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Abstract: Fractionation of lignocellulosic biomass is a crucial step to provide cellulose, lignin,
and hemicellulose for further processing. This paper is concerned with modelling biomass
fractionation using the ionoSolv process, which employs low-cost ionic liquid water mixtures,
with a special focus on describing the effect of acid:base ratio of the mixture on process
performance. We build on an existing semi-mechanistic modelling framework describing the
solvent extraction of three main biopolymers from woody biomass for varying fractionation
temperature, time, and solids loading. Since the effect of acidity is poorly understood from a
mechanistic standpoint, we use sparse regression with lasso regularisation to incorporate it in the
semi-mechanistic model. We investigate both polynomial and exponential functional forms and
find that the latter yields more physically-consistent results. This enabled us to recalibrate the
parameters of the combined semi-mechanistic and sparse data-driven models simultaneously
to accurately predict the effect of varying acid:base ratio. This hybrid modelling framework
opens new opportunities for further analysis and optimisation of ionic liquid-based biomass
fractionation processes.
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1. INTRODUCTION

Climate change and resource scarcity are driving the de-
mand for sustainable alternatives to non-renewable energy
sources and carbon materials such as plastics. Biomass,
which refers to any renewable organic material originat-
ing from plants and animals, can be a source of both
energy and materials. Lignocellulosic biomass comprises
woody plant parts, including agricultural and food in-
dustry residues (Ragauskas et al., 2006; Verd́ıa Barbará
et al., 2023). It is composed of three main biopolymers:
cellulose, hemicellulose, and lignin. The chemistry and
spatial arrangement of the components of lignocellulosic
biomass hinders its direct conversion to specific products,
thus requiring a chemical transformation to maximise the
availability of the biopolymers for specific applications.

The effectiveness of ionic liquids (ILs) as solvents for
biomass fractionation is well established. In particular,
the ionoSolv process utilises protic ionic liquid–water so-
lutions, synthesised by the simple combination of an aque-
ous Brønsted acid with a Brønsted base, to fractionate
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lignocellulosic biomass into a cellulose-rich pulp and a
lignin- and hemicellulose-rich liquid. Solid lignin is then
separated after increasing the water content of the ionic
liquid solution (Brandt-Talbot et al., 2017). The cellulose
pulp is washed after the pretreatment to remove the IL and
residual lignin, followed by further processing to cellulosic
biofuels (after hydrolysis) or biomaterials. The dissolved
lignin, recovered from the IL by the addition of an anti-
solvent such as water, can either be combusted for process
heat or converted to other products. The IL–water mixture
can be regenerated via distillation before its recycling.

IonoSolv process performance is primarily impacted by
the choice of IL, biomass feedstock, fractionation condi-
tions, process scale, along with IL-specific properties such
as acidity (Brandt-Talbot et al., 2017; Weigand et al.,
2017) and water content (Abouelela et al., 2023). Pre-
vious modelling efforts have mostly considered ILs with
a fixed acid:base ratio and water content. The complex
interactions of the ionic species in protic ILs with water
complicate understanding the interplay between different
lignocellulosic biomass components and the solution (Firth
et al., 2024). However, the acid:base ratio has a notable
impact on ionoSolv process performance. Previously in
hardwoods, a mere 2% excess of acid caused severe cellu-
lose degradation with a corresponding increase in the rate
of pseudo-lignin re-deposition (Weigand et al., 2017). Such
pseudo-lignin—a combination of sugar-derived humins and



re-condensed lignin—reduces the purity of the cellulose-
rich pulp and hinders the saccharification of cellulose
pulps to form biofuels, limiting further process pathways.
To model the effect of acidity on ionoSolv fractionation,
Abouelela et al. (2023) recently used a severity factor
approach with Hammett acidity—an extension of the pH
scale—to correlate acidity with ionoSolv performance for
varying water contents, yet for a fixed acid:base ratio.

Previously, we developed a semi-mechanistic model to de-
scribe ionoSolv fractionation and demonstrated it for the
grassy biomass Miscanthus with the IL triethylammonium
hydrogen sulfate [TEA][HSO4] at varying temperature,
time, and solids loading (Nisar et al., 2024). However,
this model assumed a fixed acid:base ratio and water
content. Herein, we build on this framework and incor-
porate sparse data-driven elements to describe the effect
of acidity on biomass fractionation with protic ILs. We
use sparse regression with lasso regularisation to isolate
the model terms necessary to accurately predict the effect
of acid:base ratio. In the rest of the paper, the model
structure and sparse regression methodology will first be
outlined (Sec. 2), followed by the presentation and dis-
cussion of the model training and predictions for varying
acid:base ratio (Sec. 3).

2. BACKGROUND AND METHODOLOGY

2.1 Semi-Mechanistic Model Structure

The simple reaction network R1–R4 was proposed by Nisar
et al. (2024) to describe the main reactions occurring
during lignocellulosic biomass fractionation.

cellulose(s)
r1

glucose(diss.) (R1)

hemicellulose(s)
r2

sugars(diss.) (R2)

lignin(s)
r3

lignin(diss.) (R3)

lignin(diss) + glucose(diss)
r4

pseudo lignin(s) (R4)

Mass balances (Eqn. 1) were enforced in terms of the mass
fraction mj of each species j relative to the initial total
biomass solids, with νi,j the stoichiometric coefficient of
species j in reaction i.

dmj

dt
=

4
∑

i=1

νi,j ri(T, S,m) (1)

The reaction kinetics were expressed as functions of the
temperature T (K), the solids loading S (%) representing
the solids-to-solvent mass ratio, and the mass fractions
of reactants, with Ri the set of reactants in reaction i.
An Arrhenius power kinetic expression was employed for
reactions R2–R4 (Eqn. 3), while a Haldane kinetic expres-
sion was used for reaction R1 (Eqn. 2). The parameters
θ0i and θ1i model the effect of temperature, with reference
temperature Tref = 298.15 K; the parameters αi and βi,j ,
the solids loading and reaction order effects; and the pa-
rameters κ1 and κ′

1, the saturation and inhibition regimes
at intermediate and high cellulose concentration S×mcell,
respectively.

r1 = exp

(

θ0i + θ1i

(

1−
Tref

T

))

S mcell

κ1 + S mcell +
(S mcell)2

κ′

1

(2)

ri = exp

(

θ0i + θ1i

(

1−
Tref

T

))

Sαi

∏

j∈Ri

m
βi,j

j , i = 2 . . . 4

(3)

The kinetic parameters in the model were calibrated based
on pulp compositions consisting of residual cellulose, hemi-
cellulose and lignin measurements. Since the wet-lab com-
positional analysis protocol (Sluiter et al., 2010) measures
the lignin content gravimetrically, it cannot distinguish
native lignin and pseudo-lignin—encompassing condensed
(re-precipitated) lignin and sugar-derived humins. There-
fore, when calculating residuals for lignin, the compo-
nents lignin and pseudo-lignin were combined. The wet-
lab protocol is also unable to distinguish between glucose
derived from cellulose or hemicellulose, but as most glucose
originates from cellulose, the term glucan is understood as
cellulose hereon.

2.2 Sparse Regression of Acid:Base Correction Terms

The dynamic model (1)–(3) describes the combined ef-
fect of temperature, time and solids loading for a fixed
acid:base ratio around 1 ± 0.5%. 1 Further investigations
have revealed that, without acidity correction, even a small
(c. 2–3%) addition of either excess acid or base could
induce significant model prediction mismatch, echoing the
conclusions from other studies (Weigand et al., 2017).
Therefore, extending the model (1)–(3) to describe the
effect of acid:base ratio is paramount to improving its
robustness and predictive capability. Previous attempts at
modelling the effect of acidity in ionoSolv fractionation
involved modifying empirical expressions developed for
hydrothermal systems (Abouelela et al., 2023), yet with
limited success. Instead, the approach adopted herein seeks
to identify multiplicative correction factors for the reaction
rates ri (Eqns. 2 & 3) when the acid:base ratio (A:B)
deviates from unity.

Polynomial Correction terms. Our initial attempt con-
sidered reaction rate corrections as ri(1 + εi), where the
polynomial functions εi vanish when A:B = 1 (Eqn. 4),
and so the corrected reaction rates equal those from
the original model (1)–(3). Following the report of a
marked increase in the effect of acidity with temperature
by Weigand et al. (2017), we accounted for the com-
bined effect of A:B and temperature T (◦C). Specifi-
cally, the polynomials—which are compactly written using
multi-index notation in Eqn. (4)—operate on normalised
acid:base and temperature variables (A:B, T ; Eqn. 5).
With third-order correction terms, the polynomials com-
prise 10 monomials and the regression problems seeks to
estimate the corresponding 10 coefficients ϕi,κ.

1 The acid:base ratio of hydrogen sulfate-based ionic liquids such
as [TEA][HSO4] is determined through titration, which can also
introduce uncertainty into the measurements.



εi(A:B, T ) = (A:B − 1)
∑

κ∈N
2

κ1+κ2≤3

ϕi,κ A:B
κ1

T
κ2

(4)

with: A:B =
A:B − 0.95

0.1
, T =

T − 25

170− 25
. (5)

Exponential Correction Terms. The functional expres-
sions used to model the effect of severity on hydrothermal
and dilute acid systems often employ exponential depen-
dencies (Malaret et al., 2020). Our second attempt at
correcting the reaction rates, therefore, was in the form
of ri exp(εi), with the same polynomial functions—hence
the same number of coefficients ϕi,κ—as in Eqn. (4). Here
again, the corrected reaction rates equal those from the
original model (1)–(3) when A:B = 1.

Regression Problem Formulation. A general formulation
of the regression problem is summarised in Eqns. (6)–
(7), for a collection of N biomass fraction measurements

m̂
(k)
jk

, with jk ∈ {cellulose, hemicellulose, lignin}, under

given conditions (T̂ (k), t̂(k), Ŝ(k), ˆA:B
(k)

) of temperature,
pretreatment time, solids loading and acidity.
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(6)

s.t. − δi,κ ≤ ϕi,κ ≤ δi,κ, ∀κ ∈ N
2 : κ1 + κ2 ≤ 3,

i = 1 . . . 4 (7)

The first term in the cost function (6) is a standard (un-
weighted) least-squares estimator to minimise the residu-
als between the experimental data and model predictions.
The second term is a lasso (ℓ1) regularisation, for driving
the coefficients ϕi,κ to zero, and thereby promote sparsity.
Increasing the regularisation weight λ ≥ 0 decreases the
risk of over-fitting since fewer monomials comprise the
polynomial function; but it also increases the residual error
and, therefore, the risk of under-fitting. By and large,
selecting an appropriate regularisation weight λ is essential
to training a model with good generalisation capability,
and so we determined its value by means of a simple trial-
and-error approach. Note also that the auxiliary variables
δi,κ were introduced to reformulate the absolute values in
ℓ1 regularisation as extra constraints (7) and make the
regression problem differentiable.

Computational Procedure. We proceeded with the solu-
tion of three regression problems. In the first two problems,
the kinetic model parameters (θ0i , θ

i
1, αi, βi,j , κ1, κ

′
1) in (1)–

(3) were kept fixed to those estimated at A:B = 1 (Nisar
et al., 2024). In all three regression problems, the separable
structure of the reaction network R1–R4 allowed us to
solve three decoupled regression sub-problems, for the cel-
lulose reaction R1, the hemicellulose reaction R2, and the
two lignin reactions R3–R4. The latter sub-problem used
the optimal parameters of reaction R1 since reaction R4
involves glucose, whose production rate is decoupled from
its subsequent reaction rate.

In the first two problems, we considered polynomial and
exponential corrections as ri(1+εi) and ri exp(εi), respec-
tively, and fitted all 10 coefficients ϕi,κ in each reaction
i = 1 . . . 4. We increased the regularisation weight λ ∈
[10−5, 1] in the lasso regularisation to promote sparsity,
while monitoring the fit to the available experimental data
and the number of non-zero coefficients in the correction
terms. This allowed us to select the minimal number of
monomials in the exponential corrections of all four re-
actions R1–R4. The better fitting approach between the
polynomial and exponential corrections was then employed
in the final regression problem.

In the final problem, both the kinetic parameters in
Eqns. (2)–(3) and the coefficients in the acidity correction
terms using the sparse polynomials in Table 1 were re-
estimated simultaneously. The kinetic parameter values
were allowed to vary within 10% of their original values to
compensate for slight deviations around A:B = 1 due to
experimental errors. The three sub-problems for cellulose,
hemicellulose and lignin were again addressed separately.

In our Python implementation, the constrained regression
problems were solved using the code SLSQP interfaced
from SciPy (Virtanen et al., 2020). Since a finite difference-
based approach was unable to provide reliable and repro-
ducible solutions of the parse regression problems, we used
the library CRONOS (v4.0) 2 for numerical integration and
sensitivity analysis of ODE systems. CRONOS provides an
interface with the solver CVODES of the library SUNDIALS
(v7.1.1) 3 and relies on the library MC++ (v4.0) 4 to
evaluate and differentiate expression trees.

3. RESULTS AND DISCUSSION

The system considered was the grass Miscanthus with the
protic ionic liquid [TEA][HSO4] at varying temperature,
pretreatment time, solids loading, and acid:base ratio. The
data used included both previously published (Brandt-
Talbot et al., 2017) and newly collected experimental data.

3.1 Sparse Correction Results

Figure 1 illustrates the variation in the prediction accuracy
and number of non-zero terms in the polynomial and expo-
nential correction functions of each reaction with increas-
ing lasso weight. There is an increase in model sparsity
with increasing lasso weight, with parameter values grad-
ually being driven to zero. The black dotted lines in each
subplot mark the chosen lasso weights for each approach,
yielding the optimal balance between model accuracy and
sparsity. Recall that every correction function εi has a
dependence on the acid:base ratio through the (A:B − 1)
multiplier in Eqn. (4). For the glucan (i) and lignin (iii)
models, the exponential correction slightly outperforms
the polynomial approach with generally a lower number
of parameters, while the exponential approach clearly per-
forms better for hemicellulose (ii). The sparse correction
trajectories (black dotted line) were then visualised over
the experimental data range to further compare both ap-
proaches.

2 https://github.com/omega-icl/cronos
3 https://github.com/LLNL/sundials/tree/main
4 https://github.com/omega-icl/mcpp



Fig. 1. Change in model accuracy and sparsity for (a) polynomial and (b) exponential functions with increasing lasso
regularisation.

3.2 Sparse Correction Trajectories

Figure 2(a) illustrates the fitted sparse correction functions
ϵi(A:B, T ) for the four reactions R1–R4 for the polynomial
approach. The function values broadly increase with both
acid:base ratio and temperature—albeit less noticeably
with temperature— but the overall correction value does
become negative when extrapolated to lower acid:base ra-
tios for hemicellulose (R2). The muted temperature effects
likely originate from the Arrhenius temperature depen-
dence in the kinetic expressions, which then only requires
an interaction between temperature and acid:base ratio
under extremely severe fractionation conditions at higher
acid:base ratios. While data-driven polynomial models are
relatively simple to implement, they can predict non-
physical behaviours, such as the increase in cellulose hy-
drolysis rate at acid:base ratios below 1 or negative re-
action rates. Thus, while the use of polynomials provides
a useful guide to the underlying dynamics, they do not
sufficiently elucidate the more nuanced features in the
system and do not yield physically consistent models.

Figure 2(b) illustrates the fitted sparse correction func-
tions ϵi(A:B, T ) for the four reactions R1–R4, this time
embedded within an exponential function. As in Fig-
ure 2(a), the correction values increase with acid:base ra-
tio, suggesting a catalytic increase in the reaction rate with
acid concentration. For the sugar reactions (R1–R2), the
expressions capture the interaction between temperature
and acid:base ratio under extremely severe fractionation
conditions at higher acid:base ratios. These sparse correc-
tions are also always non-negative due to the exponential
function, avoiding non-physical situations of negative re-

action rates. These trends are broadly in line with prior
experimental knowledge. While cellulose and hemicellu-
lose hydrolysis are definitely catalysed under acidic con-
ditions (Carvalho and Colodette, 2017), lignin hydrolysis
still occurs under alkaline conditions in processes such as
Kraft pulping (Taherzadeh and Karimi, 2008). When the
acid:base ratio becomes low enough for the overall system
to become basic, therefore, the lignin hydrolysis rate may
again start to increase due to a change in the hydrolysis
mechanism. However, it should be noted that the overall
system remains acidic at acid:base ratios slightly less than
1 here. Since each ammonium cation can react with a single
proton, while each sulphuric acid anion contributes two
protons, there is still an excess of protons in the system
for A:B < 1. Further investigations are thus needed in re-
gions of lower acid:base ratio to clarify whether lower acid
concentrations will contribute to a change in mechanism
of lignin hydrolysis.

Table 1 summarises the non-zero monomials at the op-
timal lasso weights shown previously. Both glucan (R1)
and hemicellulose (R2) hydrolysis correction functions in-
clude temperature dependences to describe the interaction
with acid:base ratio at high severities. In contrast, the
lignin hydrolysis (R3) correction function has a single
cubic relationship in acid:base ratio but no temperature
dependence. The joint estimation of the lignin hydrolysis
and pseudo-lignin re-deposition complicated the dynamic
understanding of each individual reaction. The pseudo-
lignin re-deposition (R4) reaction required the largest
number of parameters, reflecting the limited mechanistic
understanding of this complex reaction. The temperature
dependence encodes the promoted formation of pseudo-



Fig. 2. (a) Polynomial and (b) Exponential sparse correction trajectories for reactions R1–R4.

lignin under the severe conditions of very high temperature
and acid:base ratio.

Table 1. Selected sparse correction functions
from lasso regression.

Reaction Sparse correction

R1 ϕ1,[0,0] + ϕ1,[1,0] A:B + ϕ1,[1,1] A:B T

R2 ϕ2,[0,0] + ϕ2,[1,0] A:B + ϕ2,[0,1] T

R3 ϕ3,[3,0] A:B
3

R4 ϕ4,[1,0] A:B + ϕ4,[0,1] T + ϕ4,[2,0] A:B
2
+ ϕ4,[3,0] A:B

3

3.3 Full Hybrid Model Recalibration

Figure 3 shows the performance of the hybrid model
after its kinetic parameters and acidity correction coef-
ficients were jointly recalibrated, here for two different
temperatures (150 and 170 ◦C) and three acid:base ratios
(around 0.98, 1, and 1.02). For glucan and hemicellulose,
the model predictions were overall in good agreement with
the experimental data at all temperatures and acid:base
ratios. The rate of increase with acidity is more severe at
higher temperatures, confirming the need of temperature
in the correction polynomial expressions. Interestingly, a
2% excess of acid at 150 ◦C leads to a similar drop in glu-
can and hemicellulose content to that observed at 170 ◦C
with an acid:base ratio of 1. This highlights the reactivity
improvement from the addition of acid in this system, as
well as the need to accurately predict its effect to create
models that are robust to process disturbances.

For lignin, the situation is complicated by the need for
both reactions R3–R4 to describe the entire behaviour. At

both temperatures, the model predictions were in good
agreement with the experimental data for an acid:base ra-
tio greater than 1, as it was at 170 ◦C for an acid:base ratio
around 1. However, there was a slight under-estimation
of lignin content at the other conditions shown, espe-
cially when the lignin content approached its minimum.
As glucan hydrolysis slows down under less acidic condi-
tions, there is less dissolved glucose available to react to
form pseudo-lignin. Therefore, the model under-estimates
the pseudo-lignin formation rate, and therefore the lignin
content itself. This highlights a possible limitation of
using these simple models for lignin, which has poorly-
understood dissolution and re-deposition mechanisms. In
agreement with previous conclusions, while this approach
provides useful intuitions into the complex underlying sys-
tem, further experiments are required to understand the
lignin and pseudo-lignin reaction mechanisms under less
acidic conditions.

4. CONCLUSIONS

An existing semi-mechanistic model describing the iono-
Solv fractionation of woody biomass for varying tempera-
ture, pretreatment time and solids loading was extended
to encompass the effect of acidity, a critical but poorly-
understood factor in ionic liquid-based systems. A sparse
regression framework using lasso regularisation was first
deployed, comparing both polynomial and exponential cor-
rection functions, with the results favouring the latter.
These sparse correction functions were then re-trained
with the original semi-mechanistic kinetic model. While
the hybrid model showed good predictive capability for
glucan and hemicellulose, it slightly under-estimated the



Fig. 3. Model predictions under different acid:base ratio conditions at (a) 150 ◦C and (b) 170 ◦C.

lignin content at lower acid:base ratios. The complex na-
ture of lignin dissolution and re-deposition mechanisms
warrants further study into the mechanisms of these pro-
cesses under lower acidity conditions.

REFERENCES

Abouelela, A.R., Nakasu, P.Y.S., and Hallett, J.P. (2023). Influ-
ence of Pretreatment Severity Factor and Hammett Acidity on
Softwood Fractionation by an Acidic Protic Ionic Liquid. ACS

Sustainable Chemistry & Engineering, 11(6), 2404–2415.
Brandt-Talbot, A., Gschwend, F.J., Fennell, P.S., Lammens, T.M.,

Tan, B., Weale, J., and Hallett, J.P. (2017). An economically
viable ionic liquid for the fractionation of lignocellulosic biomass.
Green Chemistry, 19(13), 3078–3102.

Carvalho, D.M.D. and Colodette, J.L. (2017). Comparative study
of acid hydrolysis of lignin and polysaccharides in biomasses.
BioResources, 12(4), 6907–6923.

Firth, A.E.J., Nakasu, P.Y.S., Hallett, J.P., and Matthews, R.P.
(2024). Exploiting Cation Structure and Water Content in
Modulating the Acidity of Ammonium Hydrogen Sulfate Protic
Ionic Liquids. The Journal of Physical Chemistry Letters, 15(9),
2311–2318.

Malaret, F., Gschwend, F.J., Lopes, J.M., Tu, W.C., and Hallett,
J.P. (2020). Eucalyptus red grandis pretreatment with protic ionic
liquids: effect of severity and influence of sub/super-critical CO2
atmosphere on pretreatment performance. RSC Advances, 10(27),
16050–16060.

Nisar, S., Brandt-Talbot, A., Hallett, J.P., and Chachuat, B. (2024).
Semi-mechanistic modelling of ionic liquid-based biomass fraction-
ation. Computer Aided Chemical Engineering, 53, 2527–2532.

Ragauskas, A.J., Williams, C.K., Davison, B.H., Britovsek, G.,
Cairney, J., Eckert, C.A., Frederick, W.J., Hallett, J.P., Leak,
D.J., Liotta, C.L., Mielenz, J.R., Murphy, R., Templer, R., and
Tschaplinski, T. (2006). The Path Forward for Biofuels and
Biomaterials. Science, 311(5760), 484–489.

Sluiter, J.B., Ruiz, R.O., Scarlata, C.J., Sluiter, A.D., and Tem-
pleton, D.W. (2010). Compositional analysis of lignocellulosic

feedstocks. 1. Review and description of methods. Journal of

Agricultural & Food Chemistry, 58(16), 9043–9053.
Taherzadeh, M.J. and Karimi, K. (2008). Pretreatment of Ligno-

cellulosic Wastes to Improve Ethanol and Biogas Production: A
Review. International Journal of Molecular Sciences, 9(9), 1621–
1651.
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J., Buchner, J., Kulick, J., Schönberger, J.L., de Miranda Car-
doso, J.V., Reimer, J., Harrington, J., Rodŕıguez, J.L.C., Nunez-
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