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Abstract: Flow rate soft sensors have become an important alternative for costly hardware
flow meters, as they can estimate the flow rate with sufficient precision from easily measurable
variables by using models and state estimation algorithms. This paper addresses the fundamental
challenge that arises from ambiguous estimation problems, where the measured variable
corresponds to two or more possible flow rate values. We develop and implement a decision
algorithm that yields correct results in an industrial setup with substantial measurement noise.
The results demonstrate a reliable flow rate estimation, providing a viable solution for real-time
flow monitoring in centrifugal pumps with complex characteristics.

Keywords: Smart Sensors and Actuators, Kalman filtering, Centrifugal Pump, Flow Rate
Estimation

1. INTRODUCTION

Nearly 20% of global electricity is consumed by pumping
systems (Shankar et al., 2016). Of all pump types, cen-
trifugal pumps are most widely used in many industries,
including petroleum, chemicals, energy, and water treat-
ment (Lin et al., 2022; Sedghi et al., 2020). Because of
their wide range of application, improving the efficiency
of centrifugal pumps holds a significant energy savings
potential (Ahonen et al., 2010; Leonow et al., 2024). To
ensure that centrifugal pumps operate at their Best Effi-
cient Point (BEP), obtaining real-time flow rate data is
crucial. While traditional hardware flow sensors, such as
turbine or electromagnetic flow meters, provide accurate
measurements, their high cost, complex installation, and
maintenance requirements limit their industrial use. As a
consequence, flow rate soft sensors have gained increased
interest and research in recent years (Sedghi et al., 2020;
Leonow et al., 2024).

The concept of soft sensors involves using easily measur-
able variables to estimate target variables through model-
ing and state estimation algorithms (Becker and Krause,
2010). Several flow rate soft sensor architectures have been
successfully used in simulations and experimental studies.
For example, Lima et al. (2022) contribute to flow estima-
tion of centrifugal pumps with an artificial neural network
based soft sensor, with results showing a maximum error
of 10% compared to an electromagnetic flux sensor. Wu
et al. (2023) address varying hydraulic process parame-
ters with a Genetic Algorithm, Back-Propagation Neural
Network model, achieving an average flow rate estimation
error of less than 2%. Changklom and Stoianov (2019)
proposed a distributed pressure measurement with three
sensors at different locations within the centrifugal pump

and demonstrated a precise flow rate estimation based on
the pressure information. Applying an array of ultrasonic
level sensors in combination with a neural network, fuzzy
logic, and support vector regression algorithms, showed
high reliability and accuracy of flow rate estimation in oil
and gas and geothermal installations (Chhantyal et al.,
2017).

Compared to the significant progress in simulation and
experimental studies, the industrial application of flow
rate soft sensors clearly falls behind (Leonow et al., 2024),
which can partly be accounted to the high noise levels in
industrial process data Ren et al. (2021). In addition to
challenges due to noise, around 20% of centrifugal pumps
show non-invertible (non-monotone) characteristics. This
implies that several distinct flow rates result in the same
pump head or shaft power. This non-uniqueness poses
a fundamental problem for soft sensors and essentially
renders current estimation methods impractical (Shankar
et al., 2016; Leonow and Mönnigmann, 2016).

While sensor fusion is one way to address this issue,
e.g. by combining pressure and electrical power measure-
ments (KSB-AG, 2005), this approach again requires the
costly installation of additional sensors. As an alternative,
Leonow and Mönnigmann (2016) proposed a dynamic
excitation of the hydraulic process to acquire sufficient
information for inferring the correct flow rate estimate
with only a single sensor measuring electrical power, which
proved viable in simulations. However, the approach pro-
posed in Leonow and Mönnigmann (2016) has so far not
been validated in a practical application. Moreover, it
requires a dominant fluid inertia, which limits the ap-
plication of the algorithm. Building on this prior work,
this paper introduces a practical approach for the decision



between two possible flow rate estimates. We conduct real-
time testing under high-noise conditions on a centrifugal
pump with non-invertible characteristic to validate the
algorithm’s effectiveness.

2. NOTATION AND PRELIMINARIES

We assume a fixed mechanical coupling between motor
and pump and introduce f as the rotational frequency of
motor and pump and i as the electrical current drawn by
the motor. The hydraulic power that the pump provides is
P and we assume i ∝ P . The flow rate through the pump
is q. The hydraulic plant in which the pump is integrated
dissipates hydraulic power PP. We use subscripts meas for
measured values, mod for simulated (model) values, norm
for a dataset or function that is scaled onto an interval
[0, 1], and min, max for minimal and maximal values in a
dataset. A hat denotes estimated values and a superscript
∗ denotes values that result from a decision process.

In steady state, i.e. dq/dt = di/dt = dPP/dt = 0, the
hydraulic powers provided by the pump and consumed by
the plant coincide, i.e. P = PP. Following the hydraulic
affinity laws we assume q ∝ f , i ∝ f , i ∝ q3, and PP ∝ q3
hold.

A frequency step is given by ∆f , and the actual frequency
after applying the frequency step is f = f − ∆f with f
being the steady-state or initial frequency.

Generally, pump characteristic curves can be categorized
into three types: invertible, simple non-invertible, and re-
peatedly non-invertible, as illustrated in Fig. 1. An invert-
ible curve indicates a one-to-one relationship between the
flow rate and the measured variable (i.e. pump head, shaft
power, or electrical current), allowing in a unique estima-
tion of the flow rate based on the single measured variable.
In contrast, a typical non-invertible characteristic implies
that e.g. a measured electrical power may correspond to
two different flow rates. The third type, repeatedly non-
invertible characteristic, allows more than two flow rates
to map to the same measured variable. The shape of the
characteristics can change with the rotational speed and an
ambiguous characteristic is more likely for higher speeds
than for lower speeds (see Fig. 2).

We focus on the significantly more common, simple non-
invertible characteristic in this paper.
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Fig. 1. Sketches of characteristics of centrifugal pumps.

3. FLOW RATE ESTIMATION METHOD

We choose the electrical current i and the frequency
f as measurements to drive the flow rate estimation.
An Unscented Kalman Filter (UKF) serves as baseline

estimator. The filter is augmented by a decision algorithm
(see Sec. 3.3) that identifies the correct estimate in the
ambiguous sections of the q → i characteristic. We will
outline the core estimation model as part of the UKF in the
following section, followed by the UKF implementation, for
ease of result interpretation. The primary contribution of
this paper is the decision algorithm, which is essentially
independent of the specific estimator or plant model.

3.1 System Model

We choose a data-based modeling approach to capture the
motor-pump system in an input-output sense. The model
architecture is similar to the Boundary Curve method
Leonow and Mönnigmann (2013). While the original
method assumed that the shape of the q → i characteristic
is unique for all frequencies, we incorporate the frequency
and map f, q → i. While this approach is more elaborate
in terms of data acquisition, the resulting improvement in
soft sensor precision is superior. Fig. 2 depicts measured
q → i curves for four different frequencies. The shape of
the q → i curves obviously depends on the frequency here,
ranging from invertible at lower frequencies to simple non-
invertible towards the design frequency f = 50Hz.

More specifically, for a set of frequencies f ∈ (fmin, fmax),
the minimum and maximum boundaries of q and i are
measured, where the boundaries are defined by the lowest
and highest admissible flow rates min(q) and max(q),
respectively. The measurement results in four boundary
curves qmin(f) := f → min(q), qmax(f) := f → max(q),
imin(f) := f → i(min(q)), and imax(f) := f → i(max(q)).
We approximate the f → q maps with linear functions

qmin(f) = cq,min · f , qmax(f) = cq,max · f (1)

and the f → i maps with a cubic function

imin(f) =

3∑
k=0

ci,min,k ·fk , imax(f) =

3∑
k=0

ci,max,k ·fk , (2)

in accordance with the hydraulic affinity laws. Parameters
cx result from least squares optimizations based on the
measured data. With (1),

qnorm =
q − qmin(f)

qmax(f)− qmin(f)
(3)

normalizes a given flow rate q to the range [0, 1]. With (2),

i = inorm · (imax(f)− imin(f)) + imin(f) (4)

scales a normalized current inorm ∈ (0, 1) back to its
physical range. The map between qnorm and inorm is
captured by a two-dimensional lookup-table

f, qnorm → inorm . (5)

The complete, nonlinear-static model results from the
combination of (3) - (5). We stress here that also for
non-invertible characteristics, the model f, q → i is still
one-to-one. Fig. 2 depicts the model structure and the
f, qnorm → inorm curves for the sample pump used for
evaluation.

The original Boundary Curve method (Leonow and
Mönnigmann (2013)) assumes a linear dynamic model part
to capture lag effects, e.g. from pump inertia. With a series
of step responses, measured with q = 0, thus excluding any
flow rate related effects, a n-th order state space model
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A

·xi(k) +


0
0
0
...
1


︸ ︷︷ ︸

b

·i(f, q)

imod(k) = (ci,1 ci,2 . . . ci,n)︸ ︷︷ ︸
c

·xi(k) (6)

is identified, where the coefficients ci,k = imeas,k−imeas,k−1

are parametrized using the measured step responses. The
sampling time is TS and t = k ·TS . The output imod is the
model equivalent to imeas, while i(f, q) results from the
nonlinear-static part of the model (3) - (5). The dynamic
model part (6) therefore requires to have unity gain. The
model order n depends on the sampling time and the time
constants of the system, as the model has to cover the
whole transient step response. We will use a lower sampling
time TS = 1s for the UKF which results in n = 3, while
the decision algorithm requires a finer time resolution with
TS = 0.01s and n = 150.

Fig. 2 depicts the model structure, where from left to
right the normalized flow rate qnorm results from (3) and
the inputs f and q, then inorm follows from (5), f and
qnorm. The normalized current inorm is then de-normalized
with (4) and f . The resulting i is the input for the
linear dynamic part of the model (6), which then yields
imod(q, f, t) as output.

norm. (3) denorm. (4)
norm. 
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Fig. 2. The enhanced BCM model maps the flow rate and
frequency to electrical current through a series of non-
linear static functions and incorporates the transient
behaviour with a linear-dynamic model part.

3.2 Unscented Kalman Filter

We implement the Unscented Kalman Filter following
Julier and Uhlmann (1997). The nonlinear-dynamic model
(6) serves as the state update function. We define the state
vector xi(k) from (6) as state variables x1(k) to xn(k)
within the UKF. Since the static model i(f, q) is part of
(6) and requires q as input, which is unknown as it is the
desired estimate, we define q as additional state variable
xn+1(k) with xn+1(k + 1) = xn+1(k), thus treat it as an
estimated parameter. The frequency f serves as the input
u, while the measured electric current imeas is treated as

the system output y. Consequently, the state update model
can be formulated asx1(k + 1)

...
xn(k + 1)

 = A ·

x1(k)
...

xn(k)

+ b · i(u(k), xn+1(k))

xn+1(k + 1) = xn+1(k)

y(k) = c ·

x1(k)
...

xn(k)

 . (7)

We then have the estimates î(k) := y(k) and q̂(k) :=
xn+1(k) as result from the UKF algorithm.

In this standard formulation, the UKF is unable to decide
between two estimates q̂+ and q̂− whenever both yield
the same estimated î, likely resulting in a wrong q̂. The
decision algorithm presented in the following Sects. 3.3
and 3.4 implements the selection of the correct q̂.

3.3 Decision criterion

We denote the lowest current for which a second flow
rate estimate exists by ilim. In Fig. 1, ilim would be at
around 60% for the simple non-invertible case. As long as
imeas < ilim, no further decision is required as the estimate
q̂ is unique.

The decision algorithm is based on a frequency step
f = f − ∆f and step response analysis. According to
the hydraulic affinity laws, a reduced frequency leads to
a reduced electrical current i ∝ f and a reduced flow
rate q ∝ f , assuming that the process parameters remain
constant (e.g. no valve position is changed). The transient
response in i to the frequency step can be split into the
immediate effect associated with the reduced f and a
subsequent change due to the following reduction in q, due
to fluid inertia. Fig. 3 illustrates the transient response
of the operating point. There, i0 = i(f, q0) is the initial
steady-state, and i1 = i(f, q0) results from reducing the
frequency to f = f−∆f while the flow rate approximately
remains constant at its initial value q0. Consequently,
i1 − i0 is the initial reduction in i due to the frequency
step. The subsequent change due to the reducing flow rate
q0 → q2 yields i2 = i(f, q2). If q0 and q2 are located left
of the maximum in the q → i curve, the reduced flow rate
leads to a further decrease in i. Conversely, if q0 and q2
are both located right of the maximum in the q → i curve,
the reduced flow rate leads to an increase on i:

i2 − i1
{
< 0 : q0 and q2 left of maximum ,

> 0 : q0 and q2 right of maximum .
(8)

In Fig. 3, left of the maximum, i first decreases from i−0 to
i−1 , due to the frequency step, and then further decreases
from i−1 to i−2 . On the right side of the maximum, the
current first decreases from i+0 to i+1 and subsequently rises
again from i+1 to i+2 . Points i++

1 and i++
2 result from a

frequency step with larger ∆f (see Sec. 3.4).

We stress here that the steady-state values i+2 and i−2 are
equal for equal starting points i+0 = i−0 , which follows from
the hydraulic affinity laws. Consequently, the transient



response needs to be evaluated, since the steady state does
not contain the relevant information.
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Fig. 3. Illustrated effect of a frequency step from 50Hz to
45Hz and to 40Hz. The black curves are the corre-
sponding q → i curves and the green dashed curves
depict two example plant characteristics. The blue
lines visualize the electrical power responses combined
of the immediate frequency step effect and the subse-
quent effect of the reducing flow rate. Superscripts −
and + indicate the ”left-of-maximum” and ”right-of-
maximum” cases, respectively, as in (8). Superscript
++ indicates operating points resulting from a fre-
quency step with larger ∆f .

The measurable response in i(t) is a combination of the
response related to the operating point transition i0 →
i±1 → i±2 , which we will denote by iop(t), and a response
related to pump and motor inertia and possible lag effects
in the sensing equipment, iS(t). Their superposition yields
the measurable response i(t) = iop(t)+iS(t). The transient
response iS(t) is independent of the operating point, while
iop(t) changes with the location left or right of the maxi-
mum in the q → i curve. Consequently, a distinguishable
transient response in i(t) will result. Measuring the actual
response in i(t) and separating iS(t) yields a decision
criterion. In discrete time, this criterion reads

n∑
k=0

i(k)− iS(k)

{
> 0 : q̂∗ = q̂+

< 0 : q̂∗ = q̂−
, (9)

where the time span 0 ≤ kTS ≤ nTS covers the full
transient response of i(t).

3.4 Towards a decision algorithm

The response iS corresponds to the model (6), as the model
was identified with excluded flow rate effects (q = 0). We
therefore have iS(t) = imod(t) for a step in f and fixed
q, and can compare this response with a measured step
response imeas(t) to obtain information about iop. The left
diagram in Fig. 4 depicts two step responses i − iS over
q for part-load and overload operation. The trajectories
coincide well with the previous discussions (cf. Fig. 3). The
right diagram in Fig. 4 depicts the two step responses i(t)
over time together with a response without the operating
point transition, iS(t). Criterion (9) is obviously fulfilled
in both cases.

The measurable difference between i and iS depends on
the flow rate and usually decreases with lower flow rates,
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Fig. 4. Left: Two step responses i− iS over q, for part-load
and overload operation. Right: Two step responses
i(t) for part-load and overload operation for a step in
f and the model response iS(t) = imod(t) for a step
in f and fixed q.

which, combined with measurement noise, may render (9)
below a minimum flow rate. An increased frequency step
with larger ∆f is then required, as evident from Fig. 3 for
i+0 → i++

1 → i++
2 , as the flow rate related effects increase

with the step amplitude.

If the noise bound for imeas is known, i.e. α < imeas(k) < β
for all k, a criterion for a sufficient ∆f can be formulated
using an inequality (Hoeffding, 1994)

Pr [imeas(k)− E [imeas(k)] ≥ κ] ≤ exp

(
−2nκ2

(β − α)
2

)
,

(10)
where E [imeas(k)] = i(t), i.e. the expected transient
response without disturbance, and n is the sample count,
i.e. the order n of the dynamic model (6), and depends
on TS and the measured timespan of the step response,
which has to cover the response until it is sufficiently close
to the new steady-state. Then (10) yields the probability
for a deviation of the measured response imeas(k) from the
expected response i(k) by a factor larger than κ. If we
choose

κ = min
(
|i+1 − i

+
2 |, |i

−
1 − i

−
2 |
)

(11)

for the case in which the response imeas deviates from the
expected response i(t) by a value larger than the difference
between i±1 and i±2 , i.e. the basis of the decision criteria
(8) and (9). The difference in (11) result from the steady-
state model i(f, q). With the two possible estimates q̂+

and q̂− we get i±1 = i(f, q±1 ) and i±2 = i(f, q±2 ), where
q±1 = q̂± prior to the frequency step (see Fig. 3), and

q±2 = q̂± · f/f , i.e. the final steady-state flow rate at the
end of the transient response, according to the hydraulic
affinity law q ∝ f . Since the difference between q1 and q2
depends on the difference f − f = ∆f , κ is proportional
to ∆f . We thus have a way to decrease the probability of
measurement deviation in (10) by increasing ∆f , while n,
α, and β result from the system properties (duration of the
transient response and the noise in imeas, respectively).

We show a sample application with a fixed ∆f in the
following section but note here that ∆f could be adjusted
iteratively (i.e. increased when the probability from (10)
exceeds a desired threshold). The algorithm and the appli-
cation of the frequency steps may require additional, prob-
lem specific adaptations, e.g. when the pump is embedded
into a closed loop control or is required to guarantee a
certain flow rate (cf. Leonow and Mönnigmann (2016)).



4. PRACTICAL APPLICATION

We implemented the combination of UKF and decision
algorithm in a laboratory setup. The setup involves a stan-
dard centrifugal pump with simple non-invertible charac-
teristic (cf. Fig. 2 for the characteristics at four different
frequencies, measured at the test pump) and variable fre-
quency drive (VFD). We included a downstream valve to
simulate variable hydraulic parameters and to deliberately
move the operating point across the maximum of the q → i
curve. The pipe system length is 10m, which induces a
relatively low fluid inertia. The measurement of imeas is
performed by the VFD. A flow meter yields the true qmeas

and is included to evaluate the soft sensor performance.
Data acquisition and implementation of the algorithms is
achieved by a Matlab and Simulink connection to the plant
via an i/o-card. The measured imeas contains a substantial
amount of noise due to electromagnetic disturbances from
the VFD.

The setup allows for a frequency range of 20 Hz to 50 Hz,
associated with a rotational speed range of 1200 rpm to
3000 rpm. The flow rate can achieve a maximum of about
60 m3/h with 50 Hz and full open valve.

4.1 Soft sensor implementation

We use (7) as state update model with n = 3 for the UKF.
The tuning parameters of the UKF were chosen as

Q = diag (0.001 · c , 10) , r = 0.01

and the sample time is TS = 1s.

For the decision algorithm, (6) is used with n = 150 and
a sample time TS = 0.01s, thus covering 1.5s of transient
response. For simplicity, we apply a frequency step with a
fixed ∆f = 5Hz every 20s. The decision algorithm has full
authority over f .

We implement the UKF twice and limit the parameter
ranges for xn+1 to the range left of the maximum and right
of the q → i curve maximum, so that the UKF yield q̂+

and q̂−, respectively. The decision algorithm then selects
q̂∗ = q̂+ or q̂∗ = q̂−, according to the result of (9). The
setup is depicted in Fig. 5.

pump

pipe

system

valve flow meter

inverter

motor

q

UKF a

(part-load)

UKF b

(overload)

decision

algorithm

Fig. 5. Left: photograph of the test stand. Right: setup of
the soft sensor with dual UKF and decision algorithm.

4.2 Experimental Result and Discussion

We conducted a 10 minute test run of the soft sensor and
changed the operating point from part-load to overload

operation and back. The upper diagram in Fig. 6 depicts
the measured imeas and the two estimates î± from UKF+
and UKF-. The substantial noise amount in imeas is
evident.

The middle diagram in Fig. 6 holds the estimated flow
rates q̂a,b, the measured flow rate qmeas, and the decision
q̂∗. The gray, red and green colored bar at the bottom
of the diagram shows the decision. It is evident that
the decision q̂∗ reflects the true flow rate qmeas well. At
t = 500s, where the flow rate transitions back to the part-
load side, the decision algorithm requires two speed steps
for a reliable decision. Therefore, the estimate q̂∗ follows
q̂+ for about 40s, while q̂− would be correct, exposing the
limitation of the algorithm due to the close proximity of q̂+

and q̂− in combination with the substantial noise in imeas.
Note that a wrong decision is likely to occur when q̂+

and q̂− are close, however, the resulting estimation error
is consequently also small.

The lower diagram in Fig. 6 depicts the frequency f , which
performs a step with ∆ = 5Hz every 20s.
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Fig. 6. Time series of a 10 minute evaluation of the soft
sensor. The upper diagram compares measured and
estimated currents i, the middle diagram compares
measured and estimated flow rates q. The lower dia-
gram depicts the frequency f .

Fig. 7 summarizes the steady-state precision of the soft
sensor by comparing the measured steady-state operat-
ing points (qmeas, imeas) with the estimated counterparts

(q̂∗, î∗). The blue line depicts the q → i curve from the
static model i(f, q). Overall, a high coincidence between
model, measured, and estimated data is given. The stan-
dard deviations σ for q̂∗ and the measured imeas indicate
that the noise in imeas is amplified in q̂∗, due to the flat



q → i curve. The lower diagram in Fig. 7 depicts the
decision within criterion (9), i.e.

∑n
k=0 i(k)−if (k), and the

probability of significant deviations in the measured step
response Pr [imeas(k)− E [imeas(k)] ≥ κ] from (10), labeled
uncertainty in Fig. 7, over q. From imeas we identified
α = 2.7 and β = 8.1 for a steady-state situation.

For low part-load operating points, the uncertainty of the
estimation becomes large as expected due to the reduced
effect of the frequency step onto q and the flat q → i
curve. As the operating points shifts towards larger q,
the uncertainty decreases in the predicted fashion. At
q ≈ 30m3/h, the operating points enters the ambiguous
region with imeas exceeding ilim and the decision is reliable
throughout the whole ambiguous region. At q ≈ 45, the
decision changes from part-load to overload, corresponding
to the operating point traversing the maximum in the
q → i curve.
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Fig. 7. Upper diagram: comparison of measured and es-
timated flow rates q and currents i with standard
deviations σ for measured current and estimated flow
rate. Lower diagram: decision and uncertainty values
from (9) and (10), plotted over the flow rate.

5. CONCLUSION

The proposed flow rate soft sensor demonstrates significant
potential for improving real-time flow monitoring in cen-
trifugal pumps, addressing the challenge of non-invertible
characteristics under noisy measurement conditions. The
decision algorithm evaluates the transient response of the
measured current and concludes if the operating point is
left or right of the maximum in the q → i curve.

We note that, in contrast to out previous publication
Leonow and Mönnigmann (2016), the algorithm proposed
here is more practical and showed promising results in the
real application. Also, the pipe system length was 10m
here, where we required 200m in our previous work for a
sufficient inertia and pronounced transient response of the
flow rate q. We further note that the proposed algorithm
does not require extensive data from the pump system,

which deliberately sets it apart from any machine learning
approach.

In future works, we will implement the decision algorithm
in a more adaptable format, by identifying ∆f automat-
ically and by preventing step response measurement in
transient situations, e.g. during adjustments by an exter-
nal controller when integrated into a closed-loop control.
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