
Optimizing Parallel Gas Compressor
Operations Under Flow Disturbances

Liqiu Dong1, Marta Zagorowska2, Mehmet Mercangöz1*
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Abstract: This paper investigates the operation of parallel compressors with variable speed
drives to deliver gas at a desired flow rate while maintaining a target pressure at a common
discharge header. We examine strategies to minimize energy consumption amid discharge flow
fluctuations caused by changes in gas demand. Specifically, we model the energy consumption
impact of varying operating points, accounting for efficiency sensitivity to flow. Our approach
employs sample averaging to estimate expected energy usage under flow variations, which
informs an offline surrogate objective function reflecting energy consumption under disturbances.
This surrogate is subsequently used online in a deterministic nonlinear programming framework
to approximate a stochastic optimization solution, determining optimal load distributions for
the compressors. Additionally, we compare the proposed approach with an economic model
predictive controller (eMPC). This approach first solves a tracking problem to stabilize header
pressure, using compressor flows as manipulated variables, then redistributes the calculated
control effort for the first step of the solution through an economic optimization. Both methods
are implemented in a simulated pipeline compressor station, with a control hierarchy for station
pressure, compressor flow, and anti-surge controllers. Simulation results, with and without flow
disturbances, confirm that the stochastic load-sharing approach reduces energy consumption by
4.3% compared to a purely deterministic method, with the eMPC further improving efficiency
by an additional 2.2%.

Keywords: Parallel compressors; variable speed drives; load sharing; stochastic optimization;
economic model predictive control; energy efficiency.

1. INTRODUCTION

Gas compressors have long been essential in industrial
applications such as gas storage (Silva and Camponogara,
2014), pipeline transport, (Borraz-Sánchez and Haugland,
2013), liquefied natural gas production (Mokhatab, 2013),
compressed air production (Yuan et al., 2006), and air
separation plants (Widell and Eikevik, 2010). Looking
ahead, compressors will remain crucial for a wide range
of process applications, including decarbonization efforts
where they support CO2 and H2 pipelines (Kurz et al.,
2023). At the same time, gas compression is an energy
intensive process and improving energy efficiency can lead
to significant economic gains. However, given the complex-
ity of the system systematic approaches are required to
realize these gains. In this work, we focus on optimizing
energy efficiency for a compressor station undergoing flow
disturbances.

In case of turbo-compressors and particularly centrifugal
gas compressors, multiple compressors are often operated
in parallel to provide more capacity and range than can
normally be delivered by a single machine due to opera-
tional constraints such as compressor surge (Boyce, 2003).
In the parallel setups, a total mass-flow, a group or station
pressure ratio, a suction or discharge pressure set point can
be defined and tracked by distributing the control effort

among individual compressors. This can be achieved via
cascade control arrangements, where for example an indi-
vidual compressor flow target sent by a master controller
is tracked by flow controllers for each compressor using
variable speed drives (Liptak, 2005).

Allocating the total control effort to individual compres-
sors to meet the operating objectives of parallel compressor
groups is non-trivial. Equal load distribution is the most
straightforward way to operate parallel compressors but
even with nominally identical compressors, there is always
some performance variation from one machine to the next
(Blotenberg et al., 1984). Therefore other approaches are
employed to distribute the load, with equal distance-to-
surge being a common one (SIEMENS, 2012). However,
these approaches neglect any impact of operating point
selection on compressor efficiency and it is left to opera-
tors to make manual adjustments to utilize compressors
efficiently.

Load Sharing Optimization (LSO) uses mathematical
programming techniques to distribute compression effort
among compressors by taking into account both opera-
tional objectives and constraints such as surge and can
combine objectives such as delivering a desired gas flow
and minimizing energy consumption (Rodrigues, 2022,
Zhang et al., 2022). The main challenge in LSO imple-



mentations for compressor stations arises from two pri-
mary sources of uncertainty: uncertainty from process
knowledge, mainly about the compressor performance, and
uncertainty arising from external factors acting on the
compressor system.

While existing literature has explored uncertainties related
to compressor efficiency maps (Zagorowska et al., 2020,
Kurz and Brun, 2012, Ahmed et al., 2022), uncertainties
within the compressor network system as a whole remain
largely under investigated. These uncertainties typically
arise from disturbances that would affect stable and effi-
cient load distribution across compressors. For instance,
for gas transportation and distribution applications, sud-
den changes in gas demand can introduce significant dis-
turbances. Similarly, in gas processing applications, fluctu-
ations in upstream processes, such as changes in well condi-
tions, feed composition, or processing parameters, can lead
to unpredictable shifts in flow conditions and pressures
(Tveit et al., 2004). When load sharing optimization is
implemented as a Real-Time Optimization (RTO) layer,
disturbances can cause discrepancies between the desired
process operating point selected by the RTO and the ac-
tual operating conditions over the RTO sampling interval.
This leads to a loss of overall system performance. To
address this challenge, this work compares two approaches:
(1) solving the RTO problem by accounting for implemen-
tation errors through a stochastic optimization approach,
and (2) merging optimization objectives together with the
control layer.

Following the introduction, the paper is organized as fol-
lows: In Section 2.1, we present a case study of a compres-
sor station for the parallel operation of gas compressors,
along with the methodology used to develop the stochastic
load-sharing optimization and economic model predictive
control solutions. In Section 3, we demonstrate the results
of a simulation scenario to evaluate the performance of
the different control and optimization strategies. Section 4
provides conclusions and suggestions for future work.

2. LOAD-SHARING IN A COMPRESSOR STATION

2.1 Compressor station

The compressor station configuration considered in this
study consists of three centrifugal compressors (C1, C2,
and C3) arranged in parallel as shown in Fig. 1 and Fig. 4.
Control signals are represented by dashed lines, while gas
flows are shown as solid lines. Each compressor has a Flow
Controller (FC), which receives flow demand signals from
the higher-level control layer as a set point. The FCs are
implemented as PI controllers, which receive a flow mea-
surement for the corresponding compressor and then sends
a calculated target torque τi to the corresponding variable
speed drive. Additionally, each compressor is protected
by an Anti-Surge Controller (ASC), which receives input
from several pressure and flow measurement points around
the compressor and manipulates the ASC valve. In this
work suction conditions are assumed to be stationary and
therefore temperature measurements are not considered
for ASC. In this study, we focus on maintaining a desired
reference pressure in the discharge header that connects
the compressors to the process equipment or a downstream

pipeline. A change in header pressure indicates an imbal-
ance between flow supply and demand, and the capacity
of the compressors must be adjusted to keep the pressure
at the desired operating level.

2.2 Compressor efficiency and power consumption

The power consumption of each compressor depends on
the flow rate and the compressor’s efficiency at that flow.
For the i-th compressor, the power consumption Pi is:

Pi =
yp,i
ηi
ṁi (1)

where ṁi represents the mass flow rate through the
compressor, ηi is the efficiency at the current operating
conditions, and yp,i denotes the polytropic head.

Mass flow rate uncertainty In ideal conditions, the
actual flow through the compressor ṁi

actual matches the
target flow ṁi

target obtained from LSO, with the pressure
ratio Πi adjusting according to the resistance curve of the
system (Zagorowska et al., 2023). However, in practice,
fluctuations in gas demand and flow, for instance due
to the operation of low-level PI controllers, introduce
variability around the target and the actual flow rate for
the i-th compressor becomes:

ṁi
actual = ṁi

target +∆ṁi (2)

In this work, the disturbance in the actual compressor flow
rate ∆ṁi is assumed to follow a normal distribution with
standard deviation σ, ∆ṁi ∼ N (0, σ2), with σ = 10 kg/s.

Expected efficiency and power The variability in the
mass flows affects both ηi and Pi, leading to variations
in actual power consumption and efficiency. To illustrate
the impact of uncertainty in the mass flow on compressor
efficiencies, we plot the resulting nominal and expected
efficiencies in Fig. 2 for compressors C1 to C3 along the
system resistance curve. The plot shows that due to the
steep change in efficiency for C1 the disturbances strongly
influence the realized values of efficiency when operating at
a given flow set point. Therefore, even though C1 appears
to be very efficient and can be chosen by a naive approach
to deliver a wide range of flows, the disturbances will lead
to significant deterioration in performance.

The expected power E[Pi] at a target flow rate ṁi
target is

approximated as the sample mean of N samples (Mont-
gomery and Runger, 2010):

E[Pi(ṁi
actual)] ≈ 1

N

N∑
j=1

yp,i ·
(
ṁi

target +∆ṁi
(j)

)
ηi(ṁi

target +∆ṁi
(j))

(3)

where ∆ṁi
(j) denotes the j-th realization of the distur-

bance. In this work, we set N = 1000.

2.3 Compressor load sharing optimization

The load-sharing optimization aims to minimize the total
power consumption across the compressors while meeting
a specified total flow rate Ṁtarget:
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Fig. 1. This schematic shows how LSO, combined with the station pressure controller, allocates flow across compressors
to maintain the target station mass flow rate while minimizing power consumption. The station pressure controller,
based on the measured discharge pressure, sends commands to the Flow Controller (FC) to regulate compressor
performance (adapted from SIEMENS (2012))

Fig. 2. Nominal and expected (under flow disturbances)
values of efficiencies for the compressors considered
in the compressor station case study

min
ṁ1,ṁ2,ṁ3

3∑
i=1

Pi(ṁi)

subject to

3∑
i=1

ṁi = Ṁtarget

ṁi ≤ ṁi ≤ ṁi, i = 1, 2, 3

(4)

where Pi(ṁi) is the power consumption of compressor i,
and ṁi is the compressor flow rate. The bounds ṁi and ṁi

restrict the flow rates of each compressor to their allowable
limits. We refer to the compressor flow rates ṁi found at
the solution as ṁi

target as mentioned in Section 2.2.

Load sharing optimization under flow uncertainty We
now extend (4) to account for flow uncertainty. Specifically,
we aim to minimize the expected total power consumption

across compressors, where the expectation is taken with
respect to the distribution of flow disturbances. Using
the linearity of the expected value over the summation
operation, the modified objective function becomes:

min
ṁ1,ṁ2,ṁ3

3∑
i=1

E∆ṁ [Pi(ṁi)] (5)

where E∆ṁ is the expected power consumption, account-
ing for the variability introduced by flow disturbances ∆ṁ
around each target flow.

Surrogate function approach To avoid the computational
expense of evaluating the expectation (5) directly, we
use Gaussian Process (GP) regression to build surrogate
models to approximate the expected power consumption
for each compressor. GPs were chosen as the surrogate
model for approximating the expected power consumption
because they are well-suited for handling noisy data,
which arises naturally in our sampling-based procedure to
compute expected power values (Ahmed et al., 2022). GP

regression assumes that the values Pi(m
j
i ) corresponding

to s different flows mj
i , j = 1, . . . , s are random variables,

with joint Gaussian distribution for any finite s. In this
work, we construct three separate GPs—one for each
compressor—denoted as GPi(ṁi), where each GP takes
the mass flow ṁi as input and outputs an approximation of
the expected power consumption E∆ṁ[Pi(ṁi)]. The prior
information about the functions Pi is defined by known
mean ϕi and covariance ki functions:

Pi(x) ∼ GPi(ϕi(x), ki(x, x)), (6)

Following Rasmussen and Williams (2006), after R obser-
vations the mean of the prediction at a new point x̂ is:

µi(x̂) = ψj(x̂) + kR(x̂)(KR + IRσ
2
ω)

−1(Gj −Ψj), (7)

where Gj is a vector of R observed noisy values, Ψj =
[ψj(xr)]r=1,...,R is a vector of mean values of the past data,
j = 0, . . . ,H, the matrix KR contains the covariance of



Fig. 3. Optimized values of individual compressor flows
given a total gas flow target. Solid lines indicate the
solutions obtained with the deterministic approach
(nom-RTO). Dashed lines indicate the solution using
expected power consumption estimates (sto-RTO).

past data, k(xa, xb), a, b = 1, . . . , R, kR(x̂) contains the
covariance between the new point and the past data, and
IR denotes identity matrix of dimension R.

We compute the expected power consumption over a range
of mass flow rates ṁi by sampling disturbances from
the previously mentioned distribution in Section 2.2 and
averaging the resulting power consumption values offline.
These average values serve as training data for the GPs,
allowing it to predict the expected power consumption
continuously over the operating range.

During real-time optimization, the objective function from
(4) is the sum of the mean predictions of the three GP
models:

min
ṁ1,ṁ2,ṁ3

3∑
i=1

µi(ṁi) (8)

where µi(ṁi) from (7) provides an approximation of the
expected power consumption for compressor i.

Solutions of the optimization problems We numerically
solve the resulting optimization problems for the nomi-
nal problem formulation and the formulation considering
flow uncertainty with varying Ṁtarget over the considered
operating range for the compressor station. The obtained
solutions are plotted in Fig. 3, where Ṁtarget can be seen on
the x axis and the optimized individual compressor flows
ṁtarget

i on the y axis, i = 1, 2, 3.

The optimization solutions considering the impact of flow
uncertainties indeed cuts the loading of C1 earlier to avoid
the excessive power consumption, which will arise from
using this compressor at higher flow rates. Despite the
GPs providing a smoother approximation of the expected
power consumption compared to the sampled averages, we
can still see artifacts of this noise in the lower total gas flow
ranges, where the solution shows jumps.

Implementing load sharing optimization The proposed
load sharing optimization solutions are implemented in the
compressor station as shown in Fig.1. Both the nominal

solution from (4) and the stochastic optimization with the
objective (8) are implemented as an RTO layer, where they
generate set points for the FCs of the compressors. The sta-
tion discharge header pressure controller is implemented
as a master PI controller and this controller also adjusts
the set points of the FCs. These adjustments will be the
main source of the flow variations ∆ṁi experienced by the
compressors as shown in (2).

2.4 Load sharing via economic Model Predictive Control

We formulate an alternative solution as a simplified two-
stage eMPC. In the first stage we use a discrete linear
state-space model for the discharge header dynamics with
header pressure y as output and compressor flows u =
[ṁi]i=1,...,3 as inputs:

x(k + 1) =Ax(k) +Bu(k) + d(k)

y(k) =Cx(k) + v(k)
(9)

where A, B, C are constant transition, input, and measure-
ment matrices, respectively 1 . The disturbances d(k) ∼
N(0, D) and v(k) ∼ N(0, V ) are the associated process
and measurement noise vectors and are modeled as un-
correlated, zero mean, white sequences with covariance
matrices D and V . The system (9) is augmented with
an integrator state and a steady-state Kalman Filter is
designed for state estimation.

The pressure is controlled by solving at time k a con-
strained quadratic optimization problem over time horizon
p, where the pressure y has to follow a desired reference
trajectory yref:

min
∆ui

p−1∑
t=0

(
wy

t (y(k + t+ 1|k)− yref(k + t+ 1))2

+

M∑
i=1

wui
t u

2
i (k + t+ 1|k)

)
s.t. ui ≤ ui ≤ ui

∆ui ≤ ∆ui ≤ ∆ui
∆ui(k|k) = 0

ui(k|k) = ui(k +m− 1|k)
ui(t+ k|k) = ui(t+ k − 1|k) + ∆ui(t+ k|k)
t = 1, . . . , p− 1

(10)

where M = 3 is the number of compressors, wy
t and wui

t
are output and input weights, respectively, and m is the
control horizon. For this paper, we chose wy

t = p = 100,
m = 10, wui

t = 1. The decision variables ∆ui(t + k|k),
t = 0, . . . , p − 1, correspond to the required adjustments
to absolute flow values from time k − 1, and are bounded
by ∆ui = −10 kg/s, ∆ui = 10 kg/s. The absolute value
of flows ui are also bounded with ui = −5 kg/s, ui = 55
kg/s, and correspond to adaptations from a nominal value
of 65 kg/s for all compressors.

Once a solution to the tracking problem is obtained, the
first step of the solution for the intended compressor
flow set points is extracted as ṁi

tracking with their sum
representing the necessary control effort. We then solve:

1 Data available on request from the corresponding author
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Fig. 4. Implementation of the eMPC approach on the compressor station (adapted from SIEMENS (2012))

min
ṁ1,ṁ2,ṁ3

3∑
i=1

Pi(ṁi)

subject to

3∑
i=1

ṁi =

3∑
i=1

ṁtracking
i

ṁi ≤ ṁi ≤ ṁi, i = 1, 2, 3

(11)

where the nominal power consumption characteristics Pi

are used. Since the compressor flow set points are de-
termined now by redistributing the control actions in an
efficiency-aware way, there is no need to consider a further
stochastic treatment of power consumption.

Furthermore with eMPC there is no need to provide a
nominally optimal operating point for the compressor
FCs and a nominal total flow target is not necessary for
operation. eMPC also replaces the master controller for
station discharge header pressure. The implementation of
the eMPC solution is depicted in Fig.4.

3. COMPARISON AND DISCUSSION

3.1 Comparison

The compressor station with the two controllers described
in Section 2 is evaluated in MATLAB/Simulink 2024a.
The compressors are modeled using performance curves
and differential equations representing pressure and flow
dynamics (Milosavljevic et al., 2020). Lower level ASC
and FC loops are created for all compressors. A discharge
header pressure model is created with a baseline gas
demand and a superposed random demand fluctuation
following a normal distribution with σ = 30 kg/s.

Three different case studies are analysed: nominal RTO
coupled with a master pressure controller from (4),
stochastic RTO coupled with a master pressure controller
from Section 2.3, and an eMPC from Section 2.3.4, fol-
lowing the same arrangements as in Fig.1 and Fig.4. The
RTO formulations were executed with a sampling rate of
250 s and the eMPC is executed with a sampling rate of 10

Fig. 5. Evolution of cumulative energy consumption of the
station during simulation

s. The simulations are run for 10 000 s with a gas demand
change at 4 000 s into the simulation. One simulation using
the nominal RTO configuration is run without any demand
fluctuations to establish a baseline performance for energy
efficiency.

Simulation results for total station gas flow and the dis-
charge header pressure show that all evaluated control
and optimization approaches are able to meet operational
targets. The main results of the study is shown in Fig.
5. Here we see the gradual build up of the differences
in energy consumption when using different algorithms,
while providing the same or comparable service by the
compressor station. These results are further summarized
in Table1.

3.2 Discussion

The gas flows in the simulation scenario are chosen to high-
light the sensitivity of optimal load sharing to disturbances
in different operating regions. At lower station loads, com-



pressor efficiencies remain stable, making the nominally
optimal solution robust against flow variations. However,
at higher loads, this solution becomes more fragile and, on
average, consumes more energy. In contrast, stochastic op-
timization distributes the load more effectively across com-
pressors, reducing sensitivity to disturbances and lowering
total energy consumption. The eMPC solution performs
best but requires solving a more complex optimization
problem. It can take advantage of disturbances to improve
efficiency but may also use more energy at certain times,
depending on the disturbance sequence. The case study
was designed to include a compressor with highly sensi-
tive efficiency characteristics, operating in a region where
stochastic optimization offers the greatest benefits. The
results confirm these expectations, illustrating that real
compressor stations, which often operate under compara-
ble conditions, could achieve meaningful energy savings by
adopting these strategies, even if only partially.

Table 1. Energy and power consumption com-
parison across algorithms

Algorithm

Indicator
Energy (MWh)Avg Power (MW)

nominal RTO 142 51.12

stochastic RTO 135.91 48.93

eMPC 132.92 47.85

nominal RTO, no dist. 133.47 48.05

4. CONCLUSION

The purpose of this work was to investigate the benefits
of using stochastic methods for compressor load-sharing
optimization under flow disturbances and to evaluate how
eMPC performs as an alternative to a stochastic RTO
formulation. The stochastic optimization method, leverag-
ing Gaussian Process surrogates, achieved a 4.3% reduc-
tion in energy consumption compared to the deterministic
baseline by explicitly accounting for flow variability. The
eMPC approach further reduced energy consumption by
2.2%, demonstrating the ability to adapt to and exploit
flow disturbances. These results highlight the benefits of
incorporating uncertainties into optimization and control
strategies for compressor stations.
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