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Abstract: The goal of dynamic real-time optimization (DRTO) applications is to compute an
optimal operational trajectory for a plant by generating set-points for the lower-level control
algorithm to track. This approach can be further improved by directly incorporating the control
algorithm (such as Model Predictive Control, MPC) into a closed-loop DRTO (CL-DRTO).
By doing so, CL-DRTO can predict both the plant and controller responses to set-point
adjustments, enhancing the performance of the entire system. However, CL-DRTO schemes
require a mechanism to utilize plant measurements to adapt the model to the current plant
conditions. Otherwise, the decisions will be based on a nominal model and are likely to be
suboptimal. This study proposes a plant feedback scheme using an extended Kalman filter
within a CL-DRTO framework that embeds an MPC model. In this novel model adaptation
approach in the context of CL-DRTO, not only the states and parameters of the plant model are
updated but also the embedded linear MPC model, which is adapted via an output disturbance
scheme. Moreover, by adding input constraints to the CL-DRTO problem, this formulation
allows a simplified representation of the MPC solution at the CL-DRTO level without directly
accounting for input constraints at the MPC level, which reduces computation time. The efficacy
of the proposed CL-DRTO approach is demonstrated through application to a multi-input multi-
output CSTR where a critical parameter is not measurable.
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1. INTRODUCTION

Chemical processes are required to respond to frequent
changes in external conditions, including product demand,
utility costs, and raw material cost and availability. Op-
timizing such facilities is critical, but often complex since
they have design limitations, operational goals, and local
control objectives to account for.

Dynamic real-time optimization (DRTO) algorithms can
be used for this task. Traditional RTO schemes based on
steady-state models yield suboptimal operation in the face
of rapidly changing conditions, leading to the development
of DRTO schemes that incorporate a dynamic plant model
(Tosukhowong et al., 2004). DRTO computes economically
optimal trajectories over a prediction horizon, which are
then sent to a model predictive control (MPC) layer as set-
point trajectories. Then, MPC independently determines
the input moves to track these trajectories by solving its
own optimization problem. The MPC layer affects the
plant dynamic conditions of the plant during transition;
thus, taking MPC into account at the DRTO level can
improve the overall economics of the plant. Jamaludin
and Swartz (2017) included the MPC optimization sub-
problems within the DRTO problem formulation, and
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showed that taking the closed-loop (CL) prediction of
MPC behavior into account can significantly improve the
economic performance over a similar DRTO that does not
take into accopunt the impact of the control system on the
plant’s dynamic response.

However, in any real applications, the MPC and CL-DRTO
layers are affected by disturbances causing plant-model
mismatch. There are various approaches to dealing with
these issues. While bias updating would be considered
standard practice in CL-DRTO literature, its method
simply applies a correcting ‘bias” term to compensate for
a poor model or noisy measurements. Even when working
successfully, bias updating cannot predict the true value
of the states, and parameters that are not known to
the control architecture. The extended Kalman filter can
estimate these states as well as unknown parameters, and
offers a promising alternative to bias updating in closed-
loop DRTO.

This work explores the extended Kalman filter estimation
as a method of dealing with disturbances, noise, and the
plant-model mismatch in the context of CL-DRTO. In the
proposed case-study, we assume that a critical parameter
of the system is unknown and not measurable. Our results
indicate that continuously estimating model parameters



and states via an EKF enables the CL-DRTO to effectively
optimize the nonlinear plant.

Within the CL-DRTO framework, the MPC solution is
applied to the nonlinear plant model to predict its response
to control actions, allowing the plant model outputs at
the DRTO level to serve as surrogate measurements for
the embedded MPC in calculating the next manipulated
variable value.

2. RELATION TO PREVIOUS WORK

The hierarchical decision-making structure in industrial
plants, Fig. 1, separates decisions by time scale to manage
complexity effectively. Scheduling focuses on production
decisions over a medium-term time frame. By contrast,
DRTO integrates scheduling goals into actionable deci-
sions in real-time. Further down, MPC adjusts operations
dynamically (Darby et al., 2011).
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Scheduling

Fig. 1. Plant decision hierarchy. Dotted lines indicate that
the plant-feedback is not done as frequently, or not
done at all. If no feedback system is in place, decisions
are made based on a nominal model.

If the time scale between layers is not clearly separable,
there are incentives for considering the behavior of mul-
tiple layers simultaneously. For example, if the control
system is detuned to achieve a slow and smooth response
in systems with significant time delay, the time separation
scale between the control response and the DRTO layer
response may be significantly reduced. Here, methods like
closed-loop DRTO (Jamaludin and Swartz, 2017) become
interesting and improve the performance of the hierarchy
above.

In the same spirit, different works have considered the
behavior of multiple layers at the DRTO/Scheduling level.
For example: Jamaludin and Swartz (2017) combined
DRTO and constrained MPC; Li and Swartz (2018) and Li
and Swartz (2019) studied the integration of DRTO with
distributed MPC systems; and Dering and Swartz (2024),
Kelley et al. (2022), and Remigio and Swartz (2020) have
integrated scheduling and control. However, none of these
studies employed any form of estimator, and used bias
updating to provide feedback to the DRTO or assumed
full-state feedback.

To help models improve their accuracy, dynamic state
and parameter estimation can be used in CL-DRTO,
such as in Matias and Swartz (2023); however Matias
and Swartz (2023) only demonstrated this setup for PI-
controlled plants. This type of plant feedback has not yet

been tested on CL-DRTO combined with MPC setups.
This is particularly interesting for MPC controllers with a
disturbance model, as the disturbance term must converge
while the estimated parameters converge to their true
value, and the interaction may impact control.

3. PRELIMINARIES

3.1 Background

Consider a plant represented by a nonlinear model:

ẋ(t) = f(x(t),u(t);θ(t))

y(t) = g(x(t))
(1)

where x, u, y, and θ represent the model states, inputs,
outputs, and parameters, respectively, with dimensions nx,
nu, ny, and nθ. f and g are functions that represent the
state dynamic evolution, and the mapping of the states to
the model outputs.

In practice, this nonlinear model can be computationally
expensive to evaluate, and it is desirable to approximate
its behavior using a linearized state space model. Further-
more, it is convenient to convert the continuous model into
a discretized version. The equations describing the discrete
linearized model are given below:

x̄k+1 = Ah
x,θ, x̄k +Bh

x,θūk

ȳk = Ch
x,θx̄k

(2)

in which the matrices A, B, and C represent the linearized
version of the nonlinear model in Eq. (1). The functions f
and g are linearized around a specified steady state value.
The bar above the variables indicates that the variables
are expressed in deviation form from this steady-state.
The superscript h indicates the discretization step, and
subscripts x and θ represent the state and parameters
around which the linearization is performed.

3.2 MPC

Model predictive controllers predict future dynamics over
a set horizon length NMPC

p , using predictions to calculate
optimal control actions that best track a set-point trajec-
tory. For obtaining an offset-free performance, the MPC
controller implemented here uses a disturbance term as in
Maciejowski (2001):[

x̄MPC
k+1

dk+1

]
=

[
AMPC

xi,ui,θn
0

0 I

] [
x̄MPC
k

dk

]
+

[
BMPC

xi,uiθn

0

]
ūk

ȳk =
[
CMPC

xi,uiθn
I
] [x̄MPC

k

dk

] (3)

Here the superscript MPC indicates that matrices were
discretized at the MPC execution rate. The states also
receive the superscript to differentiate them from the
DRTO plant model states, which will be explained later.
The linearization is done at an initial steady state (xi,ui)
and the nominal parameters, θn; hence, the MPC matrices
do not change with time. Given a set-point tractory at k0

ỹSP
k0

= [ȳSP,T
k0

, ȳSP,T
k0+1 , . . . , ȳ

SP,T
k0+NMPC

p −1
]T ,

the unconstrained MPC problem can be analytically
solved for control actions over the entire prediction horizon



as in, for example, Li and Swartz (2018). The analytical
solution takes form of:

∆ũk0 = KMPC

(
ỹSP
k0

−
(
B1x̄

MPC
k0

+B2ūk0−1+d̂k0

))
(4)

where,

∆ũk0 = [∆ūT
k0
,∆ūT

k0+1 · · · ,∆ūT
k0+NMPC

p −1]
T ,

∆ūk = ūk − ūk−1,

Note that the vector of inputs

ũk0 = [ūT
k0
, ūT

k0+1 · · · , ūT
k0+NMPC

p −1]
T

can be related to the vector of inputs moves as

ũk0
= M̃∆ũk0

+ Ĩūk0−1 (5)

where

M̃ =


Inu

0nu
· · · 0nu

Inu
Inu

· · · 0nu

...
...

. . .
...

Inu
Inu

· · · Inu

 , Ĩ =


Inu

Inu

...
Inu


with Inu

representing the nu × nu identity matrix, and
0nu

a nu × nu matrix with zeros in all entries. The states
x̄MPC,k0

are computed from the nominal MPC model and
the disturbance estimate is computed as the difference

between the plant measurement yp and the model output
prediction at the same time instant k0 as in Eq. (6).

d̂k0 = [dT
k0
,dT

k0+1, . . . ,d
T
k0+NMPC

p −1]
T ,

dk0 = ȳp,k0
− CMPC

xi,uiθn
x̄MPC
k0

(6)

For a detailed description of the matrices KMPC, B1 and
B2, the reader is referred to Li and Swartz (2018).

3.3 CL-DRTO

A critical component of the solution of CL-DRTO is
the incorporation of the MPC algorithm to simulate the
expected response of the controller to its chosen set-points.
In Jamaludin and Swartz (2017), the input-constrained
MPC problem is represented at the DRTO level by its
KKT conditions. Here, we use the analytical solution of
the unconstrained problem presented in Eq. (4) combined
with an input clipping strategy.

Instead of rigorously representing the input clipping as in
Baker and Swartz (2004), we take advantage of the fact
that the DRTO optimization problem has access to the
unconstrained MPC predicted response; thus, the DRTO
can constrain its set-points such that the inputs remain in
the feasible region, avoiding the need of input clipping.

The resulting CL-DRTO problem can be seen in Eq. (7).

max
ỹSP
j

j0+NDRTO
p∑

j0

Φ(ūDRTO
j , x̄DRTO

j , ȳDRTO
j )

s.t.

x̄DRTO
j+1 = f(x̄DRTO

j , ūDRTO
j , ˆ̄θj0) j ∈ J j0+NDRTO

p −1

j0

ȳDRTO
j = g(x̄DRTO

j ) j ∈ J j0+NDRTO
p

j0

x̄DRTO
j0 = ˆ̄xj0

ūDRTO
j = ūMPC

j,0 j ∈ J j0+NDRTO
p −1

j0

∆ũj = Kmpc

(
ỹSP
j −

(
B1x̄

MPC
j,0 +B2ūj−1,0 + dMPC

j,0

))
j ∈ J j0+NDRTO

p −1

j0

ūMPC
j,l = M̃(l,:)∆ũj + Ĩ(l,:)ūj−1 l ∈ LNMPC

p −1

0 j ∈ J j0+NDRTO
p −1

j0

x̄MPC
j,l+1 = AMPC

xi,ui,θn
x̄MPC
j,l +BMPC

xi,ui,θn
ūMPC
j,l l ∈ LNMPC

p −1

0 j ∈ J j0+NDRTO
p −1

j0

ȳMPC
j,l = CMPC

xi,ui,θn
x̄MPC
j,l l ∈ LNMPC

p

0 j ∈ J j0+NDRTO
p

j0

x̄MPC
j,0 = x̄MPC

j−1,NMPC
p

j ∈ J j0+NDRTO
p −1

j0+1

dMPC
j,0 = ȳDRTO

j − ȳMPC
j,0 j ∈ J j0+NDRTO

p −1

j0+1

ūmin ≤ ūj,l ≤ ūmax l ∈ LNMPC
p −1

0 j ∈ J j0+NDRTO
p −1

j0

∆ũmin ≤ ∆ũj ≤ ∆ũmax j ∈ J j0+NDRTO
p −1

j0

ỹsp,min ≤ ỹSP
j ≤ ỹsp,max j ∈ J j0+NDRTO

p −1

j0
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p −1

j0

(7)



In Eq. (7), Φ is an economic objective function. To
represent the intermediary time steps, we use the notation
J b
a := {j | a ≤ j ≤ b, j ∈ Z+

0 }. The subscript (l, :) indicates
that the lth row of the matrix is used in the operation.
Note that we start counting from index 0. Finally, the
superscripts DRTO and MPC indicate that the linearized
model was discretized using the DRTO sampling time and
MPC sampling time, respectively.

3.4 Plant Feedback Mechanism: Extended Kalman Filter

Typically, the states and parameters of the plant model

are unknown (in Eq. (7), ˆ̄θj0 and ˆ̄xj0) and an estimator
needs to be used to obtain their true values. Kalman filter
estimation can be used to calculate the estimated states
and unknown parameters of a model, a helpful tool in
systems where not all desired states are measurable or
where measurements may be inaccurate due to noise or
other disturbances.

The Extended Kalman Filter (EKF) is preferred over
the standard Kalman Filter when dealing with nonlinear
systems. While the Kalman Filter assumes linear dynam-
ics and Gaussian noise, the EKF linearizes the nonlinear
model (shown in Eq. (1)) around the current state and pa-
rameter estimates by using a first-order Taylor expansion.
This allows it to handle the nonlinearity in the process or
measurement models, making it suitable for our applica-
tions. A detailed description of an EKF can be found in
Walter et al. (1997).

3.5 Proposed Architecture

While the individual control elements used here (DRTO,
MPC, Kalman filter Estimation, etc.) are not novel on
their own, using them together is indeed novel for CL-
DRTO. Adding state and parameter estimation to the CL-
DRTO can improve its robustness in practical use where
not all variables are measurable. The value of the MPC
disturbance vector is also updated within the DRTO to
improve the accuracy of the DRTO optimization. Figure 2
shows the information flow in the proposed architecture.

4. CASE STUDY

The case study used here is a multi-input multi-output
CSTR. The parameters governing the system dynamics
were obtained from Li et al. (2016). The inlet flowrate (F )
and heat to the reactor (Q) are the manipulated variables
and the reactant concentration in the CSTR (CA) and
reactor temperature (T ) are the controlled variables. To
test the estimator, a heater efficiency term (η) has been
added to the original model. The nonlinear equations
governing the CSTR are:

dCA

dt
=

F

VR
(CA,in − CA)− k0e

− E
RT C2

A (8)

dT

dt
=

F

VR
(Tin − T )− ∆Hk0

ρRCp
e−

E
RT C2

A +
ηQ

ρRCpVR
(9)

where we assume that both the inlet flow rate F and the
heater power Q can be manipulated (nu = 2), and both
states CA and T can be measured (nx = ny = 2) without

noise. We assume that true efficiency value (θ := ηtrue =
0.9) is unknown and needs to be estimated. The initial
condition for the simulation is provided in Table 1.

Table 1. Parameters used to simulate a CSTR
for the case study based on Li et al. (2016)

Symbol Description (Initial) Value Units

CA,i Conc. of A in CSTR 0.339 kmol/m3

Ti Temperature of CSTR 545 K
Fi Inlet Flowrate 5 m3/h
Qi Heater Power 99,840 kJ/h
CA,in Inlet Conc. of A 3.5 kmol/m3

Tin Inlet Temperature 300 K
k0 Pre-exponential rate factor 8.46× 106 m3/kmol-h
E Activation Energy 5× 104 kJ/kmol
R Ideal Gas Constant 8.314 kJ/kmol-K
ρR Density of fluid in CSTR 1000 kg/m3

Cp Heat capacity of fluid in CSTR 0.231 kJ/kg-K
VR Reactor fluid volume 1.0 m3

∆H Heat of reaction −1.16× 104 kJ/kmol
ηtrue Heater true efficiency 0.9 ——
ηn Heater nominal efficiency 0.95 ——

The MPC and DRTO are discretized based on their respec-
tive sampling times hMPC = 2 minutes and hDRTO = 10
minutes. The prediction horizons are represented as mul-
tiples of the sampling times, NMPC

P = 3 and NDRTO
P = 10.

The function Φ in Eq. (7) represents economic performance
by using the profitability approximation proposed by Li
et al. (2016):

φ = αF (CA0 − CA)− γQ2, (10)

where α = 105 $/kmol and γ = 10−7 $ · h/ kJ2. The
units of α and γ are such that φ units are in 106 $/h. The
bounds used in the DRTO problem, Eq. (7), are shown in
Table 2.

Table 2. Constraints applied to the DRTO

State Lower Bound Upper Bound Units

CA 0.1 3.5 kmol/m3

T 400 700 K
F 0 7 m3/h
Q 0 220000 kJ/h
∆F -0.8 -0.8 m3/h
∆Q -80000 80000 kJ/h
CA,sp 0 3.5 kmol/m3

Tsp 400 700 K
∆CA,sp - 0.2 0.2 kmol/m3

∆Tsp -30 30 K

5. RESULTS AND DISCUSSION

Improving economic performance is a the main operational
goal, so the CL-DRTO architecture was evaluated for its
ability to meet an economic objective.

Figure 3 shows the parameter (η) and states (CA, T ). In
the plots, the plant values (black) are compared to the
estimated values (green). Figure 4 shows the manipulated
variables (F , Q) used in the objective function from
Equation 10 and the economic performance. The economic
performance is evaluated as the difference between the
computed instantaneous φ value and the value obtained
at the initial steady state.
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The performance shown in Figures 3 and 4 indicates
several interesting findings. First, the Extended Kalman
Filter (EKF) is able to effectively track the true parameter
values. The state estimation itself is not critical here as

both states are assumed to be measured. The estimation
step converges relatively quickly for this case study, and
the system converges to a new steady state, as illustrated
in the top plot of Figure 4. While the heat input trajectory
shows some sharp variation, this reflects only marginally
in the objective function trajectory.The plant response is
monotonic, with the temperature increasing and the con-
centration decreasing. The upward trend of the objective
function is explained by the CL-DRTO finding an opti-
mal steady state, given the initial suboptimal steady-state
point. As such, the framework not only handles varying
parameter values due to the estimation, but it also drives
the plant to an optimal steady state.

The set-point determination by the CL-DRTO layer, as
shown in Eq. 7, also constrains input and setpoint move-
ment in addition to the constraints on inputs. This is made
possible by the closed-loop response set-up in the CL-
DRTO, which uses a nonlinear plant model. These struc-
tures are important given that an unconstrained linear
MPC is used to control the nonlinear plant. The effec-
tiveness of these structures is inferred from the absence of
constraint violations in the implementation of set-points
at the plant level. Note, however, that these results are
achieved through appropriate application of constraint
bounds on inputs, and on set-point and input changes
at the CL-DRTO layer. Without these constraints, larger
oscillations could be introduced into the inputs, and in
turn possibly affecting the states and outputs. In demon-
strating the effectiveness of framework, the unconstrained
MPC does not eliminate the oscillations observed for the
heat input despite a nonzero move suppression penalty.
The controller moves to promptly attain the newly com-
puted set-points from the CL-DRTO, thus observed spikes.
More gradual changes could potentially be implemented
by a constrained MPC which directly implements hard
constraints on input moves.

Embedding unconstrained MPC to predict closed-loop the
response of the nonlinear plant at the CL-DRTO layer in
conjunction with constraints on inputs, set-points moves
and input moves is shown to be an effective strategy.
In this study, it is observed that the framework offers



a good compromise between computational performance
improvement and available handles for effective control.

6. CONCLUSION

This study proposes integrating an Extended Kalman Fil-
ter (EKF) with Closed-Loop Dynamic Real-Time Opti-
mization (CL-DRTO) for operation of a plant under the
control of a Model Predictive Control (MPC) system.
The EKF successfully estimates states and parameters,
enabling the CL-DRTO to make accurate predictions and
send optimal set-points to the MPC.

This study demonstrates the effectiveness of combining
DRTO, MPC, and Kalman filter layers. This approach
can handle nonlinear behavior through incorporation of
a nonlinear plant model at the DRTO level. Future re-
search should explore the full potential of this approach,
especially for large-scale systems of industrial complexity.
Problems of such scale would require exploration of dy-
namic surrogate models for tractable formulations. Other
avenues for exploration include consideration of computa-
tionally efficient implementation of constrained MPC and
estimating multiple unknown parameters.
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