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Abstract: We study real-time process monitoring, where employed online sensors yield
inaccurate information. A multi-fidelity (MF) modeling approach is adopted that integrates
dynamic information from online, low-fidelity (LF) data with infrequent, high-fidelity (HF)
laboratory measurements. The proposed methodology is demonstrated on a composition
monitoring problem derived from real oil refinery operations. The developed MF model
exhibits a significant improvement in accuracy with respect to both LF data (online
sensor) and the HF model (standard soft sensor). The results highlight the potential of MF
modeling for improving process monitoring and control through the integration of diverse
data sources.
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1. INTRODUCTION

Effective monitoring and control are critical for op-
timizing industrial operations (Colombo et al., 2017;
Zhu et al., 2018; Yin and Kaynak, 2015), where a
prerequisite is a precise and timely gathering of process
information by sensing of the underlying quantities.
Direct sensing can be performed by hard sensors via
online or lab analyzers, where lab sensorics is used when
an online alternative is unavailable, costly, or unreli-
able. Soft sensors (Kadlec et al., 2009) can be used to
obtain the desired information in real time. They em-
ploy prediction models combining other online-sensor
data. Online hard/soft sensors seemingly circumvent
the need for lab analyses, yet on-demand calibration
by the lab measurements is still necessary to maintain
their accuracy.

Consequently, industrial plants involve several online
sensors, which provide large amounts of data, and
are even accompanied with infrequent lab measure-
ment records. These datasets only rarely find an ad-
vanced use, beyond the single-point calibration. The so-
called multi-fidelity (MF) modeling (Giselle Fernández-
Godino, 2023) promises to exploit various related or
duplicate datasets and fuse the information contained.
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Our goal here is to find a joint use of laboratory high-
fidelity (HF) data and the low-fidelity (LF) data from
online sensors to improve the industrial monitoring.

Data-based modeling is at the core of our endeavor.
These models leverage historical data and have been
applied successfully across several industrial sectors
(Bahramian et al., 2023). There are several milestones
of designing a data-based model: data processing, se-
lection of model structure (linear/non-linear, static/dy-
namic, parametric/non-parametric), feature selection,
model training. Above all, a crucial importance must be
paid to the feature selection, which is a key prerequisite
for choosing an appropriate structure of a prediction
model. Techniques such as principal component analy-
sis, partial least squares, and many more (Bastos et al.,
2022) have been used successfully. Non-parametric ap-
proaches can be used in model development, such
as Gaussian Process Regression (GPR) (Rasmussen,
2004) that has also shown good performance when ap-
plied to industrial tasks (Ge et al., 2011). Gaussian pro-
cesses also found use in MF modeling (Bradford et al.,
2020). When dealing with high-dimensional datasets,
feature selection is paramount (Perdikaris et al., 2015).

This study investigates MF models for industrial mon-
itoring by integrating online sensor data with labora-
tory measurements to boost predictive accuracy. Com-
bining frequent LF data with precise HF data, our
approach supports reliable, timely monitoring. Using
GPR within the MF framework, this method provides
output predictions and quantifies uncertainties, rein-
forcing decision robustness. Additionally, we study the
use of dynamic models within the MF modeling frame-
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Fig. 1. Model development flowchart.

work. We outline the key steps of model development
in Fig. 1.

2. PROBLEM DEFINITION

We assume two distinct datasets: historical LF data
from online sensors and HF data from laboratory
measurements. The LF data are collected continuously
at a high sampling frequency. In contrast, HF data are
obtained less frequently through, serving as reference
points for calibrating and validating the online sensors.
Let us define the time instant sets as follows: TLF =
{t1, t2, . . . , tnLF} representing the time instants when
LF data are taken, and THF = {τ1, τ2, . . . , τnHF} ⊆ TLF
representing the time instants of laboratory samples.
Typically, nHF ≪ nLF. The associated index sets
are denoted as ILF and IHF, respectively. We seek a
predictive model that can accurately relate the process
variables x ∈ Rnx to the desired output y ∈ R.

A linear model predicting the ith instant reads as:
ŷi = θ⊺φi + ϵi, (1)

where ŷi is the predicted output, φi is a vector of
regressors, and θ is a vector of model parameters.
The error term ϵi captures discrepancies due to mea-
surement errors or unmodelled variability. A nonlinear
model can be defined equivalently as:

ŷi = f(θ⊺
i ,φi). (2)

The specific form of φi depends on whether a static or
dynamic modeling approach is selected:

A) Static model with φi = xi.
B) Dynamic model with φi that includes lagged val-

ues, given by φi = (xi−1, . . . ,xi−j , yi−1, . . . , yi−k)
⊺.

Here, j and k represent the respective numbers of
lagged values for the input vector x and output y.

3. METHODOLOGY

3.1 Pre-processing

Raw data denoted as Xraw for the input features and
yraw for the dependent variable, often exhibit signifi-
cant correlations and contain non-random noise (plant
start-ups or shutdowns, various disturbance scenarios),
outliers, and missing values. These must be addressed
before model training by reducing noise, handling miss-
ing data and outliers (Fáber et al., 2024).

Outlier detection can be performed using the Minimum
Covariance Determinant (MCD) method (Rousseeuw
and Driessen, 1999), a robust statistical technique that
leverages Mahalanobis distance to identify anomalous
data points by minimizing the determinant of the
sample covariance matrix S. The distance measure is
given by:

di =

√
(vi − µ)

⊺
S−1 (vi − µ), (3)

where vi stands for data vector as V = (X y)⊺ and µ
is the mean vector of the same dimension. 3σ rule can
be applied to classify outliers.

In the context of dynamic model training, standard
interpolation methods can be applied to replace outliers
while preserving the temporal relationships between
variables.

3.2 Feature Selection

The objective of Feature Selection (FS) is to iden-
tify the subset of process variables Φ that contribute
most significantly to the accurate and reliable predic-
tion. By including only the most relevant variables,
we improve model interpretability and computational
efficiency and reduce the likelihood of overfitting (Li
et al., 2017). The most common methods for FS are
briefly reviewed.

Principal Component Regression (PCR) combines Prin-
cipal Component Analysis (PCA) with regression to
improve predictive performance. PCA reduces dimen-
sionality by transforming the original dataset into a
new set of uncorrelated variables, maximizing variance
and minimizing information loss (Pearson, 1901).

Partial Least Squares (PLS) Regression identifies latent
variables that explain the most variance in both the
dependent variable yproc, and independent variables
Xproc, effectively handling multicollinearity. The PLS
approach can be formulated as:

Xproc = T P ⊺ +E, (4a)
yproc = U q + r. (4b)

Here, T and U denote the score matrices, P and q
represent the weight matrix and vector, respectively,
and E and r are the error terms (Geladi and Kowalski,
1986).

LASSO regression incorporates an ℓ1 penalty to pro-
mote model sparsity. It solves the following problem:

min
θ

1

2

N∑
i=1

(yi − θ⊺φi)
2
+ λ∥θ∥1, (5)

where λ is a tuning parameter that controls the
strength of the penalty (Santosa and Symes, 1986).

Stepwise Regression (SR) systematically adds or re-
moves variables in a multilinear model based on their
statistical significance. At each step, the p-value of
an F -statistic determines whether to add or remove
a regressor.

Alternatively, criteria such as the Akaike Information
Criterion (AIC), which minimizes information loss; the
Corrected Akaike Information Criterion (AICc), which
adjusts AIC for small sample sizes; and the Bayesian
Information Criterion (BIC), which penalizes model
complexity more strictly to favor simpler models for
larger datasets, can also guide the FS process (Efroym-
son, 1960).

In addition to the aforementioned methods, the model
structure can be enhanced by expert process knowl-
edge.



3.3 Model Training

Model (1) can be fitted to the available data via:

min
θ

1

2
∥yl − ŷl∥

2
2 ≡ min

θ

1

2

nl∑
i=1

(yl,i − ŷl,i)
2 (6a)

s.t. yl,i = θ⊺φl,i or yl,i = f(θ⊺,φl,i), ∀i ∈ Il (6b)
where l ∈ {HF,LF} distinguishes the HF or LF model.

3.4 Multi-fidelity Model Training

The MF combines trained LF and HF models. The
regressor matrix ΦMF integrates all data:

φMF,i =
(
φ⊺

HF,i,φ
⊺
LF,i, ŷLF,i, yLF,i

)⊺
, ∀i ∈ IHF. (7)

After an obligatory FS step, the MF model can be
trained by GPR. The GP can be defined as:

ŷMF ∼ GP(m(κ), k(κ,κ′)), (8)
where κ represents the predictors derived from the
feature-selected dataset ΦMF, m(κ) is the mean func-
tion representing the expected value of the output, and
k(κ,κ′) is the covariance function (kernel) that defines
the correlation between the output data.

4. AN INDUSTRIAL CASE STUDY

The alkylation process is essential in refineries for pro-
ducing high-octane branched isoparaffins, i.e., alkylate,
a key component of clean gasoline. The production
involves the reaction of C3–C4 olefins with isobutane
(i-C4) using an acid catalyst. The reaction pathway
initiates with the protonation of the olefin, leading to
the formation of carbonium cations that react further
to produce C8 isomers (Speight, 2020; Pall, 2018).
Maintaining an optimal ratio of reactants is critical for
efficient alkylate production. Online analyzers, strate-
gically placed in the plant (see Fig. 2), provide real-time
data by measuring concentrations of key components in
the feed and recycle streams, enabling effective process
control. A comprehensive dataset, Xraw, was collected
over six months, containing more than 1085 process
variables from online sensors, analyzers, and laboratory
samples, yielding N×1085 data points. The study par-
ticularly focuses on the Analyzer A3 and its associated
laboratory analysis, y. The analyzer monitors the i-C4

concentration in the recycle stream but has exhibited
inconsistent performance. These inconsistencies often
lead to excess i-C4 recycling, which imposes additional
downstream load due to the need for further heat-
ing and treatment. Therefore, accurately predicting
and correcting deviations in analyzer data is essential
to maintaining efficient production and reducing by-
products.

5. IMPLEMENTATION

We apply the data pre-processing methods outlined
in Section 3.1 to the raw data Xraw and the corre-
sponding raw output data yraw, reducing the dataset
from N × 1085 to N × 256 by eliminating constant and
highly correlated variables. Subsequently, we split the
pre-processed data, Xproc and yproc, into training and

testing sets using a 60/40% ratio. This approach helps
achieve a well-distributed dataset, ensuring that both
sets capture similar trends while preserving chronolog-
ical date-time sequences. The chosen time frame spans
four months for training and two months for testing,
which is particularly relevant as seasonal variations
during this period can significantly influence process
dynamics, including the characteristics of processed
olefins and isobutane.

To select relevant, non-redundant features Φ, we apply
the statistical FS methods of Section 3.2 on the pre-
processed dataset Xproc, which can be derived from
either LF or HF sources (see Fig. 1). Additionally, in
collaboration with our industrial partner, we review the
top-ranked variables to ensure their practical relevance.
If a selected variable is unsuitable (e.g., an alarm or
a non-maintained sensor), we replace it with the next
highest-ranked option, maintaining the intended num-
ber of features while improving interpretability.

In this stage, we train a static HF model to predict the
laboratory-based outputs ŷHF using the pre-processed
input data ΦHF. The model structure is based on
the approach outlined in Eq. (1). The objective is to
accurately capture the relationship between the inputs
and the laboratory measurements.

Similarly, we train a dynamic LF model to predict the
outputs from the online analyzer ŷLF. We apply addi-
tional dimensionality reduction on the dataset after the
FS highlighted in Fig. 1. Following the dimensionality
reduction, we perform dynamic system identification
on the LF data (ΦLF) using the open-source SIPPY -
Systems Identification Package for Python (Armenise
et al., 2018). We use the PARSIM-K robust identifi-
cation method (Pannocchia and Calosi, 2010), which
is particularly suitable for closed-loop data, to ensure
that the dynamic model ŷLF accurately represents the
system dynamics with the fewest parameters necessary.
To balance model accuracy with simplicity, we adopt
three selection criteria (AIC, AICc, and BIC from Sec-
tion 3.2) to determine the optimal model order.

To develop the MF model, we use the scikit-learn
library (Pedregosa et al., 2011) in Python. Before train-
ing, we apply an additional dimensionality reduction
step to extract PCs from the input features, incorpo-
rating both the LF model inputs and its predictions
(ΦLF and ŷLF). Selecting an appropriate kernel func-
tion, k(κ,κ′), is critical for capturing process trends
effectively. We evaluate multiple kernel configurations,
refining the structure iteratively based on model per-
formance and data characteristics. The final composite
kernel is

k(κ,κ′) = C ·σ2e−
M2

2ℓ2 +σ2e−
2 sin2(πM/p)

ℓ2 +σ2δκ,κ′ , (9)

where M = ∥κ − κ′∥2. The 1st component represents
a Constant kernel C; the 2nd component is the Radial
Basis Function (RBF) kernel, capturing smooth vari-
ations; the 3rd component is a Periodic kernel, incor-
porating sinusoidal patterns; and the 4th component
is a White kernel, accounting for noise through the
Kronecker delta function δκ,κ′ . The parameter ℓ is
the length scale, determining the influence range, the



Fig. 2. Simplified schematic of the alkylation unit, highlighting Analyzer A3 (red) as well as the six selected
variables.

period p determines the distance between repetitions
of the function, and σ2 is the noise variance.

6. RESULTS

We standardize the dataset to ensure consistent vari-
able scaling across all analyses and present the re-
sults accordingly to maintain confidentiality. FS is per-
formed on the LF dataset as it contains continuous
input data across the entire timescale. In contrast, HF
FS resulted in overfitting and a suboptimal feature set,
as confirmed by the industrial partner. By using the full
LF dataset, rather than the sparsely sampled HF data,
we ensure that the selected features capture temporal
variations and process trends.

Table 1 presents the Root Mean Square Error (RMSE)
comparison for various FS methods applied to the pre-
processed LF dataset (Xproc). The results indicate that
PCR offers the best performance in terms of accuracy,
achieving RMSE values of 0.16 for training and 0.21 for
testing. However, this method relies on 75 uncorrelated
principal components (PCs), making it less practical
for industrial applications due to sensor maintenance
challenges. PLS achieves slightly worse RMSE values
of 0.28 for training and 0.32 for testing. LASSO yields
RMSE values of 0.30 for both training and testing
sets, promoting sparsity in the model, though it does
not perform as well as PCR or PLS in this instance.
SR emerges as the most suitable option for balancing
predictive accuracy and simplicity, achieving RMSE
values of 0.21 for training and 0.24 for testing. The final
verified inputs Φ (N ×6), shown in Fig. 2, include four
concentrations measured by online analyzers (olefin
feed propylene — AT1, deisobutanizer recycle propane
— AT2, isobutane — AT3, and n-butane — AT4) and
two flow rates (recycled fresh acid — FC5 and alkylate
to storage — FC6).

Table 2 evaluates predictive performance of all trained
models using the RMSE metric against the HF data
yHF on the standardized dataset. Firstly, the RMSE
values for the current online analyzer data yLF com-
pared to lab-measured data yHF are 0.63 for training
and 0.80 for testing, indicating poor performance.

Table 1. RMSE comparison for the used FS
methods on the LF dataset.

Method Training RMSE Testing RMSE
PCR 0.16 0.21
PLS 0.28 0.32
LASSO 0.30 0.30
SR 0.21 0.24

Table 2. Comparison of model performance
metrics across predictive approaches.

Comparison Training RMSE Testing RMSE
yHF to yLF 0.63 0.80
yHF to ŷHF 0.18 0.91
yHF to ŷLF 0.52 0.91
yHF to ŷMF 0.31 0.38

Focusing on the HF model ŷHF, we observe a notable
contrast between its training and testing performance.
Despite achieving a low RMSE of 0.18 during training,
the error escalates to 0.91 when applied to the testing
set. This degradation in predictive capability is visually
apparent in Fig. 3, where the HF model predictions
are depicted in purple. It is apparent that the selected
features corroborate with the signal changes and that
an application of bias correction based on HF data
would improve model performance. This improvement
would though be lagged because of HF data sparsity.

The system identification procedure led to the selection
of the dynamic LF model ŷLF. To train this model,
we first apply PLS on the processed feature set Xproc,
reducing the six selected variables into PCs. The ex-
plained variance (EV) was calculated as a function of
the number of PCs, and the “elbow” point on the vari-
ance plot was selected, where adding additional PCs
offered minimal gain in information. This approach
led to the selection of four PCs, which accounted for
approximately 95% of the EV. The model order was
determined using the AIC, which suggested a 4th order
model, AICc recommended a 10th order, and the BIC
proposed a 3rd order. Based on the trade-off between
model accuracy and complexity, the 4th order model
was selected. The resulting dynamic LF model ŷLF
produced RMSE values of 0.52 for training and 0.91 for



Fig. 3. Predictions of the normalized i-C4 concentration for training (top), and testing (bottom) sets as data
series.
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Fig. 4. Workflow of the MF model for prediction.

testing, showcasing moderate improvements over the
LF data but still limited generalization. Although the
dynamic model showed a slightly higher RMSE (0.91)
when compared to the current online analyzer (0.80),
it better captured the trends of yHF, which were not
included in its training data. The maximum and mini-
mum errors between yLF and yHF were 3.38 and 0.003,
respectively, while for ŷLF compared to yHF, they were
1.30 and 0.056. This indicates that, despite the RMSE
difference, the dynamic model captures time-dependent
patterns more reliably.

The multi-fidelity model (ŷMF) is trained using the
GP to predict analyzer deviations from the HF mea-
surements ∆HF,i = yHF,i − yLF,i, ∀i ∈ IHF with
∆̂HF(ΦLF , ŷLF). This structure (a particular form of
feature selection from (7)) can provide clearer insight
for the plant operators. We use PCA to reduce the
dimensionality of the seven input variables and to
suppress potential collinearity between ΦLF and ŷLF.

The resulting four PCs serve as inputs to the GP
model. This approach (shown in Fig. 4) adjusts the
online analyzer outputs to align more closely with HF
laboratory measurements. As shown in Fig. 3, the blue
solid line represents the original LF data (yLF), the
black line shows the adjusted predictions (ŷMF), and
the red markers indicate the HF laboratory data. The
grey shaded region highlights the 95% confidence inter-
val of the GP model. This alignment is quantitatively
reflected in the MF model accuracy, with RMSE values
of 0.31 for training and 0.38 for testing, outperforming
the LF and HF models.

Notably, configuring the HF model in the same way as
the GP model to predict ∆HF,i results in a test RMSE
of 0.65. This demonstrates that correction strategies
alone provide limited improvement. While static mod-
els offer simplicity, dynamic models capture complex
process behavior more effectively. Our results show that
MF models significantly enhance predictive accuracy.
Additionally, effective input selection, supported by
quantitative analysis and domain knowledge, plays a
key role in aligning predictions with real-world process
behavior.

7. CONCLUSION

In this work, we developed a multi-fidelity model aimed
at improving the accuracy of online analyzers, specifi-
cally for monitoring isobutane concentration in alkyla-
tion. Our results demonstrate that the model effectively
corrects discrepancies between online measurements
and true laboratory values, achieving a significant im-



provement in accuracy of 52.50%. This enhancement
notably elevates monitoring quality, enabling more re-
liable operational decisions. The findings highlight the
power of multi-fidelity modeling in refining process
control, showcasing its potential to integrate dynamic,
low-fidelity data with high-fidelity laboratory measure-
ments for more precise and effective real-time process
monitoring. Future work will focus on enhancing the
Gaussian process implementation by addressing pro-
cess non-linearities to improve the model accuracy and
robustness.

REFERENCES

Armenise, G., Vaccari, M., Bacci di Capaci, R., and
Pannocchia, G. (2018). An open-source system
identification package for multivariable processes. In
UKACC 12th International Conference on Control,
152–157.

Bahramian, M., Dereli, R.K., Zhao, W., Giberti, M.,
and Casey, E. (2023). Data to intelligence: The
role of data-driven models in wastewater treatment.
Expert Systems with Applications, 217, 119453.

Bastos, P.D.A., Galinha, C.F., Santos, M.A., Carvalho,
P.J., and Crespo, J.G. (2022). Predicting the con-
centration of hazardous phenolic compounds in re-
finery wastewater—a multivariate data analysis ap-
proach. Environmental Science and Pollution Re-
search, 29(1), 1482–1490.

Bradford, E., Imsland, L., Zhang, D., and del Rio
Chanona, E.A. (2020). Stochastic data-driven model
predictive control using gaussian processes. Comput-
ers & Chemical Engineering, 139, 106844.

Colombo, A.W., Karnouskos, S., Kaynak, O., Shi, Y.,
and Yin, S. (2017). Industrial cyberphysical systems:
A backbone of the fourth industrial revolution. IEEE
Industrial Electronics Magazine, 11(1), 6–16.

Efroymson, M.A. (1960). Multiple regression analysis.
In A. Ralston and H.S. Wilf (eds.), Mathematical
Methods for Digital Computers. Wiley, New York.

Fáber, R., Mojto, M., Ľubušký, K., and Paulen, R.
(2024). From data to alarms: Data-driven anomaly
detection techniques in industrial settings. In ES-
CAPE34 - PSE24.

Ge, Z., Chen, T., and Song, Z. (2011). Quality predic-
tion for polypropylene production process based on
CLGPR model. Control Engineering Practice, 19(5),
423–432.

Geladi, P. and Kowalski, B. (1986). Partial least square
regression: A tutorial. Anal. Chim. Acta, 35, 1–17.

Giselle Fernández-Godino, M. (2023). Review of multi-
fidelity models. Advances in Computational Science
and Engineering, 1(4), 351–400.

Kadlec, P., Gabrys, B., and Strandt, S. (2009). Data-
driven soft sensors in the process industry. Comput-
ers & Chemical Engineering, 33(4), 795–814.

Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino,
R.P., Tang, J., and Liu, H. (2017). Feature selection:
A data perspective. ACM Comput. Surv., 50(6).

Pall (2018). Refineries: Application focus h2so4 alkyla-
tion process description. Technical report, Pall Corp.

Pannocchia, G. and Calosi, M. (2010). A predictor
form parsimonious algorithm for closed-loop sub-
space identification. J. Process Control, 20(4), 517–
524.

Pearson, K. (1901). Liii. on lines and planes of closest
fit to systems of points in space. London Edinburgh
Philos. Mag. & J. Sci., 2(11), 559–572.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. J.Machine LearningResearch, 12, 2825–
2830.

Perdikaris, P., Venturi, D., Royset, J.O., and Karni-
adakis, G.E. (2015). Multi-fidelity modelling via
recursive co-kriging and gaussian–markov random
fields. Proc. of the Royal Society A, 471(2171),
20150018.

Rasmussen, C.E. (2004). Gaussian Processes in Ma-
chine Learning, 63–71. Springer Berlin Heidelberg.

Rousseeuw, P. and Driessen, K. (1999). A fast al-
gorithm for the minimum covariance determinant
estimator. Technometrics, 41, 212–223.

Santosa, F. and Symes, W.W. (1986). Linear inversion
of band-limited reflection seismograms. SIAM Jour-
nal on Scientific and Statistical Computing, 7(4),
1307–1330.

Speight, J.G. (2020). The refinery of the future. Gulf
Professional Publishing, Elsevier.

Yin, S. and Kaynak, O. (2015). Big data for modern
industry: challenges and trends [point of view]. Pro-
ceedings of the IEEE, 103(2), 143–146.

Zhu, J., Ge, Z., Song, Z., and Gao, F. (2018). Review
and big data perspectives on robust data mining ap-
proaches for industrial process modeling with outliers
and missing data. Annu. Rev. Control, 46, 107–133.


