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Abstract: For most process systems, knowledge of the model structure is incomplete. This
missing physics must then be learned from experimental data. Recently, a combination of
universal differential equations and symbolic regression has become a popular tool to discover
these missing physics. Universal differential equations employ neural networks to represent
missing parts of the model structure, and symbolic regression aims to make these neural networks
interpretable. These machine learning techniques require high-quality data to successfully
recover the true model structure. To gather such informative data, a sequential experimental
design technique is developed which is based on optimally discriminating between the plausible
model structures suggested by symbolic regression. This technique is then applied to discovering
the missing physics of a bioreactor.

Keywords: Optimal Experimental Design, Missing Physics, Neural Networks, Universal
Differential Equation, Symbolic Regression, Model Discrimination.

1. INTRODUCTION

Model-based approaches are commonly used in the anal-
ysis, control, and optimization of process (bio)systems.
These models rely on knowledge of physical, chemical, and
biological laws, such as conservation laws, transport phe-
nomena, and reaction kinetics, which are usually described
by a system of nonlinear differential equations.

Often, our knowledge of the laws acting on the system is
incomplete. These gaps in our knowledge are also referred
to as missing physics. Experimental data can be used to
fill in such missing physics (Harlim et al., 2021). Recently,
Universal Differential Equations (UDE) were proposed
to learn the missing parts of the structure (Rackauckas
et al., 2020). Universal Differential Equations use neural
networks to represent the terms of the model for which the
underlying structure is unknown (Dandekar et al., 2020).

Because the opaque nature of neural networks is often
not desirable in a scientific computing setting, UDE based
techniques are often combined with interpretable machine
learning techniques, such as sparse regression (Kaiser
et al., 2018) or symbolic regression (Koza, 1994). These
techniques post-process the neural network into a human-
readable model structure.

Universal differential equations are quickly gaining in pop-
ularity, with multiple applications in physics (Keith et al.,
2021), chemistry (Santana and Costa, 2023) as well as
biology (Philipps et al., 2024; Rojas-Campos et al., 2023).
Because neural networks are data-hungry (Van Der Ploeg
et al., 2014), it is important that these applications gather
highly informative data. However, current model-based
design of experiment (MbDoE) methodology focuses on
parameter precision or discriminating between a finite
number of possible model structures. A review of both

methods can be found in Franceschini and Macchietto
(2008). When part of the model structure is entirely un-
known, neither of these techniques can be directly applied.

In this paper, we propose an efficient data gathering
technique for filling in missing physics with a universal
differential equation, made interpretable with symbolic
regression. In particular, a sequential experimental design
technique is developed, where an experiment is performed
to discriminate between the plausible model structures
suggested by symbolic regression. The new data is then
used to retrain the UDE, which leads to a new set of
plausible model structures by applying symbolic regression
again.

This methodology is applied to a bioreactor, and is shown
to perform better than a randomly controlled experiment.

2. MISSING PHYSICS

We illustrate the concept of missing physics with a well-
mixed fed-batch bioreactor example. This reactor has a
long history in the MbDoE literature (Versyck et al., 1997;
Telen et al., 2012, 2014; Houska et al., 2015). The reactor
has three dynamic states: the substrate concentration,
Cs, the biomass concentration, Cx, and the volume of
the reactor, V . The evolution in time of these states is
governed by the following differential equations:
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dt
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)
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Cx,
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dt
= Qin(t).

(1)

In these equations, the specific growth rate, µ, is an un-
known function. This function has a single input, Cs. This



unknown function must be determined from experimental
data. The true function that must be recovered is the
Monod equation:

µ(Cs) =
µmaxCs

Ks + Cs
. (2)

The experimental data we gather from a single bioreactor
are 15 hourly measurements of Cs, subject to measurement
noise:

Cmeasured
s (tk) = Cs(tk) + ϵk, (3)

with the variance of the noise equal to 0.12.

We do not perform only a single experiment, and thus
do not only gather a single time series for Cs. Instead,
we take a sequential approach to data gathering. For
each experiment, the volumetric feed rate, Qin(t), will be
optimized to gain as much information as possible about
the missing physics, µ.

The initial conditions, Cs(t = 0), Cx(t = 0) and V (t = 0),
are assumed to be known constants, as well as the sub-
strate concentration in the feed, CS,in, the yield, yx,s, and
the maintenance factor, m, with numerical values taken
from Telen et al. (2014). The missing physics, µ, also
further depends on two parameters, the maximal specific
growth rate, µmax, and the half saturation constant, Ks,
with true values equal to 0.421 1/h and 4.39 g/l, respec-
tively.

More abstractly, we consider systems of the following form:
dx

d t
= f(t,x,ϕ(g(x)),u(t)), with x(t = 0) = x0;

yk = h(x(tk)) + ϵk,
(4)

where t denotes the time ranging from 0 to te, the end
time of the experiment. The column vector yk contains
the measurements taken at a time point tk, with k ranging
from 1 to N , the number of measurement times. The
time between measurements is equally spread, so that
tk = kte/N. A measurement at the end of the experiment is
thus included, but not at the start. The measurements are
subject to independent Gaussian noise. More specifically,
each ϵk is identically and independently multivariate nor-
mally distributed with zero mean and covariance matrix R.
The measurements depend on the dynamic state column
vector x(t) through the measurement function h. This
function h is useful, for example, when not all states are
measured, such as in the bioreactor example. The states
x(t) have to be calculated from the system of ordinary
differential equations f , with initial conditions x0.

This system f depends on the output of the function ϕ.
This function represents the missing physics, i.e. the parts
of the model structure which are unknown. The input of
the function ϕ is not directly the state x, but instead the
output of another known preprocessing function g, which
in turn has the state x as an input: ϕ(g(x)). The function
g is useful, for example, when we know the missing physics
only depends on a subset of the states, such as in the
bioreactor example.

The system f also depends on the controllable input
column vector u(t), which we will optimize to determine ϕ
as precisely as possible. Finding the optimal controls is an
infinite dimensional optimization problem. To reduce the
complexity of this problem to a non-linear optimization

one, we restrict u(t) to piecewise constant functions, which
are allowed to jump whenever a measurement is gathered:

u(t) =

N∑
k=1

ukrect

(
t− tk−1 − 0.5

tk − tk−1

)
, umin ≤ uk ≤ umax,

(5)
where rect is the rectangular function (Tang, 2006). The
coefficients uk must then be optimized to give as much
information as possible, and are constrained between a
minimal and maximal control value of umin and umax.
For the bioreactor example, these extrema are again taken
from (Telen et al., 2012).

3. UNIVERSAL DIFFERENTIAL EQUATION

Component based UDE replace the unknown function ϕ
in (4) with a neural network.

dx

d t
= f(t,x,NN(g(x),θ),u(t)). (6)

In this equation NN(g(x),θ) is the neural network. Similar
to ϕ(g(x)), the input of the neural network is g(x), but
the network is also dependent on the parameters θ, which
must be learned from the experimental data.

Concretely applied to the bioreactor example, this be-
comes:

dCs

dt
= −
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+m

Cx +
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(CS,in − Cs),

dCx

dt
= Cx − Qin(t)

V
Cx,

dV

dt
= Qin(t).

(7)

4. SYMBOLIC REGRESSION

In order to gain more physical insight into the fitted
neural network, we turn to symbolic regression. Symbolic
regression is an algorithmic way of searching the space of
mathematical expressions to find the model that best fits
a given dataset, while balancing accuracy and simplicity.
Specifically, tree data structures are used to represent
mathematical expressions, and genetic algorithms are used
to search for accurate trees, while keeping the trees as
small as possible.

For the input, we use the values of the states predicted
by the universal differential equation at the measurement
times, after they have passed through the preprocessing
function, g(x(tk)), while for the output, we use the pre-
dicted values of the trained neural network at the mea-
surement times, NN(g(x(tk),θ).

This will result in a number of plausible symbolic expres-
sions that agree well with the neural network output at the
measurement times. We then rank the top M candidates
using the default option in SymbolicRegression.jl, which
is based on a measure of the precision and complexity of
the expressions, where the complexity is defined as “the
number of nodes in an expression tree, regardless of each
node’s content” (Cranmer, 2023).



Fig. 1. First experiment. The three states of the bioreactor, and the missing physics µ. The blue solid lines corresponds to
the true system, while the blue dots correspond to measured values. The orange solid lines correspond to predictions
made by the UDE, while the orange dots correspond to the predicted values at measured Cs. The dashed lines
correspond to predictions made by the plausible model structures. For the state V , all these lines coincide, and
have been replaced by a black line.

5. EFFICIENT DATA GATHERING FOR MISSING
PHYSICS

We now wish to discriminate between the plausible model
structures suggested by symbolic regression. We will do
this by creating a variant of T-optimal designs (Uciński
and Bogacka, 2005). T-optimal designs are model dis-
crimination designs, where design points are sought which
maximize the difference between the predicted output of a
model thought to be correct (T for true) and the predicted
output of some other plausible alternative model struc-
tures. It should then be easy to discern from the gathered
data if the “true” model is really correct after all.

In our situation, we do not have a model structure which
can serve as the ground truth. We will instead work
with all pairwise distances between the plausible model
structures suggested by symbolic regression:

argmax
u

2!(M − 2)!

M !

M∑
i=1

M∑
j=i+1

max
tk

(h(xi(tk))−h(xj(tk)))
2.

(8)
In this equation, xi denotes the predicted states for the
i’th plausible model structure. The distance between two
model structures is scored by the maximal squared differ-
ence between the two structures at the measurement times.
The criterion then calculates the average distance between
all model structures. Collecting measurements where the
plausible model structures differ greatly in predictions, will
cause at least some of the model structures to become
unlikely, and thus cause new model structures to enter the
top M plausible model structures. We can then continue
by constructing a next experiment using the new top M
plausible model structures.

Fig. 2. Top: Optimal control for the second experiment.
Bottom: predictions made by the plausible model
structures.

6. RESULTS

To start the sequential design process, we gather some
initial data, using the zero function as the control signal.
Fig. 1 shows the data analysis for this initial experiment.
The UDE generally predicts the true states well, except
during the last three hours. This is because the realization
of the measurement noise was highly positive during these
three measurements.

At the measured values of Cs, the missing physics, µ, is
also approximated well by the UDE. However, at larger
values of Cs, where we do not have any measurements,
the UDE does not fit the true function well, which is not
surprising since neural networks are not able to extrapolate
outside the region where data has been gathered.



The plausible model structures, suggested by symbolic
regression, also predict the states well. There is one ex-
ception to this, the green dashed line corresponds to µ
being a constant, which is a too simplistic structure to
predict the states well. Similar to the UDE, the plausible
model structures also fit µ well in the low Cs region,
but not outside this region. One group of the structures
predicts that µ keeps increasing as Cs becomes larger,
while another group predicts that µ stays below 0.1 1/h.
We now design a second experiment to start discriminating
between these model structures.

The optimal control for the second experiment, as shown
in Fig. 2, prefers to use the highest allowed value for the
controls almost during the entire experiment. This control
action allows us to easily discriminate between the two
aforementioned groups, because the predicted Cs differs
greatly for these two groups.

Fig. 3 shows the data analysis corresponding to this second
experiment. Both the UDE and most of the plausible
model structures predict the states well, with the same
exception of the constant function as in the previous
experiment.

The UDE and the plausible model structures (except the
constant one) also approximate the missing physics µ well
in the region where we have gathered data. This means
in the regions of low substrate concentration, with data
coming primarily from the first experiment, and high
substrate concentration, coming from the second exper-
iment. However, we do not have any measurements at
substrate concentrations between these two groups. This
causes there to be substantial disagreement between the
plausible model structures in the medium substrate con-
centration range. One of the plausible model structures
is the Monod equation, with reasonably accurate parame-
ter values: Cs/(Cs−(−5.4499)) ∗ 0.42887. Symbolic regression
sometimes finds the true model structure in a somewhat
unusual form, like with a double negative sign. This is
because symbolic regression considers addition and sub-
traction to have the same complexity, as well as positive
and negative numbers.

The optimal design algorithm is also aware of this un-
certainty at the medium concentration range, and aims
to remedy this in the next experiment, as can be seen
on Fig. 4. Using the first control action, the bioreactor
substrate concentration gets pumped from a low substrate
concentration level to a medium level. At this level, there
is substantial disagreement between the plausible model
structures, leading to substantial disagreement in pre-
dicted substrate concentrations. To keep the reactor at the
medium substrate concentration range, while the biomass
concentration increases rapidly, an increasing amount of
substrate has to be pumped into the reactor every hour.
This explains the staircase with increasing step heights
form of the control function. After the staircase reaches
the maximal control value, a zero control is used. Some
model structures decrease more rapidly in substrate con-
centration than others.

After the tree optimal experiments have been performed,
the Monod kinetics score the highest using the default way
of scoring model structures by SymbolicRegression.jl, as
shown in Table 1. This suggests that the Monod kinetics is

a highly plausible model structure (Cranmer, 2023). These
models structures are depicted in Fig. 5. Model structures
less complex than the Monod kinetics underfit.

We also performed 5 random experiments, each consist-
ing of 3 time series, where the controls uk were drawn
from a uniform distribution, with minimum umin and
maximum umax. The data coming from these experiments
was analyzed the same way as the optimal experiments.
However, the Monod equation was not recovered in any
of the 5 random experiments. This shows that there is
an information gain by using optimal experimental design
techniques.

Table 1. Symbolic regression hall of fame after
three experiments. Monod kinetics has the

largest score.

Score Equation

3.604e+01 0.23468
4.571e-01 Cs * 0.010807
5.788e-02 sin(Cs * 0.011293)
7.005e-01 Cs / (Cs - -50.467)
2.787e+00 exp(-1.5505 / Cs) * 0.37874

3.076e+00 Cs / ((Cs - -4.631) / 0.42347)

1.140e-02 sin(Cs / ((Cs - -4.8269) / 0.43601))
4.483e-01 (Cs / ((Cs - -4.2621) / 0.42527)) - 0.0059018
2.075e-01 (Cs -(0.014069/Cs))/((Cs+4.4614)/0.42113)
1.474e-04 (Cs-sin(0.014091/Cs))/((Cs+4.4613)/0.42113)

7. COMPUTATIONAL DETAILS

All simulations are implemented using the Julia program-
ming language (Bezanson et al., 2017), in particular us-
ing the ModelingToolkit.jl framework (Ma et al., 2021).
All differential equations are solved using DifferentialE-
quations.jl (Rackauckas and Nie, 2017), specifically the
Rodas5P solver (Steinebach, 2023). The discontinuities
in the piecewise-constant controls are implemented us-
ing the discrete-time callback functionality of Differen-
tialEquations.jl. All optimization problems are solved us-
ing Optimization.jl (Dixit and Rackauckas, 2023). The
neural network fitting uses L-BFGS (Liu and Nocedal,
1989), on the L2-loss function. The controls are optimized
for 100 s using the adaptive de rand 1 bin radiuslimited
method (Feoktistov, 2006), from BlackBoxOptim.jl (Feldt
and Stukalov, 2018). If a differential equation fails to solve,
inside an optimization objective, then the worst possible
value for that objective is returned. A neural network with
two hidden layers with 5 units each is used. The hyperbolic
tangent is used as the activation function for the hidden
layers, while the sigmoid function is used for the output
layer. The network is implemented in Lux.jl (Pal, 2023).
Symbolic regression is implemented using SymbolicRegres-
sion.jl (Cranmer, 2023). Symbolic regression is allowed
to run for 1000 iterations, with parallelism disabled, and
deterministic mode enabled. The operators in the symbolic
search space consist of the exponential, sine and cosine
functions, as well as the addition, subtraction, multiplica-
tion and division functions. The top 10 model structures
are tracked, M = 10. Symbolic regression sometimes sug-
gests the same model structures in different forms, e.g. 1/1/x

and x. To protect against such duplicates, we do not track
structures of higher complexity, which have the same L2-
loss as a lower complexity model up to 5 significant digits.



Fig. 3. Second experiment. The three states of the bioreactor, and the missing physics µ. The blue solid lines corresponds
to the true system, while the blue dots correspond to measured values. The orange solid lines correspond to
predictions made by the UDE, while the orange dots correspond to the predicted values at measured Cs. The orange
dots not only represent predictions for the second experiment, but also the first. The dashed lines correspond to
predictions made by the plausible model structures. For the state V , all these lines coincide, and have been replaced
by a black line.

Fig. 4. Top: Optimal control for the third experiment.
Bottom: predictions made by the plausible model
structures.

Any hyperparameter not mentioned here keeps the default
value provided by aforementioned software packages.

The source code accompanying this paper can be found on
https://github.com/arno-papers/DYCOPS2025.

8. DISCUSSION

In (4) the only unknown part of the system is the function
ϕ. In many realistic scenarios, there will not only be
missing physics, but also parameters which much be tuned
to the experimental data. In theory, these cases can be cov-
ered by our methodology, by considering the parameters
as constant functions, which must be learned. However,
specialized experimental design techniques for precisely
estimating such parameters are well known (Franceschini
and Macchietto, 2008). The criteria for discovering missing

physics and estimating parameters precisely could then be
combined using multi-objective model-based experimental
design (Telen et al., 2012).

In our examples, the only design variable to be optimized
was the control u(t). In the model-based experimental
design literature, it is also common to optimize other
aspects of the design, such as measurement times, duration
of the experiment and initial conditions (Galvanin et al.,
2011). Incorporating these other aspects, would be a
straightforward modification of our methodology.

The missing physics of the bioreactor, µ, is a function
with a single input and output. This made it easy for us
to visualize the added value of the optimal design. How-
ever, the methodology proposed in this paper also works
for missing physics with multiple inputs and outputs. A
similar comment holds for the controls.

The different steps of our methodology: training the neural
network, performing symbolic regression on the neural
network, and discriminating between the suggested model
structures all have their own associated hyperparameters,
as detailed in section 7. Currently, these hyperparameters
are fixed throughout the entire experiment. A true on-
line experimental design methodology would require that
these hyperparameters are also tuned automatically. We
consider this automatic tuning of hyperparameters to be
one of the most interesting directions for future research.
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