm generally used for the tasks of regression and
classification. SVM’s primary objective is to find line or
hyperplane that classifies the features of a dataset such
that the features between different classes have maximum
margin. The term margin refers to the minimum distance
between the data points from the hyper-plane. SVMs
are a good linear and non-linear classifiers (Gholami and
Fakhari, 2017; Hearst et al., 1998). Researchers searched
for various ways to incorporate standard SVMs for the
task of fault detection but fell short to the problem of
supervised learning as mentioned earlier in Section 1.

One-class SVM (OCSVM) is a special variant of the
traditional Support Vector Machine (SVM) majorly used
for the purpose of adaptive fault detection or abnormality
detection. Unlike the standard SVMs, OCSVMs are an
unsupervised learning algorithm specifically tailored for
anomaly detection with the help of training using only

normal or non-faulty dataset. One-class SVM tries to
learn a boundary such that it has a maximum margin
between the non-faulty data points and origin (Yin et al.,
2014). Whenever, a new data is presented lies outside this
boundary the OCSVM flags it as fault.

Numerous researchers opted this idea of One-class SVM to
solve the problem of Fault detection. As an example, the
authors in Sotiris et al. (2010) utilized the idea of OCSVM
to detect faults and combined the results with output to
calibrate the posterior probability to look for false alarms.
The authors in Yin et al. (2014) proposed a robust one-
class SVM which is insensitive towards outliers for fault
detection. For a detailed description of one-class SVMs,
the reader is requested to refer to Erfani et al. (2016).

Wavelet Neural Network: A Wavelet Neural Network is
a special kind of neural network in which wavelets are
used as activation functions. A Wavelet Neural Network
(WNN) typically consists of three layers: the input layer,
the hidden layer, and the output layer as seen in Fig.1

Fig. 1. Wavelet Neural Network

In the input layer, the network receives explanatory vari-
ables, also called inputs. The hidden layer contains nodes,
known as wavelons, which transform these input variables
into a non-linear space. The output layer then uses the
transformed variables to approximate the target values.
The authors in Alexandridis and Zapranis (2013) proposed
a wavelet network that incorporates a multi-dimensional
basis and linear connections between the input and output
layers, as depicted in Fig. 1, to enhance training perfor-
mance in highly linear settings.

Since any non-linear function can be approximated using
wavelet frame decompositions (Billings and Wei, 2005),
similar to the work considered in (Varanasi et al., 2022),
the main objective of this work is to represent the parame-
ters in the input-hidden layer using these decompositions.
This type of approximation helps us in ensuring the model
in linear-in-parametric form thereby making the learning
faster, accurate and require less amount of data to train
when compared to a traditional single hidden layer feed-
forward neural network. Further, with the appropriate
selection of the dilational and translational parameters
associated with the wavelet frame decompositions (Billings
and Wei, 2005), the number of neurons to be considered
in the hidden layer will be automatically fixed, thereby
avoiding the trial and error approach for selection of op-



timal number of neurons in the hidden layer. The output
equation of the wavelet neural network is given as
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denote the Mexican hat wavelet function with j ∈ Z and
(k1, k2, . . . , kr) ∈ Zr denote the dilation and translation
parameters respectively and v = [k1, k2, · · · , km]. The
terms j0 and and jf denote be the coarsest resolution and
the finest resolution respectively. The term ki has to be
selected in such a way that −(s2 − 1) ≤ ki ≤ 2j − s1 −
1, i = 1, 2, . . . , r where, s1 and s2 control the range of the
translations. Typical choice of s1 and s2 for the Mexican
hat wavelet function are -3 and 3 respectively (Billings and
Wei, 2005).

2.3 Proposed Methodology for FDD

Inspired by the work presented in Arunthavanathan et al.
(2020), an adaptive and real-time based framework for
fault detection and diagnosis is presented. The main idea
of the proposed methodology is to adopt one-class SVM
as an unsupervised method to detect the existence of
known/new fault and then use WNN in a supervised way
to classify the faults and provide diagnosis for it. In the
proposed methodology, it is assumed that only one fault
exists in the process at any given point in time and the
time horizon of the presence of fault is significant enough
for training/updating the model. The overall workflow for
the proposed methodology is presented in Fig. 2 and the
details are presented as follows:

The first step of training involves training a one-class
SVM (OCSVM) using non-faulty or normal dataset. The
OCSVM tries to learn a boundary that classifies faulty
data from normal data points. Once the training is com-
pleted, whenever a dataset with fault is introduced, the
one-class SVM will raise a flag and will label it (for
example, as fault-1). This labeled faulty data and non-
faulty data will be used to train WNN in a supervised
manner. The second stage of training involves re-training
the one-class SVM with the help both non-faulty and fault-
1 datasets. By doing so, one-class SVM was successfully
trained and would now let non-faulty or fault-1 data to
pass and be able to detect the presence of any new fault
and label it as fault-2. WNN will then classify the data
point into non-faulty and fault-1. After receiving enough
amount of dataset for fault-2 from OCSVM, one-class
SVM and WNN will be updated using all the datasets
to detect the presence of non-faulty or fault-1 or fault-2
data points. Since it is assumed that the time horizon of
the fault is significant, it can be noted that whenever a
new fault is detected by the one-class SVM, is labeled as
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Fig. 2. Workflow of Fault Detection and Classification

fault-i and the re-training of one-class SVM and WNN will
take place. Due to this active re-training of the models, the
approach is capable of detecting and diagnosing any new
faults that might arise in the due course of operation of a
process.

3. TENNESSEE EASTMAN PROCESS - FAULT
DETECTION AND DIAGNOSIS

The Tennessee Eastman Process (TEP) is considered for
testing the efficiency of the methodology proposed earlier.
TEP is a benchmark case study used for developing and
testing various monitoring and control schemes, FDD
strategies (Downs and Vogel, 1993). The corresponding
section provides a brief process description of the TEP
which will be followed by results of the FDD.

3.1 Process Description

A TEP process have five main process units: reactor,
condenser, separator, stripper and compressor as shown
in the Fig.3.

Fig. 3. TEP flow diagram (Downs and Vogel, 1993)



Such a process has a total of 51 variables out of which 41
are measurable variables (22 input variables are continuous
process measurements and 19 are composition measure-
ments) and the rest 12 are manipulable variables (11 valves
and 1 speed of stirrer). The process mainly has 8 various
feed components labeled as A-H to produce two products
from four reactants. The gaseous reactants A,C,D and E
reacted along inert component B to form liquid products
G and H, along with F as by-product in the reactor.

During the operation of such a process, there are 21
different possible faults that might occur (Downs and
Vogel, 1993; Zhang et al., 2014). From these 21 faults,
IDV 1, IDV 4, IDV 9 and IDV 11 as detailed in Table 1
are an accurate representations of overlapping information
and are considered to be challenging to detect in gen-
eral (Zhang et al., 2014). Owing to these reasons, the faults
IDV 1 and IDV 4 were considered in this study to test
the accuracy of the proposed methodology. Extension of
this work may involve incorporation of all other remaining
faults which would be studied in future.

Table 1. Tennessee Eastman process faults
(Downs and Vogel (1993))

Variable Description Type Fault ID

IDV 0 Non-faulty data - 0

IDV 1 A/C feed ratio, B
composition con-
stant (Stream 4)

Step 1

IDV 4 Reactor cooling
water inlet tem-
perature

Step 2

IDV 9 D feed tempera-
ture (Stream 2)

Random Variable 3

IDV 11 Reactor cooling
water inlet tem-
perature

Random Variable 4

3.2 FDD results

This section highlights the results acquired when the
proposed methodology was applied on the TEP. For the
sake of simplicity, this study considers the datasets of
Non-faulty data (Fault ID: 0), IDV1 (Fault ID: 1) and
IDV4 (Fault ID: 2) with each of size 7201 × 53. Out
of this 7201 data-points 60% is used for training, and
the remaining 40% is used for validation and testing
purposes. The dataset is taken from Liu et al. (2024).
The entire computations are performed using scikit-learn
package of python with a laptop having Intel i5 11th
Gen processor running at 3.1GHz using 8GB of RAM.
The kernel utilized is Radial Basis Function (RBF)
and the selection of hyper-parameters for training are:
gamma set as Auto (This is a parameter for non-linear
hyperplanes. It highlights the extent of influence exerted
by an individual training example. gamma parameter is
specific to the RBF kernel and is typically set to ‘auto,’
which defaults to 1 / no. of features) and nu set as 1e −
6 (the nu value is an upper bound on the fraction of
training errors and a lower bound of the fraction of support
vectors).

For training the first step, 60% of the Non-faulty data
(Samples from 1 to 4321) was considered to train the one-
class SVM. Once the training of OCSVM is completed,
60% IDV 1 faulty data (4321 samples) were introduced to
test the accuracy of Fault detection by the One-class SVM,
the accuracy of fault detection turned out to be 100%. Now
the faulty data identified by OCSVM is labeled as fault-1
and One-class SVM is retrained with the combination of
data from non-faulty and fault-1. Alongside this, a Wavelet
Neural Network (WNN) was trained for detection of non-
faulty and fault-1 datasets. The accuracy of training for
WNN is 99.51%. Now a dataset of 2878 samples (20% of
validation data from non faulty and fault-1) is considered
for testing purpose and the accuracy of the proposed
method with test data set is 99.79%.

In the next step, 60% of IDV 4 dataset is introduced
and the fault detection accuracy of one-class SVM was
calculated and it turned out to be 100% . The faulty
dataset detected by one-class SVM is then labeled as
fault-2 and the one-class SVM and WNN are re-trained
using the 60% datasets of non-faulty, fault-1 and fault-2. A
dataset of 4320 samples (20% of validation data from non
faulty, fault-1 and fault-2) is considered for testing purpose
and the accuracy of the proposed method with test data
set is 100 %. To further demonstrate the significance of the
proposed method, the classifier was replaced with a regular
neural network and the same steps above are repeated this
time by considering a SLFN with the number of neurons
in hidden layer as 50, 100 and 150 and the activation
function as ReLU. The overall results with the proposed
method using WNN and the method where in SLFN is
considered are reported in Table 2 and the corresponding
confusion matrices are shown in Figs. 4, 5 and 6.

(a) Step 2 (b) Step 6

Fig. 4. Confusion matrix of classification with One-class
SVM i.e., Steps 2 and 6 of Table 2.

(a) Step 5 - WNN (b) Step 8 - WNN

Fig. 5. Confusion matrix of classification with WNN i.e.,
Steps 5 and 8 of Table 2



Table 2. Framework and Results

Step # of Samples Fault ID Model update and
Results

1 4321 0 Trained One-class SVM

2 4321 1 Unknown Fault
detected with 100%
accuracy 4(a)

3 4321 0 & 1 Updated One-class
SVM with new Fault

4 4321 0 & 1 Trained both WNN and
NN. Training accura-
cies are 99.24% and
97.20% respectively.

5 2878 0 & 1 Best Testing accuracy
of fault-1 classification
with WNN and NN are
99.79% 5(a) & 100% re-
spectively 6(c). fault-1
classified.

6 4321 2 Unknown Fault
detected with 100%
accuracy 4(b).

7 4321 0 & 1 & 2 Updated One-class
SVM & WNN.

8 4320 0 & 1 & 2 Best Testing accuracy
of fault 4 classification
with WNN and NN are
100% 5(b) & 80.06% re-
spectively 7(b). Fault 4
classified.

(a) Step 5 - NN-1 (50) (b) Step 5 - NN-1 (100)

(c) Step 5 - NN-1 (150)

Fig. 6. Confusion matrix of classification with NN for Step
5 of Table 2 for different number of neurons

Observing from the results mentioned in the Table 2
and the corresponding confusion matrices, it is clear that
One-class SVM was highly accurate with an accuracy of
100% in both the cases when Fault-1 and Fault-4 were
introduced. WNN proved to be more efficient than NN for

(a) Step 8 - NN-2 (50) (b) Step 8 - NN-2 (100)

(c) Step 8 - NN-2 (150)

Fig. 7. Confusion matrix of classification with NN for Step
8 of Table 2 for different number of neurons

various architecture with 50,100 and 150 # of neurons with
an accuracy of around 99.79% and 100% for Steps 5 and 8
respectively. On the other hand, the NN suffered to reflect
high accuracies with 97.49%, 99.51% and 100% for 50,100
and 150 neurons respectively for Step 5. It can be observed
that in case of 150 neurons even though the accuracy with
respect to fault-1 was 100% but the confusion matrix in
Fig. 6(c) indicates a significant cases of false alarms which
may be not desirable for active FDD. Even for Step 8 no
improvement was observed with accuracies of 55.06%, 80%
and 68% for 50,100 and 150 neurons respectively. Further
it was also observed that as # of neurons were increased
the NN suffered with the problem of over-fitting which
signifies its poor performance on testing dataset.

4. CONCLUSIONS

In this paper, an active learning based methodology which
is capable of learning about any new faults arriving in
the plant in the due course of operation is considered.
achieved through a two staged methodology where in,
an unsupervised learning strategy using one-class SVM
is considered in the first stage to detect the presence of
a new fault. In the second stage a multi-class classifier
of Wavelet Neural Network (WNN) is utilized to detect
the nature of fault. The advantage of the proposed WNNs
are unique in the way that the parameters in the hidden
layer are assigned using Wavelet decomposition, thereby
the model becomes linear-in parametric form. WNNs can
handle non-linearity while the structure being linear with
respect to their parameters, making them faster to train
and implement. Hence, in this study WNN is used as a
classifier. The efficacy of the proposed method is demon-
strated on a benchmark Tennessee Eastman Process and
the results are compared with the existing methods. From
the results it can be concluded that the proposed approach
to be more accurate than the traditional SLFN and also
provided with an advantage over hyper-parameter tuning



as the # of neurons required in hidden layer are pre-defined
from wavelet decompositions rather than it being a hyper-
parameter as in case of standard NNs.
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