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Abstract: Oncolytic virus therapy (OVT) is emerging as a potent alternative to conventional
cancer treatments by employing engineered viruses that selectively infect and lyse tumor cells
while sparing normal tissues. Although mathematical models have been developed to elucidate
the dynamics of OVT and inform personalized therapies, they are often specific to certain
organisms. Mathematical models tailored to more recently developed animal models of OVT,
such as zebrafish, are not yet available. Here, we introduce the first mathematical model of
OVT trained on zebrafish data from published studies to bridge the gap. We explore a variety
of mathematical model structures and perform parameter estimation and model selection. The
selected model effectively captures the observed tumor dynamics, i.e. delayed tumor shrinkage,
and provides valuable insights into the underlying mechanisms of OVT in zebrafish. Our work
establishes the groundwork for advancing experimental studies in zebrafish, contributing to the
design of more effective cancer treatment strategies in the future.
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1. INTRODUCTION

Oncolytic virus therapy (OVT) is a promising alterna-
tive to conventional cancer treatments and has demon-
strated success in recent human clinical trials (Ling et al.,
2023). OVT employs oncolytic viruses (OVs) to eradicate
malignant cancer cells through two main mechanisms.
Firstly, these viruses are typically engineered strains that
selectively infect, replicate within and promote lysis in
tumor cells while remaining safe for normal cells (Fig.
1a). Secondly, the lysis of tumor cells by OVs exposes
tumor antigens, thereby stimulating the immune system to
recognize and attack cancer cells. The latter process helps
overcome immunosuppression, a significant challenge since
tumor cells often appear non-threatening to the immune
system. Antonio Chiocca (2002) and Tian et al. (2022)
have comprehensively summarized different types of OVs,
how their selectivity is engineered, and how they enhance
the effects of antitumor immunity.
The experimental assessment of (i) the interaction of OVs
and tumor cells, and (ii) the contribution of the two mech-
anisms described above is non-trivial. Accordingly, math-
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ematical models which capture the underlying processes
have been developed. These models provide insights into
emergent dynamics, guide future experiments, and build
the basis for personalized OVT. Various mathematical
models have been used to study various process character-
istics: Mahasa et al. (2017) studied how infection of normal
cells with OVs in the vicinity of tumor cells enhances
OVT; Eftimie et al. (2011) explored biological conditions
that could lead to the permanent elimination of tumor
cells and examined the multistability and instability of the
nonlinear dynamics; and Kumar et al. (2021) approached
the design of more effective OVs using a fractional-order
delay differential equation model that incorporates the
viral lytic cycle. Mathematical models, and especially their
parameters, are typically tailored to specific animal mod-
els. However, there are animal models that are important
for cancer research, such as zebrafish that enable rapid
screening of OVT candidates (Fazio et al., 2020) and are
used for OVT studies (Mealiea et al., 2021), for which no
mathematical models are available.
In this manuscript, we propose the first mathematical
model for OVT in zebrafish, to our knowledge. To this
end, we consider a range of model topologies and perform
parameter estimation and model selection using published
experimental data from Mealiea et al. (2021). Our selected
model can quantitatively capture the measured dynam-
ics and provide insights into underlying mechanisms con-
tributing to, for example, delayed tumor shrinkage. Subse-
quently, we refine the model to account for the heterogene-
ity between individual zebrafish through additional pa-



Fig. 1. OVT mechanism and zebrafish experiment.
(a) vvDD replication requires cell division. (b) Ex-
perimental setup for zebrafish study. Fertilization oc-
curs on day zero. (c) Measured tumor volumes for
individual zebrafish (dashed) and population mean
(solid, error bars are ±1 std. dev.). Sub-figures (a)
and (b) were created using Biorender.com.

rameters for each individual. We show that the individual
numbers of initially homed tumor cells can substantially
explain the population variability in tumor response. Fi-
nally, we discuss important extensions of our models in the
direction of mixed-effects and stochastic models for extinc-
tion analysis. Our work represents a foundational first step
in the mathematical modeling of OVT on zebrafish data.
This enables a platform for future research to advance
experimental studies in this animal model that can inform
the design of effective cancer treatment strategies.

2. DATA AND METHODS

2.1 Experimental Setup and Measurement

In this manuscript, we analyze and model the OVT data
collected by Mealiea et al. (2021) for zebrafish. In their
experimental study (Fig. 1b), 20 zebrafish were each
injected with 400 fluorescently-labeled tumor cells on day 2
(after fertilization on day 0). The zebrafish were then
split into two groups. The treatment group was injected
with 109 plaque-forming units of double-deleted vaccinia
virus (vvDD) on day 3, while the control group remained
untreated and thus injected with only phosphate-buffered
saline (PBS). Both groups were observed until day 7.
vvDD is a double-stranded DNA virus with deletions
that increase tumor specificity and safety for other cells
(McCart et al., 2001), and was reported to only replicate
efficiently in tumor cells. In the zebrafish study (Mealiea
et al., 2021), the virus is also fluorescently-labeled.
The tumor volume was recorded daily on days 3 to 7
(Fig. 1c). In the vvDD-treated group, the tumor volume
declined from day 4 onwards, while it continued to grow in
the control group. Overall, both groups show substantial
inter-individual heterogeneity in tumor volume.

2.2 Mathematical Modeling

We model the interaction between OVs and tumor cells
using ordinary differential equation (ODE) models. These
ODE systems are of the form:

dx

dt
= f(x, θ, u), x(0) = x0(θ, u) (1)

with state vector x(t) ∈ Rnx at time t, parameter vector
θ ∈ Rnθ , and input vector u ∈ Rnu that encodes the
experimental conditions. The vector field f : Rnx × Rnθ ×
Rnu 7→ Rnx encodes the dynamics of the process and is
constructed to be Lipschitz continuous, ensuring that the
ODE solution exists and is unique. The function x0 : Rnθ ×
Rnu 7→ Rnx defines the initial condition. The inputs u =
(u1, u2)T are used to encode the experimental condition,
namely the injected amount of tumor cells (u1) and virus
particles (u2). The inputs in the vvDD-treated and control
conditions are u(v) = (400, 109)T and u(c) = (400, 0)T ,
respectively.
The parameters θ, e.g., the growth rate of tumor cells,
are inferred from the measured data using maximum
likelihood estimation. The observable is the tumor volume,

y = h(x, θ),
with h : Rnx ×Rnθ 7→ R denoting the observation mapping.
The zebrafish measurements are denoted by

D(k)
i = {(tj = j, ym

i,j,k)}7
j=3,

with condition i ∈ {v, c}, time point index j ∈ {3 . . . 7}
in days, and zebrafish individual index k ∈ {1 . . . 10}. The
measurement noise is assumed to be additive and normally
distributed, ym = y + ϵ, with a noise variance depending
on the tumor volume, ϵ ∼ N (0, σ2

a + σ2
by

2), with σa > 0
and σb > 0. Accordingly, the conditional probability of
observing ym given y, σa and σb is given by

p(ym|y, σa, σb) = 1√
2π(σ2

a + σ2
by

2)
exp

(
−1

2
(ym − y)2

σ2
a + σ2

by
2

)
.

Assuming that the zebrafish are identical, the objective
function with negative log-likelihood is
J(θ, σa, σb)

= −
∑

i∈{v,c}

7∑
j=3

10∑
k=1

log p(ym
i,j,k|y(tj , θ, u(i)), σa, σb) (2)

with y(t, θ, u) = h(x(t, θ, u), θ) and x(t, θ, u) denoting the
solution of the ODE model (1) for parameters θ and input
u evaluated at time t. To account for differences between
zebrafish, we introduce parameters ξi,k which are specific
to the individual zebrafish, yielding the objective function
J(θ, σa, σb, ξ)

= −
∑

i∈{v,c}

7∑
j=3

10∑
k=1

log p(ym
i,j,k|y(tj , θ, u(i), ξi,k), σa, σb).

(3)
Details on how ξ influences the solution are in Section 3.4.
The maximum likelihood estimates are obtained by mini-
mizing the objective functions J(θ, σa, σb) or J(θ, σa, σb, ξ),
i.e., {θ̂, σ̂a, σ̂b, ξ̂} = arg min

θ,σa,σb,ξ
J(θ, σa, σb, ξ) for the latter,

subject to parameter bounds, with each parameter bound
in R+.

2.3 Software

We use PEtab (Schmiester et al., 2021) to define the
parameter estimation problems and SBML (Hucka et al.,



2003) for standardized representations of the mathemati-
cal models. Parameter optimization and uncertainty anal-
ysis are implemented using pyPESTO (Schälte et al.,
2023), wherein we used AMICI (Fröhlich et al., 2021) for
simulation and Fides (Fröhlich et al., 2022) for optimiza-
tion. We used STRIKE-GOLDD to perform structural
identifiability analysis (Díaz-Seoane et al., 2023).

3. RESULTS

3.1 Model formulation and analysis

In the baseline model, we distinguish uninfected tumor
cells (U), infected tumor cells (I), and extracellular virus
(V ). The cells are denoted by [U ], [I] and [V ], yielding the
state vector x = ([U ], [I], [V ])T . This state vector changes
over time due to six processes (Fig. 2a):
(P1) The quantity of uninfected and infected tumor cells
increases due to tumor cell division,

U → 2 × U, rate = ρ[U ]
(

1 − [U ] + [I])
κ

)
,

I → 2 × I, rate = ρ[I]
(

1 − [U ] + [I])
κ

)
.

We assume a logistic growth model with maximal division
rate constant ρ and carrying capacity κ.
(P2) The quantity of uninfected tumor cells decreases
and the quantity of infected tumor cells increases due to
infection with the virus,

U + V → I, rate = ψ[V ][U ],
with infection rate constant ψ.
(P3) The quantity of infected tumor cells decreases due to
cell death, resulting in the release of viruses,

I → β × V, rate = α[I],
with age-of-infection–independent death rate constant α,
and the quantity of released virus particles β.
(P4) The quantity of extracellular viruses decreases due to
virus removal processes,

V → ∅, rate = δ[V ],
with removal rate constant δ.
(P5, P6) Tumor cell injection on day 2 and virus injection
on day 3 are processes happening at discrete time points
and marking singular events. At these injection points, the
respective abundances become nonzero:

[U ](ti,U ) = u1,

[V ](ti,V ) = u2.

The injection time points are denoted by ti,U = 2 and
ti,V = 3 (Fig. 1b), while the quantity of injected uninfected
tumor cells and viruses are denoted by u1 and u2.
Given the processes P1 to P6, the dynamics can be
separated into three intervals:
Interval 1 is the time interval before the injection of tumor
cells. In this interval, all state variables are zero:

∀t ∈ [0, ti,U ) : [U ](t) = [I](t) = [V ](t) = 0.

Interval 2 is the time interval between the injections of
tumor cells and viruses. In this interval, the quantity of

infected tumor cells and viruses is zero, and the quantity
of uninfected tumor cells grows (P1):

∀t ∈ [ti,U , ti,V ) : [I](t) = [V ](t) = 0, and
d[U ]
dt

= ρ[U ]
(

1 − [U ]
κ

)
, [U ](ti,U ) = u1.

The time-dependent state [U ](t) can be computed analyt-
ically using the separation of variables, yielding

∀t ∈ [ti,U , ti,V ) : [U ](t) = κ

1 + κ− u1

u1eρ(t−ti,U )

.

Interval 3 is the time interval after the injection of the
virus. In this interval, all state variables can change
dynamically:

∀t ∈ [ti,V ,∞) :
d[U ]
dt

= ρ[U ]
(

1 − [U ] + [I])
κ

)
− ψ[V ][U ],

d[I]
dt

= ρ[I]
(

1 − [U ] + [I])
κ

)
+ ψ[V ][U ] − α[I],

d[V ]
dt

= αβ[I] − ψ[V ][U ] − δ[V ],

with initial conditions [U ](ti,V ) = κ/(1+ κ− u1

u1eρ(t−ti,U ) ) (the
final value of the previous interval), [I](ti,V ) = 0, and
[V ](ti,V ) = u2. For this interval, no analytical solution
is known, and the ODE solution is approximated with
AMICI.
The theoretical analysis of the model reveals that it is
Lipschitz continuous (proof provided in the Supplementary
Material). Furthermore, for non-negative values of the
parameters and inputs, the non-negative quadrant, i.e.
0 ≤ [U ], 0 ≤ [I], 0 ≤ [V ], is invariant. This means
that, with an initial condition in this quadrant, the states
remain non-negative, which is biologically reasonable.
The data provide information about the volume of the
tumor, which is assumed to be proportional to the quantity
of tumor cells. Thus, the observable mapping is

y = s([U ] + [I]),
where the scaling factor s is the mean volume of a tu-
mor cell and y is the tumor volume. Structural identifi-
ability analysis with STRIKE-GOLDD reveals that this
parameter is non-identifiable (see Supplementary Mate-
rial). To resolve this, we searched the literature to ap-
proximate s. The tumor cells used in the experiment are
from the MC38 murine colorectal adenocarcinoma cell
line, which has an average doubling time of about 24
hours (Morimoto-Tomita et al., 2005). Accordingly, one
would expect 800 tumor cells at day 3. As the mean
tumor volume at day 3 is 2 808 614 µm3, we estimate
s ≈ 2808614

800 µm3/cell ≈ 3511 µm3/cell. With this esti-
mate of s, the baseline model achieved “Full Input-State-
Parameter Observability” (FISPO) (Díaz-Seoane et al.,
2023), suggesting that with sufficient measurement data
of y, all parameters are identifiable. A limitation of this
approximation is that the tumor doubling time during the
first day is assumed to be comparable between zebrafish
and mice.



Fig. 2. The baseline model. (a) Process diagram. (b)
Optimized model simulation. Data are means with ±1
empirical std. dev. error bars. Simulations have ±1
estimated std. dev. error bands. (c) Optimized state
variable trajectories.

Fig. 3. Baseline model profile likelihoods. Domains
are the parameter bounds (Table 1). Blue lines are the
likelihood ratio threshold that was used to compute
the 95% confidence intervals (red lines).

3.2 Parametrization of Baseline Model

To assess whether the baseline model can describe the
data, we obtain the maximum likelihood estimate by
minimizing (2). Individual measurements are used for the
optimization but the heterogeneity between individual
zebrafish is not accounted for in the baseline model.
Parameter bounds are provided in Table 1.
The analysis of the fitting results reveals that the optimiza-
tion converges robustly, suggesting that globally optimal
parameters are found (see Supplementary Material). The
model provides a good description of the measurement
data (Fig. 2b). However, it fails to capture the quantitative
dynamics of the tumor volume after virus injection on
day 3. Although the measurements show that mean tumor
volume increases until day 4, the best model fit exhibits
a decrease. Hence, the baseline model cannot capture the
observed delay in tumor shrinkage.
To assess parameter uncertainties, we compute 95% con-
fidence intervals with the profile likelihood method (Raue
et al., 2009). This reveals that the parameters α, κ, ψ, and
σb are practically identifiable, as their confidence intervals
are finite (Fig. 3). The parameters δ, ρ, σa, and β cannot
be bounded from both above and below, and hence are
practically non-identifiable.

3.3 Modeling delayed tumor shrinkage

As the baseline model fails to describe key properties of
the measurement data, we consider an age-of-infection
model, which accounts for the experimental observation
that cell lysis does not occur directly after infection but
instead after a large number of virus particles are produced
(Dominguez et al., 2015). This could be captured using
a discrete delay (and a delay differential equation), yet,
here we use the linear chain trick (Hurtado et al., 2020).
Therefore, we split the state variable for infected cells I
into L state variables, Il, with l ∈ {1 . . . L}. Tumor cells in
state I1 are infected but carry a low viral load, while tumor
cells in state IL carry a high viral load. Cell division occurs
for all tumor cells at the same rate (P1), but the infection
of uninfected tumor cells only yields I1 (P2). Infected cells
in state Il (except l = L) can transition into state Il+1
according to process P2’:

Il → Il+1, rate = ϕ[Il],

which captures different stages of the infected cell due
to an increase in the number of virus particles, with the
transition rate constant ϕ. Here we assume one constant
transition parameter for simplicity. Cells that reach the
state IL can undergo cell lysis, which results in virus
release (P3). This yields the governing ODE system for
interval 3, ∀t ∈ [ti,V ,∞):

d[U ]
dt

= ρ[U ]
(

1 − [C]
κ

)
− ψ[V ][U ],

d[I1]
dt

= ρ[I1]
(

1 − [C]
κ

)
+ ψ[V ][U ] − ϕ[I1],

for l ∈ {2, . . . , L− 1}:
d[Il]
dt

= ρ[Il]
(

1 − [C]
κ

)
+ ϕ([Il−1] − [Il]),

d[IL]
dt

= ρ[IL]
(

1 − [C]
κ

)
+ ϕ[IL−1] − α[IL]),

d[V ]
dt

= βα[IL] − ψ[V ][U ] − δ[V ],

with [Il](0) = [Il](ti,U ) = [Il](ti,V ) = 0,∀l ∈ {1 . . . L}, the
same initial conditions as in the baseline model for [U ] and
[V ], and total tumor cell number [C] = [U ] +

∑L
l=1[Il]. In

this study, we use L = 5.
We estimate the parameters of the age-of-infection model
using the same approach as for the baseline model, with
the corresponding observable mapping y = s[C]. The
optimization also achieved good convergence, suggesting
that the global optimum is found (see Supplementary
Material). The assessment of the fit reveals a good agree-
ment with the measurement data (Fig. 4b). Indeed, the
model simulation exhibits a delay in tumor shrinkage.
The obtained state variables’ trajectories show that virus
accumulation (Fig. 4c) causes a delay.
We used the same literature-based estimate of s as in
the baseline model. The structural identifiability analysis
with STRIKE-GOLDD found that the model is FISPO.
Assessment of the parameter uncertainties revealed that
ρ, ψ, β, and δ are practically non-identifiable (Fig. 5).



Table 1. Informed parameter bounds of all models. The lower and upper bounds for the
parameters and the reasoning are provided. For parameters that are not defined, a lower bound

of 1e-8 and an upper bound of 1e8 is used.

Parameter Effect Bounds Information
ρ Cell division [0.42, 1.66] Tumor doubling time is ≈ 1 day (Morimoto-Tomita et al., 2005)
κ Carrying capacity [1e2, 1e5] Tumor growth slows at day 7 with < 2000 tumor cells (scaled by s) (Fig. 1)
ψ Infection [1e-10, 1e-2] Arbitrary interval based on estimate from Iwami et al. (2012)
β Virus burst size [1e0, 1e4] Arbitrary interval based on estimate from Iwami et al. (2012)
α Cell death [1e-4, 1e3] Arbitrary interval based on estimate from Iwami et al. (2012)
δ Virus degradation [1e-2, 1e2] Arbitrary interval based on estimate from Neumann et al. (1998)
ξi,k Individual homing [1e-7, 1e0] Scaling factor for effective tumor inoculation amount, necessarily < 1
σa Additive noise [1e1, 1e5] Similar upper bound as κ
σb Proportional noise [1e-4, 1e2] Pairwise relative differences in the data were always < 20 (Fig. 1)

Fig. 4. The age-of-infection model. (a) Process di-
agram. (b) Optimized model simulation. Data are
means with ±1 empirical std. dev. error bars. Sim-
ulations have ±1 estimated std. dev. error bands. (c)
Optimized state variable trajectories.

Fig. 5. Age-of-infection model profile likelihoods.
Domains are the parameter bounds (Table 1). Blue
lines are the likelihood ratio threshold that was used
to compute the 95% confidence intervals (red lines).

3.4 Modeling Inter-Individual Variability

The age-of-infection model provides a good description of
the mean tumor growth and shrinkage dynamics amongst
zebrafish. Yet, it does not explain the observed inter-
individual variability. We thus consider an individual-
based age-of-infection model; specifically, we allow for
differences in the initial amount of tumor cells, e.g., due
to different numbers of injected cells or different homing

Fig. 6. Optimized fits with the individual-based
model. Simulations have ±1 estimated std. dev. error
bands. The fits for the remaining 16 zebrafish are
provided in the Supplementary Material.
Table 2. AIC and AICc values for differ-

ent model candidates.
Model AIC AICc

Baseline 1475.8 1477.3
Age-of-infection 1464.7 1466.7
Individual-based 1437.0 1461.8

rates. Accordingly, the initial condition in time interval 2
can differ between individual zebrafish,

[U ](ti,U ) = ξu1,

with individual-specific homing parameter 0 < ξ ≤ 1.
We estimate the shared and individual parameters of the
model by minimizing objective function (3). In contrast to
the previous estimation problem for the age-of-infection
model, we have 20 additional parameters: ξv,1 to ξc,10.
Despite this increase, we observe that the optimization
also converges (see Supplementary Material).
The assessment of the fitting results reveals relatively good
agreement of data and model simulation for individual
zebrafish (Fig. 6). Indeed, individual-specific homing pa-
rameters describe individual dynamics better for the most
part. However, not all variance is explained, as shown
in some individuals. Model selection using the standard
(AIC) and the corrected (AICc) Akaike Information Cri-
terion shows that the individual-based age-of-infection
model performs best (Tab. 2). Accordingly, the individual-
based model provides a better balance between model
fit and model complexity. The uncertainty analysis using
the profile likelihood reveals that some parameters are
practically non-identifiable (see Supplementary Material).

4. DISCUSSION

OVT is a promising alternative to established anti-tumor
therapies. Yet, the understanding of the underlying pro-



cesses is limited. Here, we presented three mathematical
models for OVT in zebrafish, an experimental animal
model that enables rapid screening of OVT candidates.
Our analysis reveals that a baseline model cannot capture
the delay in tumor shrinkage. In contrast, the observed
delay in tumor volume reduction can be accurately de-
scribed using the age-of-infection model with multiple
infection states representing different intracellular virus
concentrations. The formulation of the individual-based
age-of-infection model, which accounts for differences in
the number of homed tumor cells, provides a better de-
scription of the observed variability.
Yet, our analysis also reveals that the homing rates of
tumor cells do not fully capture the observed variabil-
ity. As a next step, we consider two model extensions
that may improve this. Firstly, the joint fitting of the
individuals could be improved by with nonlinear mixed-
effects models. Such models allow for improved integration
and dissection of inter-individual variability and uncer-
tainty. This can be particularly beneficial in the case of
non-identifiability. Besides ξ, additional inter-individual
differences, e.g., individual-specific carrying capacity κ,
could also be considered. A structured approach should
then be used to select the most relevant sources of inter-
individual variability. Secondly, tumor clearance is inher-
ently stochastic due to heterogeneity at low tumor cell
numbers. An immediate extension of our study is to per-
form extinction analysis with a stochastic implementation
of the described biological processes. This would enable
identification of OVT parameters that can optimally drive
tumors to extinction.
By making our code and models publicly available, we aim
to facilitate reuse of our work and support further research
in this area. The proposed models provide a foundation for
future studies to advance OVT strategies.
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