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Abstract: The problem of estimating the protein content in dough during kneading in a
farinograph is addressed exploiting underyling structural observability of a suitable model
describing the biochemical reaction network of different protein fractions involved in the
formation of the gluten network in the dough and its deterioration due to excessive kneading.
Based on an observability analysis for the model a reduced order geometric observer and an
extended Kalman Filter are designed and tested with experimental data from dough kneading
experiments. The results highlight the potential of incorporating such model-based process
analytic tools for improved monitoring of the underlying biochemical mechanisms involved in
dough formation, and for providing an additional means for estimation of protein content in
flour during standard kneading processes.

Keywords: Dough development, process analytic technology, state estimation.

1. INTRODUCTION

The analysis of flour and its effects on dough preparation,
and thus later for baking product quality is a key task
in cereal-based food industries. A typical approach for
this task is to use so-called farinograph units (see Figure
1) in which a defined amount of water is added to the
flour while kneeding with a fixed speed. This analysis
tool is very similar to the mixograph test (Martinant
et al., 1998). As in the flour in presence of water different
kind of biochemical processes start during mixing leading
to the formation of three-dimensional network of gluten
proteins the viscosity changes over time. The farinograph
basically measures the required torque to ensure a constant
kneading velocity and thus provides a measure for the
dough viscosity.

While typically in food engineering physical and chem-
ical analystic methods, as well as chemometry are well
established for flour and dough analysis, the employ-
ment of mathematical models lacks relatively far behind
(Van Boekel, 2008; Hitzmann et al., 2015). For dough
development there exist anyway some important excep-
tions as, e.g., (Roman-Gutierrez et al., 2002; Belton, 2012;
Migliori and Correra, 2013; Hermannseder et al., 2017). In
these studies mathematical models were proposed based on
the bio-chemical insight into the dough formation process
(see, e.g., Belton (1999) for the underlying mechanisms),
experimentally validated for different kinds of flours, and
the model parameters put in perspective with baking
product quality measures using regression techniques. A
particular outcome of these analysis is that if the initial
protein content is sufficiently well known, a value that can

Fig. 1. Farinograph unit employed at the University of
Hohenheim for the experimental part of this study.

be rather well estimated using, e.g., NIR spectrometry
and chemometrics (see, e.g., (Ranzan et al., 2014)), the
optimal dough development time to reach a desired dough
viscosity can be calculated. This potentially opens further
interesting options of application in process optimization
and decision making for operation and production condi-
tions. The drawback of this idea is at the same time that
if there is an error in the initial condition this will provide
a potentially larger error in the prediction of the dough



development time and other quantities derived therefrom.
Besides this consideration an additional question occurs,
namely, whether it is possible to estimate the protein con-
tent from the measurement of the viscosity, or the torque
in a farinograph during the running kneading process.

From other areas of process monitoring and control the
problem of unknown initial conditions is typically han-
dled using state estimation schemes, like state observers
(Alvarez and Lopez, 1999; Jerono et al., 2021) or stochas-
tic filters (Gelb, 1978; Bastin and Dochain, 1990). These
approaches are not yet that well established in the food
sector in general, and in cereal processing in particular, as
they are in chemical and biochemical process engineering
applications (Van Boekel, 2008; Hitzmann et al., 2015).
One reason for this is the lack of detailed models with real-
time capability and well-established model parameters.
The latter issue is central to food engineering, as the raw
material is subject to strong variations, e.g., fertilization
and climatic conditions (Rekowski et al., 2021; Dier et al.,
2022). Here, again, approaches from state and parameter
estimation can provide interesting solutions.

Having these considerations as point of departure, in the
present study the state estimation problem for dough de-
velopment during kneading is addressed. For this purpose
the model proposed in (Hermannseder et al., 2017) is
employed. First, an observability analysis is carried out,
focussing on the structural observability. Then a geometric
observer and an extended Kalman Filter are designed that
take as a measurement the dough viscosity measured in
Brabender units in the employed farinograh. Both state
estimation schemes show a similar performance when com-
pared using experimental data.

2. DOUGH FORMATION MODEL

Consider the model for dough development as proposed
in (Belton, 2012) and extended in (Hermannseder et al.,
2017)

ẋ1 = −k1x1 (1a)

ẋ2 = k1x1 − k2x
2
2 (1b)

ẋ3 = k2x
2
2 − k3x

2
3 (1c)

ẋ4 = k3x
2
3 − k4x4 (1d)

ẋ5 = k4x4 (1e)

y =

5∑
k=2

ciNi = cTx (1f)

with x1 denoting the concentration of proteins in the
unhydrated state, x2 for those in the unstrained state,
x3 for those in the strained state, and x4, x5 for those
in an intermediate and broken state, respectively. The
measurement y corresponds to a measure of viscosity
as provided by the farinograph standard and given in
Brabender units BU.

In compact notation for later use the system is written as

ẋ = f(x) (2a)

y = cTx. (2b)

For the dynamics (1) the following Lemma, which is
the manifestation of the underlying mass conservation, is

straight forward to prove, but provides important insight
for the subsequent analysis.

Lemma 1. For initial condition x0 with xo,i ≥ 0, i =
1, . . . , 5 the solutions of (1) remain positive, i.e., 0 ≤ xi(t)
for all t ≥ 0. Furthermore, it holds that (i) m(t) =∑5

i=1 xi(t) is constant, (ii) limt→∞ xi(t) = 0 for i =
1, . . . , 4, as well as (iii) limt→∞ x5(t) = m(0).

Proof : Positivity of the solutions can easily be verified by
looking at the sign of ẋi at xi = 0, implying non-negative
values at these boundaries of the hyperquadrant R≥0. This
implies that the vector field everywhere on these bound-
aries points into the hyperquadrant. Further, it holds that
x1(t) converges to zero exponentially. From the structure
of xi, i = 2, 3, 4 the input-to-state stability (Sontag, 1989;
Sontag and Wang, 1995) follows with respect to xi−1,
implying the input-to-state stability of the whole cascade
consisting of x2 to x4. Given that x1 → 0 the exponential
asymptotic stability of the cascade system follows. Given
that with m as defined in the Lemma it holds that ṁ = 0
for all t ≥ 0 one concludes that limt→∞ x5(t) = m(0) as
claimed. 2

Based on these properties in the following only the subset
of positive states is considered as state space, i.e.,

x(t) ∈ X := {x ∈ Rn | xi ≥ 0, i = 1, . . . , 5} ⊂ R5.
(3)

3. STRUCTURAL OBSERVABILITY

In this section the structural observability Lin (1974); Dion
et al. (2003); Liu et al. (2012) of the dough development
model (1) is analyzed in the understanding that the
structural observability is a necessary condition for the
local observability and provides an important basis for
design of an observer–based process monitoring using state
estimation schemes.

Definition 1. The system is structurally observable if it
is completely observable for at least one state–parameter
pair.

For the analysis of the structural observability the notion
of structure graph Γ(x) = (V,E(x)) of (1) at x ∈ X
is employed. The structure graph consists of the vertex
set V = {v1, . . . , v5} where vk is associated to the state
xk, k = 1, . . . , 5, and the directed edge set E(x) =

{(vj , vi)|∂fi(x)∂xj
̸= 0}. Note that the edge set in principle

depends on the value of x, given that ∂fi(x)
∂xj

(x) can

become zero in case of vanishing concentration values
xj due to nonlinear reaction rates in (1). The structure
graph is extended by introducing the output vertex (see
Fig. 2). Concerning the question whether the output of
a node contains information on another node can than
be answered by moving in the inverse direction of the
directed edges. A sufficient condition for the structural
observability is then the existence of an information path,
i.e., moving in the inverse direction of the edges, from the
measured node toward all other nodes without loops.

It should be noted that the so performed structural analy-
sis yields a generic property for a system that depends only
on the intrinsic interconnection structure and not on the
particular parameter values and the particular state vector
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Fig. 2. Structure graph associated to the dough formation
model (1).

x(t) ∈ X where the partial derivatives are evaluated. It
only depends on whether the influence of xj on xi is not
always zero, thus also allowing for trajectories starting
with xi(0) = 0. Indeed, if this relation is not zero for
at least one parameter and state, then due to continuity
reasons it will be nonzero for almost all values of x and
parameters, up to those lying on a specific hyperplane of
the state–parameter space with measure zero (cp. (Dion
et al., 2003; Liu et al., 2012)).

Based on these notions and the structure graph shown in
Figure 2, the following result is obtained.

Theorem 1. System (1) is structurally observable.

Proof: By inspection of the structure graph in Fig. 2 it
can be seen that a continuous path exists connecting all
nodes starting from y over x5 to x1 as long as the directed
edges (vi, vj) between all state nodes exist. The fact that
these connections exist for at least one parameter set and
one state vector x follow directly from the model (1). 2

Note that given the structural observability, it is in princi-
ple possible to estimate all protein concentrations from the
torque measurement y. In particular, one can thus estimate
the total initial protein content, being the sum m over all
protein fractions, which according to Lemma 1 remains
constant. The associated problem of state observer or
estimator design is addressed in the next section.

4. STATE ESTIMATION

In this section the problem of designing a suitable state
estimation scheme to determine the protein content from
the measured torque in the farinograph is addressed. For
this purpose Lemma 1 is exploited in the sense that the
total protein content m =

∑5
i=1 xi remains constant over

time. Both, a geometric observer exploiting the structure
of the model (1) analytically, and an EKF are designed, in
order to enable a later comparison.

4.1 Geometric observer

Provided the structure of a reaction chain starting from
x1 and the fact that at the start of the process it holds
that xi(0) = 0 for all i = 2, 3, 4, 5, it becomes clear that,
under the assumption of well identified model parameters,
if the first states can be quickly reconstructed, then the
remaining states can be predicted correctly. In addition,
on the basis of Lemma 1, if the estimation error in the first
states converges exponentially to zero, then the remaining
estimation errors will converge at least asymptotically.
Furthermore, as x1 does not influence the measurement, it
makes sense to focus the correction of an observer on the
second state x2, which directly is reflected in the measured
viscosity according to equation (1f).

In consequence to these considerations, in the following a
partition of the state vector x(t) into corrected

xo(t) = x2(t)

and uncorrected

xn(t) = [x1(t), x3(t), x4(t), x5(t)−m]T

components is introduced, with m as defined in Lemma 1.
The associated dynamics can be written in the following
form

ẋo = fo(xo,xn) (4a)

ẋn = fn(xo,xn) (4b)

y = h(xo,xn). (4c)

Note that with this definition of xn it follows from Lemma
1 that limt→∞ [xo(t) xn(t)] = 0.

Based on this state partition a reduced order geometric
observer is proposed with the correction gain ω > 0 in
the usual form (see, e.g., (Alvarez and Lopez, 1999; Tronci
et al., 2005; Jerono et al., 2021))

˙̂xo = fo(x̂o, x̂n)−
(
∂O
∂xo

(x̂)

)−1

ω (h(x̂o, x̂n)− y)

(5a)

˙̂xn = fn(x̂o, x̂n) (5b)

with the partial observability map

O(x̂) = h(x̂o, x̂n) = c2x2 +
∑

i/∈{1,2}

cixi. (5c)

The associated estimation error dynamics can best be an-
alyzed employing the diffeomorphic state transformation

z = Φ(x) :=

[
h(x0,xn)

xn

]
, y = z1 (6)

with dynamics

ż1 = φ1(z) :=
∂h(x)

∂x
f(x)|x=Φ−1(z) (7)

ẋn = φn(z) := fn

 1

c2

z1 −
∑

i/∈{1,2}

cixi

 ,xn

 .

(8)

Considering the estimation error in the transformed coor-
dinates, i.e., z̃ = ẑ − z, it holds that

˙̃z1 = −ωz̃1 + φ̃1(z̃1, z̃n; z) (9a)

˙̃xn = φ̃n(z̃1, x̃n; z) (9b)



with

φ̃1(z̃1, z̃n; z) := φ1(z + z̃)− φ1(z) (9c)

φ̃n(z̃1, z̃n; z) := φn(z + z̃)−φn(z), (9d)

with

φ̃i(0,0; z) = 0 ∀ z ∈ R5
≥0, i = 1, . . . , 5. (9e)

revealing the underlying interconnection structure of the
observation error dynamics consisting of two subsystems,
associated to z̃1 and x̃n, respectively.

Regarding the first subsystem, it holds true that

z̃1(t) = e−ωt

(
z̃1(0) +

∫ t

0

eωτ φ̃1(z̃1(τ), z̃n(τ); z(τ))dt

)
.

Introducing

σ1(t) := e−ωt
∣∣∣z̃1(0) + ∫ t

0

eωτ φ̃1(z̃1(τ), z̃n(τ); z(τ))dt
∣∣∣

From this it follows that

|z̃1(t)| ≤ σ1(t), ∀ t ≥ 0.

The dynamics of σ1 in turn satisfy

σ̇1 ≤ −ωσ1 + |φ̃1(z̃1, z̃n; z)|. (10)

In virtue of the mean value theorem (in its differential
form) there exists an 0 < η < 1 so that with

ξ = ηz + (1− η)ζ

it holds that

φ1(z)− φ1(ζ) = ∇φ1(ξ)(z − ζ) (11)

=
∂φ1

∂zo
(ξ)(z1 − ζ1) +

∂φ1

∂zn
(ξ)(zn − ζn) (12)

implying that at least locally, i.e., over some subset of the
state space that basically is a design degree of freedom,
there exist constants l1, ln so that an upper bound for the
above difference can be found as

|φ1(z)− φ1(ζ)| ≤ l1|z1 − ζ1|+ ln∥zn − ζn∥. (13)

In consequence it holds that

σ̇1 ≤ −ωσ1 + l1|z̃1|+ ln∥x̃n∥
≤ −(ω − l1)σ1 + ln∥x̃n∥

where the inequality (13) is employed. Using the compar-
ison lemma (Khalil, 1996) this implies the input-to-state
stability of z̃1 with respect to x̃n in the case that

ω > l1. (14)

For the second subsystem it holds in virtue of Lema 1 that
the corresponding solution x̃n(t) = ϕ̃n(t, z̃1, z̃0) satisfies
for z̃1 = 0

lim
t→∞

∥x̃n(t)∥ = lim
t→∞

∥ϕ̃n(t, 0, z̃0)∥ = 0. (15)

Note that this property alone is not sufficient for proving
the input-to-state stability of the second subsystem with
respect to the first one (see, e.g., Sontag and Wang
(1995)). In case this property would be ensured one still
has to analyze the corresponding small-gain condition to
conclude the asymptotic stability of the two-subsystem
feedback interconnection (9). This analysis goes beyond
the scope of the present paper and instead the convergence
behavior is further analyzed for the given experimental
setup and compared to an EKF, as outlined in the next
section.

Remark 1. One could in principle design a geometric ob-
server with correction in all states, but this would involve

the inversion of the observability map, which at points
where xi(t) ≈ 0 particularly for i = 2, 3 will lead to ill-
conditioning and lack of numerical robustness, due to the
quadratic dependency of the reaction rates on these states.

4.2 Extended Kalman Filter

In addition to the above designed geometric observer a
continuous-time extended Kalman Filter (EKF) (Gelb,
1978; Reif et al., 2000) is proposed for comparison. Partic-
ular properties of the EKF that are useful here are the facts
that (i) the EKF does not explicitely require an inversion
of the observability map, and (ii) besides an estimate
x̂(t) for the state vector, it provides an explicit estimate
for the associated estimation error covariance P (t), under
the assumption that x̂(t) − x(t) ∼ N (0, P (t)) as long as
x̂0 − x0 ∼ N (0, P0). Considering process model and mea-
surement uncertainties modeled as Gaussian distributed
additive zero mean white noise with covariances Q and R,
respectively, the EKF is defined by the the equation set

Ṗ = ATP + PA+Q− PcR−1cTP, (16a)

A =
∂f

∂x
(x̂) (16b)

˙̂x = f(x̂)− PcR−1
(
cTx− y

)
(16c)

with the associated initial conditions x̂(0) = x̂0 and
P (0) = P0. The outcome of the EKF can thus be inter-
preted as an approximation of the associated state esti-
mation probability density function in form of a Gausian
distribution N (x̂(t), P (t)).

This stochastic interpretation of the estimate of the EKF
can be particularly useful taking into account different
sources of uncertainty in the considered model, e.g., on
temperature variations, oxygen increase within the dough
and the parallel microbiological mechanisms due to yeast
fermentation starting already during kneading providing
different products, in particular CO2.

5. RESULTS

The two state estimation schemes designed above, i.e., the
reduced order geometric observer and the EKF have been
evaluated with experimental data obtained in a Farino-
graph AT from Brabender (now Anton Paar) using flour
of type Bussard following standard procedures for deter-
mining the amount of water added to the flour before
kneading. The experiment was carried out three times
and the resulting mean value is used for the subsequent
analysis. The model parameters have been slightly adapted
from (Hermannseder et al., 2017) employing fmincon in
Matlab for parameter optimization. The resulting pa-
rameters are listed in Table 1. Note that the for parameter
estimation the initial value for unhydrated protein content
x1,0 = 13.4 was used, which was determined separately
using total protein content analysis of the flour.

The geometric observer and the EKF have been imple-
mented in Matlab and solved with ode45. For this pur-
pose the experimental data have been interpolated at the
evaluation time steps of the solver using interp1.

The initial condition of the simulation model without
correction, the geometric state observer (with ω = 10)



Table 1. Parameters for the dough formation
model (1) and initial conditions.

Parameter value

k1 0.0471
k2 0.0120
k3 0.0089
k4 0.0006
c2 29.2865
c3 0.0019
c4 42.5505
c5 25.2435
x1,0 13.4
x̂1,0 5

and the EKF were set erronously to validate the correction
mechanisms of the two state estimation schemes. For this
purpose the value of x̂1,0 = 5 was used, leading to an
underestimation of the resulting viscosity, measured here
by the torque of the kneading unit. This can be seen in
Fig. 3, showing the experimental value with triangles and
the model-based simulation with erronous initial condition
with a dotted line.

Fig. 3. Torque evolution (in BU) for the experiment with
measurement (triangles), model simulation (dotted
line), reconstruction from the reduced order geomet-
ric observer (red continuous line), the EKF (yellow
continuous line) and its ±3σ certainty interval.

The resulting predictions of the measurement using the
geometric state observer and the EKF are also shown in
Fig 3, with the geometric observer prediction in red and
the EKF in yellow. It can be appreciated that almost
no difference is visible between both methods regarding
the measurement. In addition to the estimated value the
±3σ certainty interval evolution of the EKF is included,
where σ is calculated using the estimation error covariance
matrix P calculated by the EKF according to (16) as

σ =

5∑
i=2

ciσii, σ2
ii = Pii, i = 1, . . . , 5. (17)

In addition to the comparison regarding the experimental
measurement, the state evolutions of the protein fractions
x1, . . . , x5 are shown in Fig. 4. The model simulation

without correction is shown as dotted lines, the state
estimates of the reduced order geometric observer by the
red lines and the ones of the EKF by the yellow lines,
together with the related ±3σii certainty intervals. It can
be seen from the figure that different state estimates are
obtained using the EKF and the geometric observer, due
to the different form of measurement injection, which for
the geometric observer only introduces a correction of the
second state variable x̂2. The final value of the total protein
content m (see Lemma 1) obtained with the geometric
observer was m̂ = 13.5, with the actual one determined
using offline analysis given by x1(0) = 13.4. The EKF
actually provided the same estimate of the total protein
content.

Fig. 4. State evolution of the model simulation (dotted),
the reduced order geometric state observer (red) and
the EKF (yellow) with ±3σi, i = 1, . . . , 5 certainty
interval for the evaluation with experimental data.

6. CONCLUSIONS

Using a model that has been previously proposed in the
literature to describe the change of viscosity during dough
kneading, measured through the necessary torque to en-
sure constant kneading speed, in dependence of the con-
centration of different protein fractions, from unhydrated
to hydrated, strained and broken, it is shown that such
protein concentrations can be effectively estimated em-
ploying and adapting typical state estimation schemes.
For this purpose, first the structural observability of the
considered model is established, exploring the intrinsic



reaction mechanisms yielding information content in the
measurement signal. Then a geometric observer and an
EKF are designed and tested using experimental data
obtained with a farinograph. The study thus showcases
the potential of using model-based analysis and monitoring
tools in cereal processing in particular, and food engineer-
ing in general.

Having the contributions of the present study as points of
departure, future studies should further exploit the model
considered here to improve the convergence results, and
evaluate its usefulness in predicting the outcome of dough
kneading experiments, in particular the rheological proper-
ties by additionally measuring dough viscosity separately,
e.g., using a rheometer. Adaptations and extensions of the
considered model should therefore be considered as well,
and the results of the present study extended accordingly.
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