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Abstract: Applying model-based design of experiments to compute maximally-informative
campaigns with multiple parallel runs is challenging. Herein, we develop a systematic frame-
work for recasting an experiment design problem for model parameter precision as one of
discrimination between multiple rival models with different uncertain parameter realizations.
We use an algebraic upper bound on the Bayes Risk as information criterion and apply a
search procedure that iterates between an effort-based optimization step followed by a gradient-
based refinement step. Through the case study of a fed-batch reactor, we show that a Bayes
Risk discrimination strategy can provide highly-informative experimental campaigns to improve
parameter precision, while being computationally advantageous compared to conventional FIM-
based design strategies and capable of handling structurally unidentifiable problems.
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1. INTRODUCTION

Model-based design of experiments (MBDoE) for param-
eter precision provides a reliable approach to accelerating
the development of predictive mechanistic models and
has been deployed successfully across various chemical
engineering applications (Franceschini and Macchietto,
2008). It can be cast as an optimization problem aiming
to maximize the information content of an experimental
campaign. A popular choice for expressing the informa-
tion content in MBDoE considers the Fisher information
matrix (FIM) (Fisher, 1971; Atkinson et al., 2007), as a
means for decreasing the size of the joint confidence region
of the (uncertain) model parameters via the Cramer-Rao
lower bound. The high computational tractability of this
classical frequentist approach opens the possibility for
designing dynamic experiments for models described by
differential equations (Espie and Macchietto, 1989; Bauer
et al., 2000) and conducting designs sequentially and even
online (Galvanin et al., 2009). Much progress has also been
made in Bayesian experimental design (BED) in recent
years (Rainforth et al., 2024), although applying BED
to practically relevant (dynamic) models often remains
computationally prohibitive.
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Nevertheless, using the FIM to estimate the information
content of an experimental campaign is also subject to
several caveats. First, being a matrix, the FIM may not be
used directly as objective function. The use of summary
statistics such as the FIM determinant (D-optimality) or
trace inverse (A-optimality) may result in suboptimal de-
signs. Many summary statistics are furthermore undefined
when the FIM is singular, which either requires projecting
the FIM onto a subspace where it is positive definite or
applying a regularization (Shahmohammadi and McAuley,
2020). Second, the fact that the elements of the FIM are
functions of any parameter that participates nonlinearly in
the candidate model can severely undermine its practical-
ity since the experimental campaign is designed to learn
about these (unknown or uncertain) parameter values in
the first place—the infamous chicken-and-egg problem.
Where the FIM is computed using some point estimate for
the parameters—usually a maximum likelihood estimate
derived from existing data or a previous campaign—only
the local properties of the model at that point estimate
is exploited, which inevitably leads to suboptimal design
decisions. Exploiting a prior distribution of the model
parameters to robustify an experimental design, either
through averaging the FIM (Pronzato andWalter, 1985) or
computing a risk measure (Kusumo et al., 2022), provides
a more effective approach. It has been shown that an
average FIM-based design can even be cast under the
general BED framework with a particular utility function
based on the gain in Fisher information (Walker, 2016).
However, solving for such robust designs can significantly
impair their computational tractability.

The main focus of this article is on developing and as-
sessing a new method, whereby the MBDoE problem for



parameter precision is recast as a discrimination problem.
Specifically, we consider a discrete probability model char-
acterized by a finite set of support points and their asso-
ciated weights to describe the parameter realizations in
the candidate model, which allows us to treat experiment
design as a problem of classification between these rival
model instances. Consistent with a Bayesian approach,
the probability of model selection error—also known as
Bayes Risk—provides a natural information criterion to
minimize in this context. And while the Bayes Risk cannot
be evaluated in closed form and is thus unsuitable as an
optimization criterion in general, upper bounds on the
Bayes Risk have been developed that can be computed
completely algebraically without requiring multidimen-
sional integration or stochastic analysis (Blackmore et al.,
2008). Advantages of the Bayes Risk bound over FIM-
based criteria include the fact that it does not become
singular when certain model parameter combinations are
non-identifiable from the available measurements and is
faster to compute since it entails model output evalu-
ations only, as opposed to output sensitivities for the
FIM. Despite this, Bayes Risk has seldom been used as
an information measure for experiment design purposes
to date. Bayard and Neely (2017) recently made several
strides in this direction for pharmacokinetic applications
but a systematic optimization framework is still lacking.

The main contribution of this article, therefore, is a sys-
tematic framework for minimizing Bayes Risk for designing
optimal experiment campaigns under uncertainty (Sec. 2).
We extend a recent methodology (Sandrin et al., 2024a)
that iterates between (i) the solution of an effort-based
exact design subproblem operating on a discretized ex-
perimental design space (Sandrin et al., 2024b) and (ii)
a conventional gradient-based subproblem to refine the
experiments that were selected by the previous step out
of the set of discrete candidates, in order to enable Bayes
Risk in either steps (Sec. 3). We also propose a scenario-
reduction approach for more tractable Bayes Risk bound
computation with large number and/or wide domain of
uncertain parameters. We compare the proposed approach
with an average D-optimal approach on a case study
involving a dynamic experiment design in a semi-batch
reactor, both in terms of information content and compu-
tational efficiency (Sec. 4).

2. PROBLEM DEFINITION

Consider a system with nx experimental controls x ∈ X ⊂
Rnx and ny measured responses y ∈ Y ⊂ Rny ,

y = η(θ,x) + ϵ, (1)

where θ ⊂ Rnθ are uncertain parameters in the mathe-
matical model η. For simplicity, assume the measurements
to be independent and the measurement error ϵ ∈ Rny

to have zero mean E(ϵ) = 0 with uncorrelated and ho-
moscedastic covariance Σy. Although written in closed
form in (1), the model η may also be defined implicitly
via a set of algebraic and/or differential equations without
the loss of generality.

We consider an experimental campaign comprising Nt

experimental runs for the purpose of generating data for
the estimation of the model parameters θ. Since such
campaigns often consist of repeated runs with identical ex-

perimental controls (replicates), it is convenient to denote
an experimental design ξ as

ξ
.
=

{
x1 . . . xNc

ω1 . . . ωNc

}
, (2)

where 0 < Nc ≤ Nt is the number of distinct runs; and
ωi ∈ (0, Nt] is the number of replications—or effort—of
the i-th experimental candidate with controls xi for each
i = 1, . . . , Nc, so that the ωi’s add up to Nt. The set
{x1, . . . ,xNc} is called the support of the experimental
design ξ, denoted by supp(ξ).

Our focus herein is on designs having integral efforts,
ωi ∈ Z+, also called exact designs. In contrast, continuous
designs allow ωi to vary continuously in the standard sim-
plex

∑
i ωi = Nt with ωi > 0,∀i. Although computation-

ally advantageous, the latter typically result in fractional
values for the optimized efforts and require the application
of an a posteriori rounding procedure to recover integral
efforts. Such rounding can introduce large suboptimality,
most noticeably in campaigns where the number Nt of
experimental runs is small (Sandrin et al., 2024b).

An optimal design ξ∗ is one that maximizes some scalar
information criterion ϕ,

ξ∗ ∈ argmax
ξ

ϕ (ξ) . (3)

Determining an optimal design entails simultaneously
searching over all possible number of supports Nc, the
experimental controls x1, . . . ,xNc

∈ Rnx , and the corre-
sponding efforts ω1, . . . , ωNc

∈ {0, . . . , Nt}.

2.1 FIM-based Optimal Designs

In classical experiment design, the scalar information
criterion ϕ in (3) is expressed as a function of the Fisher
information matrix (FIM), M ∈ Rnθ×nθ , which under the
assumption of uncorrelated homoscedastic measurement
errors in (1) is given by (Atkinson et al., 2007)

M(ξ,θ)
.
=

Nc∑
i=1

ωiA(xi,θ) (4)

with A(xi,θ)
.
=

∂η

∂θ
(xi,θ)

⊺
Σ−1

y

∂η

∂θ
(xi,θ) . (5)

The D-optimality criterion is a widely used summary
statistic, aiming at minimizing the volume of confidence
ellipsoids for the parameters,

ϕ (ξ)
.
= log det (M(ξ,θ∗)) . (6)

In principle, θ∗ in (6) should be the ‘true’ parameter value:
this value is unknown and, in fact, the main reason for
doing experiment design in the first place. Only for a linear
model η in θ does the dependence of ϕ on θ vanish.

For a nonlinear model, using a nominal parameter value
θ0 is risk-inclined since it ignores the uncertainty in the
model parameters. To mitigate the risk of uninformative
experiments, one can adopt the Bayesian paradigm and
describe the model parameter uncertainty with a probabil-
ity distribution π(θ). The average design (AD) approach
maximizes the expected value of information content over
the model uncertainty (Pronzato and Walter, 1985),

ϕAD(ξ)
.
=

∫
θ

π (θ) log det (M(ξ,θ)) dθ. (7)



Other robust approaches are possible, such as focusing on
those model uncertainty scenarios corresponding to a given
lower percentile of the information content, for instance
using a conditional-value-at-risk (Kusumo et al., 2022).

2.2 Bayes Risk Optimal Designs

In order to recast the experiment design problem for pa-
rameter precision as one of discrimination, we assume that
the uncertain parameters θ in the mathematical model η
are in the discrete set Θ

.
= {θ1, . . . ,θNπ

}, with Bayesian
prior probabilities π(θj), j = 1 . . . Nπ. In practice, these
samples may be obtained using Bayesian inference with an
appropriate likelihood function and prior, or simply drawn
from a frequentist confidence region.

The posterior probability π(θj | Y,X) of the parameter
scenario θj , for a given vector of experimental controls
X

.
= [· · ·x⊺

i · · · ]⊺ with corresponding responses Y
.
=

[· · ·y⊺
i · · · ]⊺, can be calculated using Bayes rule as

π(θj | Y,X) =
π(Y | θj ,X) π(θj)

π(Y | X)
.

Then, the most probable parameter value θ∗ in an Nπ-
category classification problem is simply selected as

θ∗ ∈ argmax
θj∈Θ

π(θj | Y,X). (8)

But the selection rule in (8), which is often referred to
as the Bayes optimal classifier, has a finite probability
of selecting an incorrect parameter value. To express this
probability, known as the Bayes Risk, it is convenient to
subdivide the space Y of possible observations into (up to)
Nπ regions defined by

Yj
.
= {Y ∈ Y | ∀k ̸= j, π(θj | Y,X) > π(θk | Y,X)}
= {Y ∈ Y | ∀k ̸= j, π(θj ,Y | X) > π(θk,Y | X)} ,

where the latter is simply obtained by multiplying both
sides of the inequalities by π(Y | X).

The Bayes Risk, R(X), is calculated by summing over all
possible ways that a Bayes optimal classifier can make a
classification error; that is, by summing over the probabil-
ities of selecting θk when θj would be the correct value,

R(X)
.
=

Nπ∑
j,k=1,
j ̸=k

π(θj ,Y ∈ Yk | X)

=

Nπ∑
j,k=1,
j ̸=k

∫
Yk

π(Y | θj ,X) π(θj) dY. (9)

Computing the Bayes risk via (9) is generally arduous.
Following Bayard and Neely (2017), we instead calculate
a tractable upper bound on the Bayes Risk,

R(X) ≤
Nπ∑

j,k=1,
j<k

√
π(θj)π(θk) exp

(
−
∑
i

ρj,k(xi)

)
(10)

with ρj,k(xi)
.
=

1

8
[η(θj ,xi)− η(θk,xi)]

⊺Σ−1
y

[η(θj ,xi)− η(θk,xi)]. (11)

The validity of this bound, here written in the special case
of Gaussian measurement noise ϵ ∼ N (0,Σy), was first
established by Blackmore et al. (2008, Theorem 1).

Finally, our formulation of the Bayes Risk information
criterion accounts for the number of replications ωi of each
support xi, i = 1 . . . Nc in the experimental campaign ξ,

ϕBR(ξ)
.
= − log

Nπ∑
j,k=1,
j<k

√
π(θj)π(θk) exp

(
−

Nc∑
i=1

ωi ρj,k(xi)

)
,

(12)
where we use log-scaling to avoid numerical issues when
the Bayes Risk becomes very small, and the negative sign
for consistency with the maximization in (3). A possible
interpretation of ϕBR is to maximally discriminate between
the uncertainty scenarios by maximizing the distance
between responses of any scenario pair, weighted by their
respective probabilities of occurrence.

3. COMPUTATIONAL METHODOLOGY

Solving the experiment design problem (3), with either
the average D-optimality criterion (7) or the Bayes Risk
criterion (12), by simultaneously searching over all possible
number of supports Nc, the experimental controls x1...Nc ,
and the corresponding efforts ω1...Nc is intractable in
general. Instead, we adopt a decomposition approach that
iterates between an effort-based optimization step and
a gradient-based refinement step (Vanaret et al., 2021;
Sandrin et al., 2024a).

Following an initial discretization of the experimental de-
sign space, the values of the efforts are first optimized
to determine which candidate experiments should be in-
cluded in the experimental campaign as well as the (in-
teger) number of replications. The selected experiments
are refined in the second step using gradient-based search
to further increase the information content. These refined
supports are appended to the set of experiment candidates,
before updating the selected experiments and correspond-
ing efforts by repeating the effort-based design, until no
further improvement is obtained.

This approach takes advantage of the convexity of the
effort-based optimization subproblem to prevent a sub-
optimal effort selection over the discretized experimental
design space. The selected supports can then be used to
warm-start the gradient-based refinement subproblem, a
nonconvex optimization in general. Although this itera-
tive procedure cannot guarantee finding the best possible
experimental campaign, it is effective in practice and typ-
ically terminates after a small number of iterations. In a
variant of this procedure (Yang et al., 2013; Schmid et al.,
2024), the refinement step can also be computed via the
solution of a maximum optimality violator subproblem,
before returning to the effort-based subproblem.

3.1 Effort-based Optimization Step

The iterative procedure starts with an initial discretiza-
tion of the experimental design space into a finite col-
lection of experiment candidates, denoted by X (0) .

=
{x̂1, . . . , x̂Ns} ⊂ X with Ns ≫ Nt. In the case of a simple
experimental design space X , a sample can be obtained via
gridding or the application of low-discrepancy sequences
such as Sobol’ sampling (Sobol’, 1967).



This discretization recasts the search over ξ in (3) into
a more tractable search over the experimental efforts ωi

associated with each experiment candidate x̂i ∈ X (k−1),
where X (k−1) is the set of experiment candidates at the
start of iteration k ≥ 1. The resultant optimized efforts
(ω̂1, . . . , ω̂Ns

) are allowed to take a value of zero here—
and most of them do when Ns ≫ Nt.

In particular, an average D-optimal (DOPT) design is
computed by solving the following pure integer nonlinear
program (INLP),

max
ω

Nπ∑
j=1

π(θj) log det

(
Ns∑
i=1

ωiA(x̂i,θj)

)
(13)

s.t.

Ns∑
i=1

ωi = Nt, ωi ∈ Z+, ∀i, (14)

where the objective function is an estimator of the average
design criterion (7) using a sampled average approximation
(SAA) based on the discretized model uncertainty set Θ.

Likewise, a Bayes Risk optimal (BROPT) design is com-
puted by solving the following INLP,

max
ω

− log

Nπ∑
j,k=1,
j<k

√
π(θj)π(θk) exp

(
−

Ns∑
i=1

ωi ρj,k(x̂i)

)

(15)

s.t.

Ns∑
i=1

ωi = Nt, ωi ∈ Z+, ∀i. (16)

Since both the average D-optimality criterion (7) and the
Bayes Risk criterion (12) are concave functions of the ef-
forts ω, the corresponding INLPs (13)–(14) and (15)–(16)
can be solved to global optimality using a standard outer-
approximation algorithm (Fletcher and Leyffer, 1994); see
Sandrin et al. (2024b) for a recent investigation concluding
that this approach is highly tractable.

3.2 Gradient-based Refinement Step

After solving either effort-based subproblem (13)–(14)

or (15)–(16), the support of the optimized design ξ̂ is
recovered as the collection of experiment candidates x̂i ∈
X (k−1) that have an effort ω̂i > 0,

supp(ξ̂)
.
= {x̂i ∈ X (k−1) : ω̂i > 0}, (17)

with the corresponding optimized number of supports

N̂c
.
= |supp(ξ̂)|.

A refined DOPT design is computed by solving the follow-
ing (nonconvex) nonlinear program (NLP),

max
xi∈X

Nπ∑
j=1

π(θj) log det

 N̂c∑
i=1

ω̂iA(xi,θj)

 (18)

while a refined BROPT design is computed similarly by
solving the following (nonconvex) NLP

max
xi∈X

− log

Nπ∑
j,k=1,
j<k

√
π(θj)π(θk) exp

−
N̂c∑
i=1

ω̂i ρj,k(xi)

 (19)

using supp(ξ̂) in (17) as initial guesses for the xi’s.

Finally, the resultant refined supports are appended to
the set of experiment candidates X (k−1) to form the
augmented set X (k) at the next iteration. This procedure
is interrupted as soon as the effort-based search over X (k)

does not yield any further improvement.

3.3 Scenario Reduction in Bayes Risk Upper Bound

A prerequisite of the Bayes Risk minimization approach
is that the discretization set Θ of the model parametric
uncertainty should be fine enough to create sufficient over-
lap among all the responses corresponding to the various
uncertainty realizations—otherwise, the Bayes Risk upper
bound in (10)–(11) could become vanishingly small and
the experiment design optimization would be pointless. In
particular, the problem is exacerbated with an increasing
number of uncertainty parameters or a wider uncertainty
support set.

However, increasing the uncertainty discretization size Nπ

can impose a significant computational overhead, both in
terms of the initial candidate experiment evaluation and
the function and gradient evaluations in the optimization
subproblems. In the effort-based subproblem (15)–(16), for
instance, the number of summands in the cost functions
scales as O(N2

πNsny).

In response to this, we propose a simple scenario reduction
strategy in a preprocessing step, that leverages the initial
discretization of the experimental design space X (0) with
equal efforts. Specifically, for each uncertainty scenario
j ∈ {1, . . . , Nπ}, we determine the M nearest-neighbours
ȷ̂1, . . . , ȷ̂M which minimize the following distance

dj,ĵk
.
= exp

(
−

Ns∑
i=1

ρj,ȷ̂k(x̂i)

)
, k = 1 . . .M, x̂i ∈ X (0)

and we sum over these selected scenario pairs only when
evaluating the criteria in (15) & (19) and their gradients.

3.4 Software Implementation

For the effort-based optimization step, the master ILP
subproblems of the outer-approximation algorithm are
solved using the solver GUROBI (v11.0.1), 1 with relative
and absolute convergence tolerances of 10−6 and 10−9,
respectively. The NLP from the initial continuous relax-
ation is solved using the sparse nonlinear solver SNOPT
(v7.7), 2 with optimality tolerance set to 10−6. The outer-
approximation iterations are terminated when the relative
gap between the master solution value and the incumbent
is below 10−5. For the gradient-based refinement step, the
NLP subproblems are also solved using SNOPT within the
same tolerance of 10−6.

The scenario generation and evaluation for the jointly dis-
cretized experimental design space and model uncertainty,
the effort-based optimization step, and the gradient-based
refined step all together are coordinated from a new class
named MBDOESLV in the C++ library CANON (v4.0) 3 .
CANON builds on the library MC++ (v4.0) 4 to evaluate

1 https://www.gurobi.com/solutions/gurobi-optimizer/
2 https://ccom.ucsd.edu/~optimizers/solvers/snopt/
3 https://github.com/omega-icl/canon
4 https://github.com/omega-icl/mcpp



and differentiate expression trees, along with the library
CRONOS (v4.0) 5 for numerical integration and sensitivity
analysis of ODE systems by interfacing with the solver
CVODES of the library SUNDIALS (v7.1.1) 6 . Linear alge-
bra calculations, including matrix rank and determinant,
Cholesky decomposition and triangular system solve, are
all carried out using the library Armadillo (v12.6). 7 Con-
current evaluation of the model responses or the FIMs
corresponding to different uncertainty scenarios is enabled
on multiple threads, both as part of the initial scenario
generation or the gradient-based refinement step.

4. CASE STUDY

The case study considers a fed-batch reactor hosting the
model reaction A −−→ νB (Kusumo et al., 2022). A
mechanistic model of the system is given by

ċA(t) =
qin(t)

V (t)

(
cinA − cA(t)

)
− k(T ) cA(t)

α (20)

ċB(t) = −qin(t)

V (t)
cB(t) + ν k(T ) cA(t)

α (21)

V̇ (t) = qin(t) (22)

k(T )
.
= exp

(
θ0 + θ1

(
T − T ref

T

))
(23)

with ci (mol L−1) denoting the concentration of species
i ∈ A,B, t (min) time, V (L) the reaction mixture volume,
and T ref = 273.15K the reference temperature.

The duration of an experimental batch is set to 200 min-
utes. The experimental setup allows for measurements of
cA and cB to be taken at 25 minute intervals during each
batch, leading to 8 sampling times at t = 25, 50, . . . , 200
min, with IID measurement errors with 0.2mol L−1 stan-
dard deviation. The experimental controls comprise the
time-varying inlet volumetric flowrate qin(t) ∈ [0.0, 0.1]
Lmin−1, parameterized as a piecewise constant function
with fixed switching times at t = 50, 100, 150 min, and the
time-invariant reaction temperature T ∈ [273.15, 323.15]
K. The inlet concentration of A is kept constant at cinA =
10mol L−1, and the initial concentrations and volume
are set to cA(0) = 5 mol L−1, cB(0) = 0 mol L−1 and
V (0) = 1 L.

The order of reaction α, stoichiometric ratio ν, and dimen-
sionless pre-exponential factor θ0 and activation energy θ1
are all uncertain parameters. The former is assumed to
follow a Bernoulli distribution with 75% and 25% proba-
bility of being, respectively, either a first-order (α = 1)
or second-order (α = 2) reaction. The other three pa-
rameters are assumed to be uniformly distributed as θ0 ∼
U(−5.87,−0.54), θ1 ∼ U(0.45, 4.39), and ν ∼ U(0.3, 0.7).

4.1 Comparison of Experiment Designs

The average D-optimal (DOPT) and Bayes Risk optimal
(BROPT) designs for a campaign with Nt = 5 experimen-
tal runs are shown in Figs. 1a & 1b, respectively. Both
designs are computed with an initial set of Ns = 500 can-
didate experiments and Nπ = 1000 uncertainty scenarios,
5 https://github.com/omega-icl/cronos
6 https://github.com/LLNL/sundials/tree/main
7 https://arma.sourceforge.net/docs.html
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(a) DOPT campaign with 5 experimental runs
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(c) BROPT campaign with a single experimental run

Fig. 1. Comparison of optimal experimental campaigns.

generated using Sobol’ sampling (Sobol’, 1967), and con-
vergence within a single refinement iteration. The DOPT
campaign comprises 3 supports, while the BROPT only has
2. Despite this difference, the optimal experiments have in
common that the flowrate profiles are initially maximal
before being turned down or off, and the temperature is
set to either its minimal or maximal level. This similarity is
also reflected in the values of the information criteria, with
ϕAD = 25.43 and ϕBR = 2.32 in the DOPT campaign, and
ϕAD = 25.39 and ϕBR = 2.35 in the BROPT campaign.

Next, we test the effectiveness of the design criteria by
simulating both the DOPT and BROPT campaigns for an-
other 1000 scenarios of the uncertain model parameters—
different from the scenarios used for the optimization—and
computing the confidence intervals that would be obtained
for the parameters after recalibrating the model in each
scenario. The box plots on Fig. 2 show summary statistics
for the distribution of the confidence interval width for
each parameter (as a percentage of the nominal parameter
value) over these 1000 scenarios. This comparison confirms
that the DOPT and BROPT campaigns perform similarly
in terms of improving parameter precision.

Notice also that a campaign with at least Nt = 2 ex-
periments is required to conduct a DOPT design for the
model (20)–(23), otherwise the parameters θ0 and θ1 are
not structurally identifiable and the FIM is singular. In
contrast, a BROPT design can be conducted even for a
campaign with a single experimental run, as illustrated



Fig. 2. Effect of optimal experimental campaigns on pa-
rameter precision. The bar, box and whiskers indicate
the median, interquartile range and 10-90th percentile
range, respectively, and the dot the average value.

Table 1. Computational comparison between optimal ex-
periment designs (with wall-time in seconds).† The sce-
nario reduction selects M nearest neighbors (see Sec. 3.3).

DOPT design BROPT design

Uncertainty scenarios 1000 250 1000 250 1000
Scenario reduction – – – – 20

Sample evaluation 446 88 55 17 79
Effort-based step 126 34 957 94 22
Gradient-based step 1344 333 94 53 77

Total wall-time 1916 455 1106 163 178

†Lenovo ThinkPad X1 Carbon Gen 10 with 12th Gen Intel® Core™
i7-1260P × 16, 32.0 GiB memory, Ubuntu 22.04 operating system

in Fig. 1c. This experiment picks the lower reactor tem-
perature level and a feedrate profile that is intermediate
between the two experimental runs in Fig. 1b.

4.2 Comparison of Computational Performance

The computation comparison in Table 1 shows a break-
down in terms of sample evaluation (including scenario
reduction), effort-based optimization, and gradient-based
refinement wall-times. With Nπ = 1000 uncertainty sce-
narios, using BROPT about halves the computational time
compared to DOPT. However, there is a noticeable burden
shift between the effort- and gradient-based steps. The
effort-based step becomes dominant with BROPT because
of the very large number of summands (c. 4 billion) in the
Bayes Risk upper bound expression in (15), as discussed in
Sec. 3.3. A significant improvement in computational time
can be obtained by reducing the number of uncertainty
scenarios from Nπ = 1000 to 250. By doing so, there is
nevertheless a risk that the performance of the exper-
iment design will be degraded, especially with BROPT
where sufficient overlap between the model responses is
critical for a meaningful optimization. Alternatively, the
proposed scenario reduction strategy—here preselecting
the 20 nearest-neighbours to each uncertainty scenario—
provides a similar computational improvement, yet with-
out impairing the accuracy of the Bayes Risk bound.

5. CONCLUSIONS

Through this paper, we investigated an approach for re-
casting an experiment design problem for parameter pre-
cision as a discrimination problem. We used an algebraic
upper bound on the Bayes Risk to design experimental

campaigns that maximally discriminate between a set of ri-
val models corresponding to different model parameter un-
certainty realizations. Our case study results showed that
a Bayes Risk minimization strategy can provide highly-
informative experimental campaigns to improve parameter
precision in mathematical process models, while being
computationally advantageous compared to conventional
FIM-based design strategies and capable of handling struc-
turally unidentifiable problems. Future work will entail
testing the methodology on additional case studies.
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