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Abstract: Post-Combustion CO2 capture has been a major focus for decades in efforts to reduce
global warming. In this study, CO2 emissions from a coal power plant are analyzed taking into
account an existing process available in Aspen Hysys. In this paper, the main objective is to
identify the operating conditions that result in an economical operation of the process. Since the
process is complex, instead of relying on a first-principle-based steady-state model, a data-driven
approach via a wavelet neural network was considered because of its linearity with respect to the
parametric structure. This allows for faster training and provides accurate predictions. Although
the model is accurate, due to changes in operating conditions in a process plant, a mismatch
between the actual plant output and the predicted model output may exist. To account for
this mismatch, Bayesian optimization is employed using Gaussian process regression, which
estimates both the mean value and uncertainty of the mismatch. The trust region approach
is applied to balance the crucial factors of exploration and exploitation. The efficacy of the
proposed method is demonstrated via a Benoit system and a PCC process.
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1. INTRODUCTION

According to the International Energy Agency, coal rep-
resents more than a third of global electricity generation,
although it is the most carbon-intensive fossil fuel (Inter-
national Energy Agency, 2024). The emission of CO2 from
coal fired power plants is a significant contributor to the
global warming. To address this issue, renewable energy-
based power generation has gained significant attention
in recent years. Since the complete conversion from fossil
fuels to renewable energy takes time, reducing global CO2
emissions, particularly through post-combustion CO2 cap-
ture, has been considered a key factor in mitigating global
warming.

The primary technologies for CO2 capture after combus-
tion are classified into two categories: solvent-based and
solid sorbent-based methods (Bhattacharyya and Miller,
2017). Among these, post-combustion CO2 capture (PCC)
using amine-based solvents is the most commonly utilized
at an industrial scale to mitigate CO2 emissions. Owing to
the high flow rates and low CO2 concentrations in the flue
gas, the solvent-based PCC process demands a significant
amount of heat for solvent regeneration, which poses a
major challenge to its large-scale implementation. Due to
this, it creates a net financial burden for the associated
upstream power plants, where profit maximization is a
priority (Wu et al., 2020). To minimize economic costs
in real-time operations, it’s crucial to identify the opti-

mal operating conditions of the process plant via process
optimization.

The Plant optimization is primarily achieved through two
key approaches: Economic Model Predictive Control (Ellis
et al., 2014) and Robust Real-Time Optimization meth-
ods (Darby et al., 2011). Economic Model Predictive Con-
trol (EMPC) integrates optimization and control objec-
tives into a single framework, wherein a performance cri-
terion which is directly related to the economic operation
of the system is considered. The EMPC optimization tech-
niques rely on a dynamic model (unsteady-state model)
and are hence typically computationally demanding. On
the other hand, RTO utilizes a steady state model of the
plant and identifies the optimal process parameters.

The steady-state model utilized in RTO can be derived
from two methods: (i) First Principle approach, and (ii)
Data Driven Approach (Wiebe et al., 2018; Chen et al.,
2013). A comprehensive understanding of plant opera-
tions is essential for the first-principles approach (Pani
and Mohanta, 2011); however, it is often impractical to
possess complete knowledge of all aspects of the plant
to develop a first-principles model. Thus, the data-driven
RTO approach is employed in this paper for identifying the
optimal operating points that minimizes the operational
cost of a PCC plant. Wavelet neural networks (WNNs)
are preferred due to their ability to efficiently handle non-
linear processes. Owing to its linear-in-parametric form
makes WNNs faster to train and implement (Varanasi
et al., 2022).



In a typical process plant, owing to the presence of noise or
through the drift in operating conditions of the process, a
mismatch often occurs between the model and the actual
plant. To handle this mismatch, Modifier adaptation (MA)
techniques are used. MA subject the model into a non-
linear optimization problem which is solved at each RTO
iteration. Various variation of MA are used in a typical
process plant optimization. The authors in Singhal et al.
(2016) used quadratic surrogates as modifier adapters for
the predicted cost and constraint functions. The authors
in de Avila Ferreira et al. (2018) explored the use of
Gaussian processes (GPs) as the cost and constraint mod-
ifiers. This idea of Gaussian process regression along with
employing the concept of trust-region, captures the uncer-
tainty. Further exploration is guided through acquisition
functions while keeping constraints within the acceptable
range del Rio Chanona et al. (2021).

The objective of this paper is primarily more focused
on finding the optimal point that optimizes the overall
operational cost of the plant. For the PCC process, a
specific objective is to determine the optimal flow rates of
lean MEA solvent and Make-up water that minimizes the
operational cost of the plant while ensuring the constraint
on streams flow rate. To obtain a steady-state model,
a data-based approach through WNNs is incorporated.
A bayesian optimization strategy via a Gaussian process
regression is employed to account for the model-plant
mismatches.

The rest of the paper is organized as follows: In Section 2, a
description of post-combustion CO2 capture (PCC) using
amine-based solvents, the economic objective of the PCC
process alongside the optimization formulation is given.
In Section 3, details of WNNs, Gaussian process regression
model and the proposed methodology is given. The efficacy
of the proposed approach is demonstrated by considering
two case studies: a benoit system and a MEA based CO2

capture process in Section 4 and the conclusions are drawn
in Section 5.

2. MEA-BASED CO2 CAPTURE PROCESS

2.1 Process description

A typical CO2 capture plant consists of two components:
an absorber and a stripper. In the absorber, flue gas
flows upward while a lean MEA solvent flows downward
in counter-current fashion. As they interact, the amine
absorbs CO2 from the gas through a chemical reaction,
leaving the cleaned gas to be vented from the top. The
CO2-rich solvent is then directed to a heat exchanger,
where it recovers energy from the solvent exiting the
stripper before moving into the stripper for regeneration.

The stripper, which uses a reboiler for heating, separates
the CO2 from the rich solvent. The CO2 is collected at
the top, while the lean solvent is recycled back to the
absorber. A condenser removes any evaporated solution
and recycle the water stream into the absorber. The system
also includes a buffer tank where fresh MEA solvent and
water is added to maintain performance.

The CO2 capture plant considered in this paper is simu-
lated using Aspen Hysys software and is shown in Fig. 1.

Further, the lean solvent flow (Lean Solvent stream in Fig.
1) and Makeup water (Makeup H2O stream in Fig. 1) are
considered as decision variables while % Carbon capture
and economic cost are considered as controlled variables
in this paper. The Carbon capture % is defined as follows:

Carbon Capture (%) =

(
ṁCO2,out

ṁCO2,in

)
× 100

where ṁCO2,out is the mass flow rate of CO2 in the
distillate stream of the stripper and ṁCO2,in is the mass
flow rate of CO2 present in the dry flue gas.

2.2 Process economics and Constraints

The objective function used to model and evaluate the
PCC plant performance was initially introduced by Patrón
and Ricardez-Sandoval (2023). It utilizes the steady-state
model fs as referenced in this paper and the economic
objective is defined as:

(1)ϕ = Psales

(
ṁs

CO2,in − ṁ
s
CO2,out

)
+ PCO2ṁ

s
CO2,out + PsteamQreb

The objective of process optimization is to minimize the
objective i.e.,

min
ṁlean

mea-solvent
,ṁmakeup

water

ϕ (2)

subject to model and variable constraints as

fs(Qreb, ṁ
lean
mea-solvent, ṁ

makeup
water ,% CC) = 0 (3)

ṁlean
mea-solvent ∈ [1.6× 106, 1.603201× 106] kg/hr (4)

ṁmakeup
water ∈ [4.9250× 104, 5× 104] kg/hr (5)

In this context, Psales, PCO2 , and Psteam represent the price
of CO2 sales, the social cost of carbon (SCC), and the
price of steam, respectively. These factors are key economic
considerations in post-combustion carbon capture (PCC).
They are multiplied by the corresponding mass flow rates
(ṁ) or energy duties (Q). The specific values of these prices
are provided in Table 1 which was taken from Patrón and
Ricardez-Sandoval (2023).

Table 1. Prices used in Objective function

Variable Value

Psales -50 $ CAD/tn CO2 sold

PCO˙2 176 $ CAD/tn CO2 removed

Psteam 0.065 $ CAD/kWh

3. WAVELET NEURAL NETWORK ASSISTED
SMART OPTIMIZATION OF MEA-BASED CO2

CAPTURE PROCESS

3.1 Wavelet Neural Network as Surrogate Model

A Wavelet Neural Network (WNN) typically consists of
three layers: the input layer, the hidden layer, and the
output layer as depicted in Fig. 2.
1 References and screen images from Aspen HYSYS®are reprinted
with permission from Aspen Technology, Inc. AspenTech®, Aspen
HYSYS®, Aspen Plus®, Aspen Plus Dynamics®, Aspen Eco-
nomics Evaluation™, Aspen EDR™, Aspen Energy Analyzer™, and
Aspen Properties®, aspenONE®, and the AspenTech leaf logo are
trademarks of Aspen Technology, Inc. All rights reserved.



Fig. 1. Flowsheet of PCC Plant using Aspen Hysys (Aspen Technology, Inc., 2023) 1

Fig. 2. Wavelet Neural Network

In the input layer, the network receives explanatory vari-
ables, also called inputs. The hidden layer contains nodes,
known as wavelons, which transform these input variables
into a non-linear space. The output layer then uses the
transformed variables to approximate the target values.
The authors in Alexandridis and Zapranis (2013) proposed
a wavelet network that incorporates a multi-dimensional
basis and linear connections between the input and output
layers, as depicted in Fig. 2, to enhance training perfor-
mance in highly linear settings.

Since any non-linear function can be approximated using
wavelet frame decompositions (Billings and Wei, 2005),
similar to the work considered in (Varanasi et al., 2022),
the main objective of this work is to represent the pa-
rameters in the input-hidden layer using these decompo-
sitions. This type of approximation helps us in addressing

the issues associated with randomization strategies for
training while ensuring the model in linear-in-parametric
form thereby making the learning faster, accurate and
require less amount of data to train when compared to a
traditional single hidden layer feedforward neural network.
Further, with the appropriate selection of the dilational
and translational parameters associated with the wavelet
frame decompositions (Billings and Wei, 2005), the num-
ber of neurons to be considered in the hidden layer will be
automatically fixed, thereby avoiding the trail and error
approach for selection of optimal number of neurons in the
hidden layer. The output equation of the wavelet neural
network is given as

ŷ(u1, u2, · · · , um)

=

jM∑
j=j0

∑
k1∈Kj

. . .
∑

kr∈Kj

αj,k1,...,km
ψ
[m]
j,k1,...,km

(u1, u2, · · · , um)

where,

(6)ψ
[r]
j,k1,...,km

(x(t)) = 2j × (m− ∥2jx(t)− v∥2)
× exp(−0.5× ∥2jx(t)− v∥2)

denote the Mexican hat wavelet function with j ∈ Z and
(k1, k2, . . . , kr) ∈ Zr denote the dilation and translation
parameters respectively and v = [k1, k2, · · · , km]. The
terms j0 and and jf denote be the coarsest resolution and
the finest resolution respectively. The term ki has to be
selected in such a way that −(s2 − 1) ≤ ki ≤ 2j − s1 −
1, i = 1, 2, . . . , r where, s1 and s2 control the range of the
translations. Typical choice of s1 and s2 for the Mexican
hat wavelet function are -3 and 3 respectively (Billings and
Wei, 2005).

3.2 Bayesian Optimization : Gaussian Process Regression

Gaussian Process (GP) regression is an interpolation
method used to represent a unknown function f : Rnx → R
containing uncertainties (noise) y = f(x) + ϵ, where ϵ



follows a Gaussian distribution N(0, σ2) indicating zero
mean and unknown variance noise. It was developed by
Krige (1951) and then later used in machine learning field
by Williams and Rasmussen (2006).

A Gaussian Process is explained by its mean function and
covariance function as

f(x) ∼ GP(m(·), k(·, ·))
where m(·) denote the vector of mean values of each
Gaussian distribution, and the covariance function k(·, ·)
characterizes the correlations between data points. The
most commonly used kernel function is a squared exponen-
tial kernel aka Gaussian kernel or RBF kernel (Williams
and Rasmussen, 2006):

k(x,x
′
) = σ2

f exp

(
−1

2
(x− x

′
)TΛ(x− x

′
)

)
where σ2

f represents the covariance magnitude, and Λ :=

diag(λ1, . . . , λn) is a scaling matrix. The key assumption
for this kernel is that the inferred function f is smooth
and stationary. In addition, we choose mean function as
zero as it is complete data driven approach and we do not
have prior knowledge of the function. Thus,

m(x) := 0

To estimate a GP’s hyperparameters Ψ := {σf , σn, λ1, . . . , λn}
through maximum likelihood, the noise variance σn may
either be known or inferred from the data. For the input
matrixX := [x1, . . . ,xN ]T ∈ RN×n let the noisy output be
y := [y1, . . . , yN ]T ∈ RN . The log-likelihood of the given
input-output pairs without considering the constant terms
is given by:

log p(y|X) =− 1

2
yT

(
K(X,X) + σ2

nI
)−1

y

− 1

2
log

∣∣K(X,X) + σ2
nI
∣∣

The predicted distribution at test point x∗, given the
input-output pair (X,y) follows a Gaussian distribution
as:

f(x∗) | X,y ∼ N (µf (x
∗), σ2

f (x
∗))

where the posterior mean µf (x
∗) and posterior variance

σ2
f (x

∗) are given by:

µf (x
∗) = k(x∗,X)

(
K(X,X) + σ2

nI
)−1

y

σ2
f (x

∗) = σ2
n − k(x∗,X)

(
K(X,X) + σ2

nI
)−1

k(x∗,X)
T

where k(x∗,X) denotes the vector of covariances between
the test data point and the training data points.

Both the mean function and co-variance function are used
in the acquisition functions del Rio Chanona et al. (2021).
The acquisition functions are then considered as objective
function for the purpose of exploration and exploitation.
Two commonly used acquisition functions include lower
confidence bound (LCB) and expected improvement (EI).

In the current paper, LCB is considered as acquisition
function.

Lower Confidence Bound : The LCB function is de-
fined as

ALCB[µf , σf ](x
∗) := µf (x

∗)− γσf (x∗)

where γ is the hyperparameter which can be read as
exploration weight. The LCB function follows the principle
of optimism under uncertainty,

3.3 Proposed Methodology

In this section, we present the modifier adaptation algo-
rithm using Gaussian processes, trust region (TR), and
acquisition functions. The detailed steps of the algorithm
are outlined below: the use of GPs to describe the plant-
model mismatch in an RTO problem was first proposed
by de Avila Ferreira et al. (2018). The aim of the GP
modifiers to predict the mismatch of the cost and each
constraint separately. Below is the initial optimization
problem which was used to solve in each RTO iteration
without considering any acquisition function and trust-
region concept:

xk+1 ∈ arg min
x∈X

[
G0 + µk

δG0

]
(x) (7)

(8)

s.t.
[
Gi + µk

δGi

]
(x) ≤ 0, i = 1, . . . , ng (9)

where µk
δGi

denotes the mean of the GP trained with the

input output data set
(
Xk, δGk

i

)
; and δGk

i denotes the

mismatch δGi(·) := GP
i (·)−Gi(·) for inputs in the matrix

Xk.

This research includes the addition of the trust region
concept with Bayesian optimization, along with the LCB
acquisition function. This paper includes the training
of Gaussian process and Wavelet neural network in the
regime of trust region using K-Nearest Neighbour for
better prediction. Now, the modified optimization problem
becomes:

rk+1 ∈ argmin
r
A
[
G0 + µk

δG0
, σk

δG0

] (
xk + r

)
(10)

s.t.
[
Gi + µk

δGi

] (
xk + r

)
≤ 0, i = 1 . . . ng (11)

∥r∥≤ ∆k, xk + r ∈ X (12)

The trust-region concept, represented by ∆k ensures that
the current points remain within the permissible operating
range, preventing them from exceeding system constraints
(X ). A is an LCB acquisition function used for the purpose
of exploration and exploitation. A non-linearity index ζk+1

is used to check the performance of WNN model and GP
by comparing it with the actual process output, which is
given as :

ζk+1 :=
GP

0 (x
k)−GP

0 (x
k + rk+1)

[G0 + µk
δG0

](xk)− [G0 + µk
δG0

](xk + rk+1)
(13)



Based on the value of the non-linearity index, we shrink
or expand the trust region, and a new operating point
is selected. The shrinking and expansion action is done
by 0 < p1 < 1 < p2 where p1 and p2 are shrinking
and expansion values, respectively. The thresholds for non-
linearity index are 0 < β1 ≤ β2 < 1. The algorithm begins
by first initializing the above parameters. Below are the
conditions on non-linearity index:

If ζk+1 > β2 ∧ ∥rk+1∥= ∆k :

∆k+1 ← p2 ×∆k,

xk+1 ← xk + rk+1 (accept)

Else If ζk+1 < β1 :

∆k+1 ← p1 ×∆k,

xk+1 ← xk (reject)

Else:

∆k+1 ← ∆k,

xk+1 ← xk + rk+1 (accept)

(14)

Following is the algorithm used for current research:

Data-driven optimization algorithm including
GP, WNN, TR and MA

Input:

Historical input-output dataset, initial operating
point x0 and initial trust-region radius as ∆0 where
0 < ∆0 < ∆max, non-linearity threshold parameters
0 < β1 ≤ β2 < 1, shrinking and expansion parameters
p1 and p2;

Repeat: for k = 0, 1, . . .

(1) Train WNN and GP modifier considering data
points

(2) Solve the modified optimization problem pro-
vided in Eq. (10) and obtain rk+1.

(3) Check infeasibility: If Eq. (10) is infeasible, then
set xk+1 ← xk + some noise for exploration

(4) Calculate the non-linearity index ζk+1.
(5) Update the value of ∆k+1 based on the value of

ζk+1.
(6) Based on the provided conditions in equation

(14), decide to accept the new operating point
or not.

(7) Update the data set with new operating point.

4. CASE STUDY

4.1 Benoit System

To illustrate the accuracy of the proposed method, a sim-
ple two-variable constrained optimization problem termed
as Benoit system del Rio Chanona et al. (2021) is consid-
ered. The formulation is as follows

min
u∈[−2,2]2

y1(u)

s.t. y2(u) ≤ 0
(15)

where
y1(u) := u21 + u22 + θ1u1u2,

y2(u) := 1− u1 + u22 + θ2u2.

The (unknown) plant parameter values are taken as θ =
[1, 2] and the corresponding true plant optimum is u =
[0.368, -0.393].

Fig. 3. Smart optimization contour plot of Benoit System
when started from two different points. The range of
u1 and u2 is considered in [-1,1] range in plotting for
better visualization.

The objective function was modeled using a Wavelet Neu-
ral Network, with the mismatch handled by a Gaussian
Process. Two different initial operating points are consid-
ered and the contour plots of optimization performance is
shown in Fig. 3. From Fig. 3 it can be noted that when the
initial operating point 1 is [0,−0.75], the smart optimiza-
tion yields an optimal point at [0.38507795,−0.40424324],
converging close to the true optimal point while adhering
to the defined constraints. Similarly, for the initial oper-
ating point of [0.75,−0.75], which yields an optimal point
at [0.38372245,−0.38192726]. These results demonstrate
the effectiveness of the model in accurately reaching the
optimal points for the Benoit system under different initial
conditions.

4.2 MEA Based PCC Process Results

For the PCC Process, the Lean Solvent stream and
Makeup water are used as input variables in the wavelet
neural network (WNN), while the percentage of carbon
capture is the output of the WNN model as the reboiler
duty (Qreb) was at constant value. The economic objective
function is then calculated using Eq. (1). Using Proposed
algorithm, the optimization is performed at four different
initial operating points and the following plot is obtained.

The true optimum point is [1603150.904, 49250.0394], with
an objective value of 40055.3423.

For the initial operating point of [1602500.2808,
49500.413789 89297] (operating point 1), and the opti-
mization yields an optimum point at [1603201.0,
49252.211728985] with an objective value of 40055.11043.
For operating point 2 i.e., [1601001.2808, 49744.4137899],



Fig. 4. Smart optimization contour Plots of PCC System
when started from four different points

the optimization results in the optimum point [1603201.0,
49250.0394], with an objective value of 40055.1211112.
Similarly, the initial operating point 3 is [1600001.2808,
49250.41378989297], and the optimization yields the same
optimum point [1603201.0, 49250.0394] with an objective
value of 40055.0958202. Finally, for the operating point
4 2 i.e., [1600001.2808, 49250.41378 989297], the optimiza-
tion results to [1603200.9999999998, 49250.0394] with an
objective value of 40055.1190 728. These results highlight
the robustness and consistency of the optimization process
in reaching the true optimum point across various initial
conditions.

5. CONCLUSION

The proposed smart optimization algorithm utilizes Wavelet
Neural Network as model to represent the process; Gaus-
sian processes and trust regions methods to account for
model-plant mismatch, provides a structured approach to
optimize processes in real time. By integrating acquisition
functions and just in time learning concept, a balance
between exploration and exploitation is achieved, thereby
allowing for efficient convergence and improved perfor-
mance in the optimization tasks. Two case studies were
explored to analyze the proposed method. In both cases,
the proposed approach successfully reached the true opti-
mal point, demonstrating the efficacy of the methodology.
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