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Abstract: A zonotope-based big data-driven predictive control (BDPC) approach is developed
to partition the nonlinear process behaviour (represented by an input-output trajectory set)
into multiple linear sub-behaviours using a two-step hierarchical clustering: Euclidean distance-
based clustering and linear subspace distance-based clustering. By approximating every linear
sub-behaviour as a zonotope, a data-driven interpolation is developed based on the convex
combination of zonotopes. During online control, a BDPC controller is designed by determining
an interpolated zonotope where its centre trajectory is closest to the online trajectory and
computing the control action subject to an optimisation problem. The proposed BDPC approach
is illustrated using a case study on controlling an aluminium smelting process.
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1. INTRODUCTION

The complexity of nonlinear processes leads to challenges
in building an accurate dynamical process model by first
principles and system identification methods (Hou and
Wang, 2013). Due to the vast amount of operational data
generated by industrial processes, data-driven control has
attracted recent research attention, which aims to design
controllers directly based on system data. The existing
data-driven control approaches can be categorised based
on data type: offline, online, and hybrid. For instance,
recurrent neural networks are trained using offline data
to capture process dynamics and are used for predictive
control (Wu et al., 2019a,b). Iterative learning control
uses hybrid data to learn a controller, where the track-
ing error approaches zero as the number of iterations
increases (Chen and Wen, 1999; Moore, 2012).
However, only a few data-driven control approaches fo-
cus on developing control strategies using a vast amount
of data trajectories. The big data approximating control
approach uses a big database to transform the control
problem into trajectory pattern matching (Stanley, 2018).
However, it is not realistic to store all possible trajecto-
ries. A random forests-based approach learns a nonlinear
process with a collection of local linear models in Wang
et al. (2019). However, the model bias is induced by linear
regression.
In this article, we propose a big data-driven predictive
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control (BDPC) approach in the behavioural systems
framework, which facilitates data-driven control through
describing a dynamical system by a collection of trajecto-
ries (Willems, 1991; Willems and Polderman, 1997). One
of the research lines relies on the fundamental lemma,
which states that all possible trajectories of a control-
lable linear time-invariant (LTI) system can be parame-
terised by a single trajectory (under persistency of excita-
tion) (Willems et al., 2005). Some data-driven predictive
control approaches restricted to LTI systems have been
proposed, e.g., conceptual framework (Markovsky and
Rapisarda, 2008), DeePC (Coulson et al., 2019), robust
control (Huang et al., 2023) and distributed control (Yan
et al., 2024). The linear tracking data-driven predictive
control can deal with mild nonlinear processes in Berberich
et al. (2022). A BDPC control approach has been pro-
posed for nonlinear processes using clustering in Han et al.
(2024a,b). The multi-view clustering of trajectories is for-
mulated as a weighting-dependent optimisation problem,
in which it is difficult to analyse the effect of individual
views on clusters. Furthermore, the approach selects clus-
ters during online predictive control, which cannot perform
data-driven interpolation.
The basic idea of this article is to use a divide-and-conquer
approach: partition the nonlinear process behaviour into
linear sub-behaviours represented by trajectory clusters.
Using the hierarchical clustering of input-output trajec-
tories (Hastie et al., 2009), we approximate every trajec-
tory cluster (linear sub-behaviour) as a zonotope. Since a
zonotope is a compact representation of a convex set and is



closed under linear mapping and Minkowski sum (Alanwar
et al., 2023; Kühn, 1998; Scott et al., 2016), we use it for
data-driven interpolation based on the convex combina-
tion. Finally, an online BDPC controller is designed by
determining an interpolated zonotope based on the online
trajectory and computing control actions subject to an
optimisation problem.
We present the preliminaries of the discrete-time be-
haviour framework and zonotope in Section 2. The pro-
posed approach for hierarchical clustering of trajectories,
zonotope-based approximation and interpolation, and on-
line BDPC are presented in Section 3. An illustrative ex-
ample is shown in Section 4. Section 5 gives the conclusion.

2. PRELIMINARIES

2.1 Notation

Let A† represent the Moore–Penrose pseudoinverse of
a real matrix A. Given a vector x, the weighted 2-

norm
√
x⊤Px and infinity norm are represented as ∥x∥P

and ||x||∞, respectively. The operators diag(d1, ..., dn)
and col(d1, d2) represent a diagonal matrix with entries
d1, .., dn and a vector stacking d1 over d2 vertically, re-
spectively. The trajectory w̃|[1,L] restricts the variable w to
the time interval [1, L], i.e., w̃|[1,L] := (w(1), w(2), ..., w(L))
and w(k) ∈ Rw,∀k ∈ [1, L].

2.2 Discrete-time Behavioural Systems Framework

The behaviour approach describes a dynamical system
by a collection of manifest variable trajectories (denoted
as w̃) and defines it by a triple Σ = (T,W,B), where
T ⊂ N denotes the time axis, W ⊂ Rw denotes the w-
dimensional signal space of manifest variables and B ⊂
WT denotes system behaviour (Willems, 1991; Willems
and Polderman, 1997). A discrete-time system behaviour
restricting the trajectory length to L steps is denoted
as B|L := {w̃|[1,L] | w ∈ B}. The discrete-time system
behaviour is LTI if it is a shift-invariant subspace. The
behaviour B is controllable if any past trajectory w̃p ∈ B
can be driven to any future trajectory w̃f ∈ B by a finite
length control trajectory (Markovsky and Dörfler, 2021).
We use Lw

c to represent the set of controllable discrete-
time LTI systems with dimension w.
Consider a trajectory w̃ ∈ B|T and define a Hankel matrix
of depth L as

HL(w̃) =


w(1) w(2) ... w(T − L+ 1)
w(2) w(3) ... w(T − L+ 2)
...

...
. . .

...
w(L) w(L+ 1) ... w(T )

 ∈ RLw×g.

(1)

Consider a trajectory set W̃ = {w̃1, ..., w̃Nd
} ⊂ B|T , a

mosaic-Hankel matrix HL(W̃) ∈ RLw×Ndg is defined as

HL(W̃) = [HL(w̃1) ... HL(w̃Nd
)] , (2)

where Nd denotes the number of trajectories. A trajectory
set W̃ is collectively persistently exciting of order L if
HL(W̃) is of full row rank. The extended fundamental
lemma states that all possible trajectories of the linear
sub-behaviour B ∈ Lw

c can be parameterised by the image
of a mosaic-Hankel matrix.

Lemma 1 (Extended Fundamental Lemma (van Waarde
et al., 2020)). Let B ∈ Lw

c . Consider an input-output

trajectory set W̃ := (Ũ , Ỹ) ⊂ B|T . If Ũ is collectively
persistently exciting of order L + n(B), then for all w̃′ ∈
B|L, there exists g ∈ RNdg such that

w̃′ = HL(W̃)g, (3)

where n(B) denotes the order of B (i.e., the smallest
dimension of state representations). The vector g in (3)
can be considered as selecting a trajectory from the
linear sub-behaviour. To deal with nonlinearity, the low-
rank approximation is typically performed on the Hankel
matrix/mosaic-Hankel matrix to approximate the true
linear sub-behaviour (Markovsky, 2008). For instance, the
relatively small singular values can be set to zero.

2.3 Zonotope

In this article, we use the zonotope as a convex set
representation to approximate trajectory clusters.
Definition 1 (Zonotope (Kühn, 1998; Scott et al., 2016)).
Given a centre c ∈ Rnx and a generator matrix G ∈
Rnx×ng , Z is a zonotope defined as

Z =

{
x ∈ Rnx |x = c+Gg, ||g||∞ ≤ 1

}
. (4)

We use Z = {c,G} to represent a zonotope. Given a
scalar α, then αZ = {αc, αG}. The Minkowski sum of
two zonotopes Z1 = {c1, G1} and Z2 = {c2, G2} is Z1 ⊕
Z2 = {x1 + x2|x1 ∈ Z1, x2 ∈ Z2}, which can be computed
as (Alanwar et al., 2023)

Z1 ⊕Z2 = {c1 + c2, [G1, G2]}. (5)

3. PROPOSED APPROACH

The section starts with clustering input-output trajecto-
ries to obtain trajectory clusters (representing linear sub-
behaviours). By approximating trajectory clusters as zono-
topes, a data-driven interpolation method is developed.
Finally, the online BDPC is formulated.

3.1 Hierarchical Clustering of Trajectories

This section aims to use hierarchical clustering to cluster
input-output trajectories based on two steps: Euclidean
distance of trajectories and linear subspace distance. Given
two T -length trajectories w̃1

|[1,T ] and w̃2
|[1,T ], the Euclidean

distance of two trajectories is defined as

dE(w̃
1, w̃2) =

∥∥∥w̃1
|[1,T ] − w̃2

|[1,T ]

∥∥∥ . (6)

The linear subspace distance is defined in terms of prin-
cipal angles. Given two linear subspaces HL(w̃

1) and
HL(w̃

2), the linear subspace distance is defined as (Ye and
Lim, 2016)

dS(HL(w̃
1),HL(w̃

2)) =

(
|n1 − n2|π2

4
+

min(n1,n2)∑
i=1

θ2i

) 1
2

,

(7)

where HL(w̃
1) ∈ Gr(n1, Lw) and HL(w̃

2) ∈ Gr(n2, Lw).
We use Gr(n1, Lw) and Gr(n2, Lw) to denote the Grass-
mannian of n1-dimensional subspaces and n2-dimensional



subspaces in RLw, respectively. We denote θi as the i-th
principal angle between HL(w̃

1) and HL(w̃
2), which can

be efficiently determined through singular value decompo-
sition (Björck and Golub, 1973).
The hierarchical clustering algorithm is presented in Al-
gorithm 1, which clusters trajectories based on Euclidean
distance in (6) firstly and linear subspace distance in (7)
subsequently. We obtain Nc trajectory clusters (represent-
ingNc linear sub-behaviours) after performing hierarchical
clustering onNd input-output trajectories of length T . The
centre trajectory of a cluster can be obtained by taking an
average of all trajectories within the cluster.

Algorithm 1 Hierarchical clustering of trajectories

1: Input: Nd input-output trajectories, thresholds ϵE
and ϵS .

2: Initialise a cluster containing Nd input-output trajec-
tories and the number of clusters Nc = 1.

3: Clustering based on Euclidean distance:
4: Find two trajectories w̃1

i and w̃2
i that have the max-

imum distance dmax
i in (6) in the i-th cluster, ∀i ∈

[1, Nc].
5: if there exists a cluster C⋆ such that dmax

⋆ ≥ ϵE then
6: Initialise two new clusters: C1

⋆ = {w̃1
⋆},C2

⋆ = {w̃2
⋆}.

7: if dE(w̃, w̃
1
⋆) ≤ dE(w̃, w̃

2
⋆), ∀w̃ ∈ C⋆ then

8: w̃ ∈ C1
⋆ .

9: else
10: w̃ ∈ C2

⋆ .
11: end if
12: Nc ← Nc + 1. Go to Step 4.
13: else
14: go to Step 16.
15: end if
16: Clustering based on linear subspace distance:
17: Find two trajectories w̃1

i and w̃2
i that have the max-

imum distance dmax
i in (7) in the i-th cluster, ∀i ∈

[1, Nc].
18: if there exists a cluster C⋆ such that dmax

⋆ ≥ ϵS then
19: Initialise two new clusters: C1

⋆ = {w̃1
⋆},C2

⋆ = {w̃2
⋆}.

20: if dS(w̃, w̃
1
⋆) ≤ dS(w̃, w̃

2
⋆), ∀w̃ ∈ C⋆ then

21: w̃ ∈ C1
⋆ .

22: else
23: w̃ ∈ C2

⋆ .
24: end if
25: Nc ← Nc + 1. Go to Step 17.
26: else
27: go to Step 29.
28: end if
29: Output: Nc trajectory clusters.

3.2 Zonotope-based approximation and interpolation

Every trajectory cluster can be approximated as a zono-
tope since (i) each cluster represents a linear subspace; (ii)
within every cluster, all trajectories are close to each other
in the Euclidean space. By deviating all trajectories of the
i-th cluster from the i-th cluster centre trajectory (denoted

as ∆W̃i) and performing appropriate low-rank approxi-

mation, we obtain a mosaic-Hankel matrix HL(∆W̃i) for
the i-th cluster. Then, the i-th trajectory cluster can be
approximated as a zonotope, that is,

Zi = {w̃|w̃ = c̃i + HL(∆W̃i)g, ||g||∞ ≤ 1}, (8)

where c̃i denotes the L-length centre trajectory of the i-th
cluster. One possible solution is to take an average of all
possible L-length segments of the T -length trajectory. We
use Zi = {c̃i,HL(∆W̃i)} to represent the i-th cluster.
Since finite trajectory clusters are obtained by hierarchical
clustering, we use the convex combination of zonotopes for
interpolation. Supposing that there are Nc zonotopes and
considering them as the vertices of a convex polytope, the
interpolated zonotope can be computed as

Z̄ = (α1Z1)⊕ (α2Z2)⊕ · · · ⊕ (αNcZNc), (9a)
Nc∑
i=1

αi = 1, αi ≥ 0, (9b)

where Z̄ = {˜̄c, H̄L(∆W̃)}. Eq. (9) provides a data-driven
interpolation that determines the interpolated zonotope
by a linear combination of Nc zonotopes obtained from
clustering.

3.3 Online Big Data-driven Predictive Control

The online BDPC has two steps within each receding
horizon. Firstly, it determines the interpolated zonotope
Z̄ = {˜̄c, H̄L(∆W̃)} based on the online trajectory w̃. It
aims to find an interpolated zonotope, where the centre
trajectory is closest to the online trajectory w̃. It can be
formulated as

min
α1,α2,...,αNc

||w̃ − ˜̄c|| (10a)

s.t. (9). (10b)

The second step is to predict the future step of manifest
variables by a mosaic-Hankel matrix and implement the
control actions into the process. We predict one future step
in the current horizon and redetermine the interpolated
zonotope in (10) in the next horizon. In this article, we
use the following partition and permutation of the centre
trajectory and Hankel matrix of an interpolated zonotope:

˜̄c ∼
[
˜̄cp
˜̄cf

]
, H̄L(∆W̃) ∼

∆Ūp

∆Ūf

∆Ȳp

∆Ȳf

 , (11)

where p and f denote “past” and “future”, respectively,
and ∼ denotes the equivalence under a coordinate permu-
tation. We denote the deviation trajectory as ∆w̃ = w̃− ˜̄c.
To drive the online trajectory w̃ to a reference trajectory
w̃r = (ũr, ỹr), an optimisation problem at the k-th step is
formulated as

min
∆ũ(k)

∥ỹ(k)− ỹr(k)∥Λy
+ ∥ũ(k)− ũr(k)∥Λu

(12a)

s.t. ∆ỹ(k) = ∆Ȳf

∆Ȳp

∆Ūp

∆Ūf

† ∆ỹ|[k−L+1,k−1]

∆ũ|[k−L+1,k−1]

∆ũ(k)

 (12b)

[
ũ(k)
ỹ(k)

]
=

[
∆ũ(k)
∆ỹ(k)

]
+ ˜̄cf , (12c)

where the weights Λu and Λy are positive definite.
Eq. (12b) predicts the future deviation output using the
least squares method. The optimisation can be readily
solved by MATLAB toolboxes, e.g., YALMIP (Löfberg,
2004) and SeDuMi (Sturm, 1999). The online BDPC is
summarised in Algorithm 2.



This article focuses on the zonotope-based trajectory clus-
ter interpolation and online predictive control implementa-
tion. Stability conditions will be developed in future work.
One possible solution is to develop incremental dissipativ-
ity and stability conditions similar to Han et al. (2024a).

Algorithm 2 Online BDPC

1: Input: Nc zonotopes, weights Λu and Λy.

2: Find Z̄ ={˜̄c, H̄L(∆W̃)} in (10) at the k-th step.
3: Compute the control action ũ(k) in (12) and imple-

ment it into the process.
4: k ← k + 1, go to Step 2.

4. ILLUSTRATIVE EXAMPLE

We illustrate the proposed approach by controlling an
aluminium smelting process. We only used the model to
collect input-output data trajectories in this study. The
process model has not been used for controller design.
The section starts with introducing an aluminium smelting
process. Then the simulation results are presented.

4.1 Aluminium Smelting Process

Aluminium is produced by reacting dissolved alumina
powders with carbon anodes in a reduction cell (Figure 1),
where the dominant chemical reaction:

2Al2O3(diss) + 3C(anode) → 3CO2(g) + 4Al(l). (13)

In a reduction cell, the total line current is kept constant
to control the reaction rate. A parallel electrical circuit is
established in the cell due to the parallel connection of the
anodes. Figure 1 shows that the cell consists of 36 feeding
regions (every region has an anode) and 3 alumina feeders.
The cell can be partitioned into 3 zones, where each zone
has an alumina feeder. In this study, we keep the constant
total line current as 425 kA and anode-cathode distance
ACD as 2.8 cm. Besides, we adopt the sampling period
as 1 minute to omit the fast-dissolving alumina dynamics.
Then the process model of alumina dissolution in the i-th
feeding region (i ∈ [1, 36]):

Cu
i (k + 1) = Cu

i (k)− kdC
u
i (k) +

gi(k)r

mi
, (14a)

Cd
i (k + 1) = Cd

i (k) + kdC
u
i (k)

+
gi(k)(1− r) +Me

i (k)− FaAl2O3
(Iai )(k)

mi
,

(14b)

where Cu
i , C

d
i , I

a
i , M

e
i , mi and gi denote the undissolved

alumina concentration, dissolved alumina concentration,
anode current, dissolved alumina exchange induced by the
mass flow, mass of bath and amount of fed alumina in
the i-th region, respectively. We use r and Kd to denote
two constants: weight ratio between the fast and slow-
dissolving alumina, and dissolution rate, respectively. The
alumina consumption rate function FaAl2O3(·) is defined
as

FaAl2O3
(I) =

I ×MAl2O3
× η

F × z
, (14c)

where F, z, η,MAl2O3 denote the Faraday constant, num-
ber of electrons transferred, current efficiency and molar
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Fig. 1. The reduction cell configuration.

mass of alumina, respectively.
The feed rate control of the aluminium smelting process
aims to regulate the average alumina concentration around
a setpoint. The manipulated variables are the feed rate
of three zones, which are typically controlled by a logic
control strategy of four feeding windows in Figure 2 in
the industry. The base-feed can be computed theoretically
by the reaction rate. The average alumina concentration
can be roughly controlled by regulating the cell voltage
around a setpoint by manipulating the feed rate of three
zones. The output variables of the process are the anode
current of three zones and a common cell voltage, which
can be computed as

Cd
avg(k) =

1

36

36∑
i=1

Cd
i (k), (15a)

I l =

36∑
i=1

Iai (k), (15b)

V c(k) = h(I l, ACD,Cd
avg(k), θ), (15c)

where Cd
avg, I

l and V c denote the averaged alumina con-
centration, total line current and cell voltage, respectively.
h(·) and θ denote a nonlinear function and cell design
and operation parameters, respectively. See Grjotheim and
Welch (1988) and Yao et al. (2017) for details.

4.2 Simulation results

In this study, we used 100 input-output data trajectories.
The proposed BDPC approach was used to control the an-
ode currents of three zones and cell voltage by manipulat-
ing the feed rate of three alumina feeders. We assumed that
the alumina fed by each feeder is uniformly spread across
all the regions within the zone. The collected data trajec-
tories were 100 minutes and had different feeding window
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Fig. 3. Control performance of the proposed BDPC ap-
proach.

lengths and initial conditions of averaged alumina concen-
tration. All manifest variables were normalised globally
in the trajectory set. By setting L = 7, ϵE = 10 and
ϵS = 2, we obtained 7 clusters from hierarchical clustering
in Algorithm 1. We set the reference points as

yr = col(Izr1 , I
z
r2 , I

z
r3 , V

c
r ) = col(167.2, 94.3, 163.5, 4.02),

ur = col(95.88, 108.15, 93.76),

where Izri denotes the i-th zone reference anode current.
The units of Izri , V c

r and ur are kiloampere (kA), volt
(V) and %, respectively. By setting the weights Λu =
diag(1,1,1) and Λy = diag(45,45,45,220), the tracking error
of anode current of three zones and cell voltage, and the
feed rate of three zones are shown in Figure 3. It has
been demonstrated that the anode currents of three zones
and cell voltage have converged to the setpoint using the
proposed BDPC approach.

5. CONCLUSION

We developed a BDPC approach for nonlinear processes
using hierarchical clustering of input-output trajectories
and zonotope-based approximation of trajectory clusters.
A data-driven interpolation method has been developed
based on the linear combinations of zonotopes. The online
BDPC controller determines an interpolated zonotope,
where the centre trajectory is closest to the online tra-
jectory. The online control action is computed using the
interpolated Hankel matrix and centre trajectory subject
to an optimisation problem. The example of controlling an
aluminium smelting process has demonstrated that the an-
ode currents of three zones and cell voltage have converged
to the setpoint using the proposed BDPC approach.
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