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Abstract: Desiccant dryers play a critical role in industrial sulphonation processes by ensuring
that moisture is effectively removed from the air used during SO2 to SO3 conversion. This
is necessary to prevent the formation of sulphuric acid, which can harm machinery and
lower product quality. This paper introduces a novel approach utilizing Multi-Feature k-
nearest neighbours (MF-kNN) forecasting to optimise the drying and regeneration cycles of
the dehumidification process units. A key advantage of the MF-kNN model is its ability to
perform one-shot forecasts relatively early in the cycle, accurately predicting critical transitions
without the need for recursive recalculations. The proposed approach was tested using data from
a large-scale surfactant production facility. For forecasting the regeneration cycle endpoint, the
model incorporates both the regeneration inlet and outlet air temperatures. Hyperparameter
tuning results show that assigning 50% of the feature weight to the inlet temperature results
in the lowest forecasting error. Two approaches for data window selection were investigated,
namely a moving and an expanding window. The moving window approach outperforms the
expanding window approach by 35% and 42% reduced errors for endpoint detection and time-
series forecasting tasks respectively. Overall, the model is able to predict the endpoint within a
2 min accuracy with a 400 min lead time on the tested cycles.

Keywords: Desiccant dehumidification; k-nearest neighbours (k-NN); Cyclic process
optimisation; Time series forecasting; Industrial drying systems; Energy efficiency.

1. INTRODUCTION

1.1 Process Background

Sulfonation is essential in surfactant production for con-
sumer products (Cornwell, 2017). Surfactants facilitate
emulsification by lowering surface tension, improving mix-
ing efficiency. Maintaining process efficiency and product
quality is critical, particularly in large-scale industrial ap-
plications. To prevent sulfuric acid formation, which is
highly corrosive, the air used in SO2 to SO3 conversion
must be extremely dry.

Desiccant dehumidification is widely used to meet strict
drying requirements (Rambhad et al., 2016). This technol-
ogy relies on materials like silica gel to absorb moisture.
The process alternates between drying and regeneration
phases, where the desiccant is heated to remove absorbed
moisture. Since regeneration is energy-intensive, optimiz-
ing its timing directly impacts industrial energy consump-
tion.

In practice, phase transitions in desiccant systems are
often determined by empirical rules (Oyieke and Inam-
bao, 2021), leading to inefficiencies—either excess energy
consumption or insufficient drying. Common data-driven
forecasting methods struggle with long-term predictions

due to error accumulation in recursive forecasting. The
method proposed in this work leverages the cyclic nature
of the process, performing one-shot forecasts early in the
cycle to improve phase-switching decisions.

1.2 Time Series Forecasting

Time series forecasting is widely applied in industrial
optimization. Classical models such as ARIMA and ex-
ponential smoothing (Oliveira and Ludermir, 2016) often
struggle with nonlinear and cyclic patterns, particularly in
processes influenced by external variables like air humid-
ity (Nawi et al., 2021). Recursive forecasting can suffer
from error accumulation, degrading long-horizon predic-
tions (Ben Taieb and Bontempi, 2011).

Machine learning techniques provide powerful alternatives,
improving accuracy in complex systems. Approaches like
support vector machines (SVMs), random forests, and
artificial neural networks (ANNs) have shown success
in industrial forecasting (Pandey et al., 2023). The k-
nearest neighbors (k-NN) method is particularly effective
when data is insufficient for deep learning (Elsayed et al.,
2021). Unlike parametric models, k-NN does not assume
data linearity, making it well-suited for cyclical processes
like desiccant dehumidification (Habtemichael and Cetin,
2016).



Although k-NN is widely used in domains such as pattern
recognition, banking, and healthcare (Polat et al., 2007),
its industrial applications—particularly in energy opti-
mization and process control—are underexplored. Given
the periodic nature of drying and regeneration cycles, k-
NN can recognize patterns, adapt to disturbances, and
make real-time predictions without recursive calculations.

1.3 Contribution to the Literature

This paper builds upon prior work on k-NN time series
forecasting in industrial processes by addressing key limi-
tations. Borghesan et al. developed a k-NN algorithm with
weighted averaging for process disturbance forecasting,
integrating it into Model Predictive Control (MPC) for
continuous processes such as buffer tanks and distillation
columns. However, their approach was limited to single-
feature applications and did not address periodic or hybrid
systems (Borghesan et al., 2019).

In contrast, this paper introduces the following key ad-
vancements:

• Developed a Multi-Feature k-NN (MF-kNN) model
for improved time series forecasting.

• Introduced ”time to threshold” as an additional met-
ric for equipment switching prediction.

• Validated MF-kNN on an industrial desiccant dehu-
midification system.

Through these advancements, MF-kNN enhances schedul-
ing and control. This results in better resource utilization
and reduced energy consumption.

The rest of the paper is organized as follows: Section 2
details the methodology. Section 3 analyses model perfor-
mance using industrial data. Section 4 presents conclusions
and future research directions.

2. METHODOLOGY

2.1 Monovariate k-nearest neighbour

The monovariate k-nearest neighbour (k-NN) algorithm is
a non-parametric method used for time series forecasting.
It operates by finding the most similar past patterns to the
current evolving segment of a time series. This process is
beneficial when the data exhibits cyclic behavior, which
allows the algorithm to leverage historical patterns to
predict future states.

In this approach, at a given time N , the algorithm consid-
ers the time series as a memory of N samples, denoted as
yM (N) (Borghesan et al., 2019):

yM (N) = [y(1), y(2), . . . , y(N)] (1)

The segment representing the current state of the time
series is defined as the most recent m samples, referred
to as the ”evolution segment” and denoted as yE by
Borghesan et al. (2019).

yE(N) = [y(N −m+ 1), y(N −m+ 2), . . . , y(N)] (2)

The embedding dimension m specifies the number of
past observations used to define the current state of the

system. The choice of m is important, as it determines
how much historical context is considered for identifying
similar patterns.

To make a forecast, the k-NN algorithm identifies the k
most similar segments in the historical data that match
the current evolution yE(N). The similarity is typically
measured using the Euclidean distance between the seg-
ments:

D (yE(N), yj) =

√√√√ m∑
i=1

(yE(i)− yj(i))
2

(3)

Where yj is a candidate historical segment of the same
length m. After identifying the k-nearest neighbours, the
algorithm retrieves the time series that follow each of these
segments, known as ”prediction contributions” yjP :

yjP = [y(rj+m+1), y(rj+m+2), . . . , y(rj+m+h)] (4)

Where rj is the starting point of the j-th nearest neighbour
in the memory and h is the prediction horizon. The
final forecast is obtained by averaging these prediction
contributions. For the unweighted version of k-NN, the
forecast at future time N + i is:

ŷ(N + i) =
1

k

k∑
j=1

yjP (i), i = 1, . . . , h (5)

This method provides a simple and interpretable approach
for predicting future values of a monovariate time series.
While the algorithm can face challenges with data that
includes noise or abrupt disturbances, a weighted version
was developed primarily to improve robustness in the
choice of k. In this approach, the weights wj are computed
based on the Euclidean distance D (yE(N), yj), with closer
neighbours receiving higher weights:

wj =


max

ℓ=1...k
D(yE(N),yℓ)−D(yE(N),yj)

max
ℓ=1...k

D(yE(N),yℓ)− min
ℓ=1...k

D(yE(N),yℓ)
if k ≥ 2,

1 if k = 1.

(6)

• for j = 1, . . . , k if k ≥ 2,
• for j = 1 if k = 1.

Using these weights, each nearest neighbour contributes to
the forecast in proportion to its similarity to the current
evolution:

ŷ(N + i) =

∑k
j=1 wjy

j
P (i)∑k

j=1 wj

, i = 1, . . . , h (7)

This weighted approach allows for more accurate predic-
tions by prioritizing the most similar historical patterns.

2.2 Data pre-processing

Before applying the k-NN algorithm for time series fore-
casting, we perform essential data pre-processing steps to
ensure the accuracy and reliability of the model forecasts.



These steps include the detection and removal of anoma-
lous cycles, padding cycles to a uniform length, scaling of
features, and clustering of similar cycles for enhanced early
pattern recognition within the unfolding cycle.

Outlier Detection and Removal Outlier cycles can dis-
tort forecasting accuracy and increase computational bur-
den in k-NN. To mitigate this, the Local Outlier Factor
(LOF) algorithm (Tang and He, 2017) is used to identify
and remove anomalous cycles. LOF assigns an anomaly
score based on local density, where cycles with significantly
lower density than their neighbors are flagged as outliers.

Cycles exceeding a predefined LOF threshold are removed
from the training data to enhance model robustness.
Since this study focuses on normal operational states
and crossing time prediction rather than fault detection,
filtering outliers reduces computational complexity.

Padding of cycles to uniform length Given that the time
series data may consist of cycles of varying lengths, we
apply a padding step to ensure that all cycles have the
same length of 800 time steps. This uniformity is crucial
for enabling the k-NN algorithm to efficiently compare
cycles and identify similar patterns. The shorter cycles are
padded with zeros at the end, up to the desired length of
800, allowing for consistent comparison during forecasting.

Cycle Clustering using K-means To enhance early pat-
tern recognition, cycles are grouped using K-means clus-
tering (Nie et al., 2023). This approach restricts k-NN
comparisons to relevant historical cycles. This reduces
computational demand by narrowing the search space and
enhances forecasting accuracy by excluding cycles that do
not belong to the current operational mode.

The algorithm partitions cycles by minimizing the within-
cluster sum of squares (WCSS):

WCSS =

k∑
i=1

∑
y∈Ci

|y − µi|2 (8)

where µi is the centroid of cluster Ci, defined as the mean
position of all cycles within that cluster.

2.3 Multi-feature k-NN forecasting

MF-kNN forecasting extends the standard k-NN algorithm
by incorporating multiple features for more accurate and
robust predictions in time series forecasting. This is par-
ticularly beneficial for chemical processes like desiccant
dehumidification, where multiple features simultaneously
influence the system’s performance.

In this section, we discuss the MF-kNN algorithm, how it
handles multiple features, and the integration of weighted
Euclidean distances. In MF-kNN, it is important to ac-
count for the relative importance of different features.
For instance, regeneration inlet temperature may be more
impactful than the outlet temperature in forecasting the
transition time a desiccant bed. To address this, we utilize
two types of weights in our MF-kNN approach:

• Feature weights (wf ): These weights adjust the Eu-
clidean distance calculation by emphasizing certain

features over others, allowing the model to focus more
on key variables.

• Prediction contribution weights (wj): These weights
determine the influence of each neighbours in the final
prediction, with closer neighbours contributing more
significantly to the forecast.

By adjusting the feature weights wf , the algorithm can
emphasize or de-emphasize certain features, resulting in
more accurate forecasts.

Feature Scaling The distance metric, to be defined in Eq.
(10), used for finding the nearest neighbours in the multi-
feature space is sensitive to the scale of input features.
Unlike the case with monovariate k-NN, feature scaling is
crucial for MF-kNN as this prevents any single or a group
of features (e.g. inlet temperature, moisture content) from
dominating the distance calculation due to their relative
larger magnitude. The substantiation is given by:

y′ =
y − µ

σ
(9)

where µ is the mean and σ is the standard deviation of the
feature under consideration.

Weighted Euclidean Distance The MF-kNN algorithm
calculates distances between the current evolution segment
yE and historical segment yr using a weighted Euclidean
distance, which prioritizes more critical features:

D(yE , yr) =

√√√√ p∑
j=1

mj∑
i=1

wf,j

(
y
(j)
E (i)− y

(j)
r (i)

)2

(10)

where:

• wf,j is the weight assigned to feature j, adjusting its
influence in the distance calculation.

• yE and yr are the evolution and historical segments,
respectively, each containing p features with mj time
steps.

This formulation ensures that feature importance is con-
sidered when selecting the k-nearest neighbours. The fore-
cast is computed using weighted contributions from se-
lected neighbours.

2.4 Expanding vs. Moving Window Approaches for the
Embedding Dimension

The embedding dimension in k-NN models determines how
many past observations are used to forecast future values.
Two approaches are commonly employed: the moving
window and the expanding window.

Expanding Window Approach The expanding window
progressively incorporates all past observations without
discarding earlier data, capturing both short-term fluctu-
ations and long-term trends. The observation set at time
t is:

yE(t) = [y(1), . . . , y(t)] (11)



Moving Window Approach The moving window main-
tains a fixed number of past observations, shifting forward
at each time step by adding the latest observation and
discarding the oldest. This ensures the model prioritizes
recent data while adapting to changing patterns. The
observation set at time t follows the same definition as
in Eq.(2), where the most recent m samples are retained.

2.5 Hyperparameter Optimisation

To ensure optimal performance, the MF-kNN model un-
dergoes hyperparameter tuning for k (number of near-
est neighbours), m (embedding dimension), wf (feature
weights), and whether weighted averaging is applied. Se-
lecting appropriate values for these parameters is crucial
for minimizing forecasting errors.

Hyperparameters The primary hyperparameters include:

• k: Number of nearest neighbours, balancing smooth-
ing and sensitivity.

• m: Embedding dimension, tuned for optimal window-
ing.

• wf : Feature weights adjusting Euclidean distance
importance.

• Weighted averaging: Determines if neighbours are
weighted as in Eq.(6) or equally averaged.

Hyperparameter Tuning Procedure Optimal parameters
are selected via grid search, evaluating multiple combina-
tions of k, m, and wf . The model is trained on randomly
selected cycles and validated on unseen cycles. Perfor-
mance is assessed using forecasting accuracy and time-to-
threshold prediction.

Objective Function The objective function J balances
forecasting accuracy and threshold timing:

J = (1− β) ·MSEseries + β ·MSEthreshold (12)

where β controls the weighting between time-series fore-
casting error and threshold timing error.

MSEseries =
1

M

M∑
i=1

(
yti − ŷti
|yti |

)2

(13)

MSEthreshold =
1

M

M∑
i=1

(
ttrue,i − tpred,i

|ttrue,i|

)2

(14)

Both terms are normalized to ensure fair weighting, pre-
venting one component from dominating due to scale dif-
ferences.

3. RESULTS AND DISCUSSION

In this section, we analyse the performance of the MF-
kNN algorithm on actual industrial data from a desiccant
dehumidification process. The focus is the prediction of
time-to-threshold for the regeneration outlet temperature
which is key for the control of cycle transition timing.

• Regeneration Outlet Temperature (ROT): This is the
target feature of our analysis, representing the key

variable that dictates the switch between regeneration
and drying phases. The behaviour of this feature is
depicted in figure 1.

• Regeneration Inlet Temperature (RIT): This auxiliary
feature serves as an input to the model and helps
capture the operational conditions influencing the
ROT. The corresponding data for RIT is shown in
figure 2.

3.1 Outlier detection and removal

The LOF algorithm was applied to ensure MF-kNN is
trained only on representative data. The cycles identified
as outliers were removed to improve the robustness and
reliability of the MF-kNN model.

3.2 Bimodal behaviour

After removing the outlier cycles detected using the LOF
algorithm, the remaining cycles exhibited a distinct bi-
modal behaviour in their outlet temperature profiles, as
shown in figure 1.

The first mode peaks between 350 and 400 minutes, while
the second mode peaks between 400 and 500 minutes. This
dual-peak behaviour suggests the existence of two distinct
operational profiles or modes.

The dashed red line in the figure represents a critical
threshold temperature of 40 °C, at which the system must
switch from the regeneration to the drying phase. As
illustrated in figure 1, the cycles vary in the time taken
to cross this threshold, which underscores the importance
of accurate forecasting methods such as the MF-kNN
developed and implemented in this work.

To investigate the bimodal behaviour in the desiccant
dehumidification cycles, we employed the K-means clus-
tering algorithm to group the cycles based on three key
features: cycle length, peak position, and peak height.
These features were selected as they capture the essential
dynamics of each cycle. The clustering algorithm identified
two distinct groups, which are represented in figures 1
and 2, distinguished by shades of grey as indicated in the
legend.

• Cluster 1: Cycles in this cluster tend to have shorter
lengths, with peak positions occurring earlier in the
process and lower peak heights.

• Cluster 2: This cluster contains longer cycles, with
peaks occurring later and at a higher temperature.

These insights help identify the system’s operational mode,
enabling forecasts based solely on relevant cycles. This tar-
geted approach reduces computational cost and eliminates
irrelevant cycles, leading to improved accuracy.

3.3 Forecasting Results

The hyperparameter tuning results highlight the advan-
tage of MF-kNN over monovariate k-NN. Incorporating
the regeneration inlet air temperature alongside the tar-
get feature (outlet air temperature) significantly improved



Fig. 1. Regeneration outlet temperature profile. The
dashed red line indicates the critical threshold of 40°C.

Fig. 2. Regeneration Inlet temperature profile

prediction accuracy. The tuning process evaluated various
configurations of the number of neighbours k, embedding
dimensionsm, feature weights wf , and weighted averaging,
as shown in Table 1.

Separate hyperparameter tuning experiments were con-
ducted for both the moving window and expanding win-
dow approaches. In all cases, the moving window config-
uration minimized the objective function more effectively
than the expanding window approach. These findings un-
derscore the suitability of the moving window for capturing
recent trends and improving phase-switching predictions
in the desiccant dehumidification process.

The results indicate that assigning equal feature weights
(50% to each feature) yielded the lowest errors, demon-
strating the value of multi-feature forecasting. In contrast,
models with a weight of 0% for the second feature ef-
fectively became monovariate k-NN, producing the high-
est errors. Additionally, embedding dimensions of 75–100
achieved the lowest error rates, while smaller dimensions
(5–15) performed poorly due to limited historical context.

The hyperparameter configurations in Table 1 were cal-
culated based on an equal weighting between the two ob-
jectives in Eq.(12). However, the selected hyperparameter
configuration shown in Figures 3 and 4 prioritizes mini-

Table 1. Cluster 1 Moving Window Hyperparameter
Tuning Results

Rank k m wf Weighted Error

1 5 100 [0.5, 0.5] False 0.01
2 7 100 [0.5, 0.5] True 0.02
3 7 75 [0.5, 0.5] True 0.02
...

...
...

...
...

...
598 1 15 [1.0, 0.0] True 0.34
599 1 5 [1.0, 0.0] True 0.34
600 1 5 [1.0, 0.0] False 0.35

mizing the time-to-threshold error by assigning a higher
weight to MSEthreshold.

• Figure 3: Forecasts for Cycle #31 closely align with
actual outlet temperature trends, with later forecasts
improving as more data becomes available.

• Figure 4: Crossing time predictions converge toward
actual values over time, demonstrating improved ac-
curacy as the cycle progresses.

Fig. 3. Actual vs. Predicted Time Series for Cycle #31

Fig. 4. Evolution of Crossing Time Prediction Through
Sequential One-Shot Forecasts

3.4 Discussion of Embedding Dimension Results

The results in Table 2 indicate that the moving window
approach delivers lower forecasting errors than the ex-
panding window approach. By dynamically adapting the
embedding dimension, the moving window better captures



evolving system dynamics, whereas the expanding window,
which retains all past observations, dilutes the relevance
of recent patterns, leading to higher errors. However,
this improvement comes at the cost of increased distance
calculations per prediction, making the moving window
computationally more demanding.

Table 2. Comparison of Moving vs Expanding Em-
bedding Dimension

Embedding
Dimension Type

Average Forecasting Error

Time series (°C) Threshold (min)

Moving 3.60 12.55

Expanding 6.30 20.92

4. CONCLUSION

This paper presented a Multi-Feature k-nearest neighbours
(MF-kNN) model for forecasting the transition times in
the drying and regeneration cycles in desiccant dehumidifi-
cation systems. By incorporating both outlet and inlet air
temperatures, the MF-kNN model achieved significantly
higher accuracy in predicting critical transition points in
the cycles compared to traditional, single-feature, k-NN
models. The hyperparameter tuning found that assigning
equal weights to each feature lead to superior forecasting
results.

Additionally, the moving window approach for the em-
bedding dimension proved to be more effective than the
expanding window approach, not only in improving overall
time series forecasting accuracy but also in accurately fore-
casting transition times for the desiccant dehumidification
system. This adaptability allowed the model to capture
variations in system dynamics throughout the drying and
regeneration phases, leading to more efficient control of
the system and reducing overall energy consumption.

The findings of this study demonstrated that the MF-
kNN model, combined with proper hyperparameter tuning
and embedding dimension selection, provides a robust and
efficient tool for time series forecasting in cyclic indus-
trial processes. Future work may explore extending this
approach to other cyclic processes, incorporating addi-
tional operational variables, investigating feature selection
methods, and integrating the model with real-time control
systems to further enhance process optimisation.
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