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Abstract: Bonnet polishing is an ultra-precision polishing technique used for manufacturing
components utilized in optics, electronics, and scientific instrumentation, where sub-nanometer
accuracy is required. However, the process is not fully deterministic and requires multiple
process-metrology iterations. In modern computer numerically controlled (CNC) machines,
polishing is performed by moderating the bonnet tool dwell time at each location based on
the input parameters and material removal rate (MRR). While the MRR is typically treated
as constant once established, it continuously evolves due to the process’s dynamic nature and
changing conditions. This variability in MRR impacts the convergence of the polishing process,
necessitating repeated surface processing and resulting in increased manufacturing time and cost.
In this work, we present a data-driven approach to estimate the amount of material removed
during the pre-polishing routine in bonnet polishing. The estimations are based on the force
exerted by the bonnet tool on a polished surface along the three dimensions. Measurements were
obtained using a bespoke force table with load sensors across three axes, mounted on the Zeeko
IRP600 machine table. The results demonstrate the effectiveness of this data-driven approach for
estimating MRR, achieving a mean absolute error of 0.0541 µm and a mean absolute percentage
error of 5.89% across the test set.
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1. INTRODUCTION

Bonnet polishing is a critical surface-finishing process used
for components utilized in fields such as electronics, op-
tics, astronomy, or Science Base instrumentation where
sub-nanometer texture and form accuracy are of utmost
importance. To achieve the desired surface finish, a CNC
machine needs to estimate material removal rate (MMR)
to remove a precise amount of material from the workpiece.
However, accurate estimation of MRR is challenging due to
the complexity of the polishing process, poor understand-
ing of the underlying physics, and continuous evolution of
process parameters.

MRR in bonnet polishing follows the empirical, physics-
based Preston equation (Preston, 1927) which states that
the amount of material removed is proportional to the
applied pressure, the relative speed between the surface
and rotating bonnet tool and a constant called Preston’s
coefficient. A number of the techniques aimed at improving
MRR estimation have relied on the Preston equation as
the starting point and extended the formula to consider
factors such as slurry particle size or bonnet pressure
(Zeng and Blunt, 2014). However, closed-form analytical
solutions derived from empirical models might be limited
by certain distributions and assumptions incorporated

while developing the model (Li et al., 2019; Rao et al.,
2015).

Moreover, traditional techniques for estimating MRR do
not consider the dynamic nature of the process and lack
the flexibility to account for changes in process conditions.
Once MRR is established, it is typically considered con-
stant throughout the polishing routine even though MRR
fluctuates continuously due to the fundamental complexity
of polishing at molecular scale (Walker et al., 2019). These
fluctuations introduce variability and unpredictability into
the process significantly impacting both the quality of the
polished surface and overall component lead time.

Data-driven techniques, such as machine learning and
statistical modelling, offer promising alternatives by in-
corporating multiple machine and process parameters to
dynamically predict MRR during the actual polishing
procedure. Unlike traditional model-based methods, these
approaches can capture complex non-linear relationships
between variables directly from the data, without prior
assumptions or knowledge about the underlying physical
interactions.

Since surface measurement during a polishing run is im-
possible due to the polishing slurry covering the surface,



several process parameters can be monitored online during
the polishing procedure, such as polishing slurry charac-
teristics, CNC machine parameters, and forces exerted on
the workpiece. Among these, only forces can be measured
in real time with negligible delay and can provide feedback
on surface geometry. Furthermore, force is one of the
variables described in Preston’s equation, highlighting its
importance on the final surface quality.

The goal of this study is to investigate the correlation
between forces exerted on the workpiece during a polishing
routine and MRR as well as develop a data-driven model
that predicts MMR based on the force distribution data.
Accurate MRR prediction has the potential to reduce the
number of time-intensive workpiece measurements that are
carried out in between the iterative measurement-polishing
process chain. A reduced number of measurements lowers
the risk associated with transporting the part from the pol-
ishing machine to the metrology instruments and reduces
the time between polishing runs, thus increasing machine
throughput.

The remainder of this paper is organized as follows:
Section 2 reviews related work and data-driven techniques
developed in chemical-mechanical planarization and robot
polishing. Section 3 describes machine setup as well as
data processing steps. Section 4 presents the modelling
results. Finally, section 5 concludes the paper with key
findings, recommended improvements to the system, and
suggestions for future research.

2. RELATED WORKS

Material removal rate is a critical aspect of many types of
polishing processes, including bonnet polishing, chemical
mechanical planarization (CMP) or magnetorheological
polishing. Accurate MRR is necessary to achieve the
desired surface quality and reduce the number of required
process-metrology iterations. The literature addressing
MRR estimation can be broadly classified into physics-
based methods, with the Preston equation as a focal point,
and more recent data-driven approaches that focus on
statistical modelling and machine learning techniques.

2.1 Preston Equation-based Models

Traditionally, MRR models were derived from the empiri-
cal Preston equation,

MRR = kp · P · V (1)

which states that the amount of material removed is
proportional to applied pressure P, the relative speed
between the tool and the workpiece V, and a constant k
known as Preston’s coefficient Preston (1927). The Preston
equation is widely adopted in many types of polishing
processes, (Deja, 2023; Kakinuma et al., 2022; Chen et al.,
2024), including bonnet polishing, to provide a basic
estimate of MRR. However, this model has limitations due
to its assumption of uniform tool pressure and velocity and
a lack of adaptability to variations in process conditions
that occur during the polishing process. Additionally,
the model relies on the Preston coefficient, which must
be experimentally determined for each specific tool and
workpiece material combination (Lin et al., 2018) and

does not consider process-specific parameters of particular
polishing mode e.g. precess angle in bonnet polishing.

Several modifications to the traditional Preston removal
rate model have been proposed to improve the accuracy
and account for more process parameters. Zeng and Blunt
(Zeng and Blunt, 2014) investigated the effect of process
parameters on the influence function in bonnet polishing
and reported a modified Preston equation model that
included process parameters to allow prediction of MRR
during polishing of chrome alloy. Shi et al. (2018) estab-
lished an improved model that incorporates the effect of
cumulative pad wear over the polishing time. Pan et al.
(2018) proposed a modified model that incorporates inter-
facial friction coefficient between the tool and workpiece.
In subsequent research, the model was modified to take
the influence of polishing slurry into consideration (Pan
et al., 2022). Despite these modifications, the first principle
models, like Preston equation derivatives, are not suited to
estimate MRR under evolving process conditions.

2.2 Data driven techniques

Machine learning has enabled the development of data-
driven models that can estimate MRR without estab-
lishing the significance of specific variables in advance.
Data-driven approaches can overcome the limitations of
traditional physics-based approaches and model non-linear
relationships between multiple variables, capture complex
interactions, account for process dynamics, and remove
reliance on empirical coefficients.

There exists a host of literature focusing on the estimation
of MRR using machine learning in chemical-mechanical
planarization (CMP), a process widely used in semicon-
ductor manufacturing. Wang et al. (2017) applied a deep
belief network (DBN), demonstrating the effectiveness of
deep learning in capturing nonlinear relationships between
MRR in wafer polishing and process parameters such as
pressure and rotational speeds of the wafer and pad. Yu
et al. (2019) introduced a physics-informed machine learn-
ing approach that combined a physics-based model with a
data-driven model. Hsu and Lu (2023) proposed a hybrid
virtual metrology framework using a one-dimensional con-
volutional neural network and bidirectional LSTM with
attention mechanisms to track the health condition of
components in CMP.

Data-driven approaches have also been applied to MRR
prediction in robot polishing. Yi et al. (2019) proposed
a material removal model for robot polishing based on
feature selecting deep residual neural network, which out-
performed the Preston baseline model by combining ex-
perimental data with simulations from Preston’s equa-
tion. Schneckenburger et al. (2022) presented an artificial
neural network (ANN) model to predict MRR in robotic
glass polishing that included multiple machine and process
parameters as well as sensor readings from a bespoke
polishing head.

However, the application of data-driven techniques specif-
ically to bonnet polishing remains under-explored. While
the CMP process has been the subject of significant re-
search efforts due to higher economic value, public dataset



Fig. 1. Force fixture fitted in Zeeko IRP600 (Darowski
et al., 2023)

availability, and a larger research community, few studies
have focused on MRR prediction in bonnet polishing,

3. METHODOLOGY

3.1 Experimental Setup

Polishing experiments were carried out using a 7-axis CNC
Zeeko Intelligent Robot Polisher IRP600 located at the
Laboratory for Ultra Precision Surfaces at the University
of Huddersfield. The machine used a recirculated slurry
based on Super Cerox 1663 cerium oxide polishing powder.
The IRP600 was fitted with an inflatable R40 bonnet
covered with polyurethane cloth and a metal plate base
to interface with a bespoke force table.

The force table included six compression load cell sensors
installed along the X, Y, and Z-axes, with full-scale output
accuracy of ±1% and a hysteresis error of ±0.8%. One
sensor was installed along the horizontal x-axis, two along
the horizontal y-axis, and three along the vertical z-axis.
The load cells were connected through the I-Net card cage
system and the iNet-240 cable to a computer with Lab-
VIEW data acquisition software. A detailed description of
the data acquisition system can be found in one of our
earlier works (Darowski et al., 2023).

The polishing process involved a pre-polishing routine
using a raster tool-path. The objective of the pre-polishing
routine is to ensure a uniform removal of material across
the entire surface. The experimental workpiece was a
100 mm square piece made of Fused Silica by Corning,
restricted to the central 70 mm zone of the surface to
mitigate the edge effect, which occurs when the bonnet
tool slides off the edge of the workpiece. This 70 mm zone
was further divided into two regions, designated as Y- and
Y+. This segmentation allowed for successive polishing
runs on each region without the need to transfer the
workpiece to the metrology station after each run, thus
saving time on the otherwise time-consuming metrology
procedures. Figure 2 illustrates a workpiece with Y- and
Y+ regions marked in green and blue, respectively. The
black lines at the top of each region illustrate a tool-path
shape, and red lines indicate profiles that were taken across
the tool-path tracks.

A Tylor Hobson Form Talysurf Series 2, with a measure-
ment resolution of 0.8 nm, was used to capture 2D profile
surface measurements before and after each polishing run.
Before the first polishing run, a narrow trench was etched

Fig. 2. Illustration of the workpiece with raster tool path
and profile

into the surface to serve as a reference point to align the
profiles. Measurements were taken in the middle of each
polishing region along the x-axis and perpendicular to the
raster tool-path tracks. Since the pre-polishing routine
was combined with the raster tool-path, it was assumed
that the material removal, and thus the profiles, would be
consistent across the entire length of any given track.

In total 34 polishing runs were carried out with varying
polishing times. The polishing time was varied by adjust-
ing the surface feed rates to 1000, 500 and 250 mm/min
corresponding to 5, 10 and 20-minute polishing runs.

3.2 Profiles data preprocessing

Fig. 3. Example of a profile before and after tilt removal

As mentioned above, a trench was etched in the workpiece
prior to the first polishing run. As the first step in data
preprocessing, the profiles were aligned so that the lowest
point of the trench was at the centre.

Next, tilt was calculated and removed by determining
the intercept and slope of a line that was fit between
the unpolished regions of the workpiece. The unpolished
regions are defined as arbitrary 5 mm wide sections at
the beginning and end of the profile, where the surface
remains unaffected by polishing. Within these regions,
the mean Z-value was computed as the average height
(Z) across the 5 mm section, while the mean boundaries
represent the start and end limits of these regions in the
X-direction (e.g., 0–5 mm and 95–100 mm). To avoid
systematic errors introduced by the profilometer at the
edges of the measurement, the first and last 2.5 mm of the
profile were omitted during calculations. This ensures an
objective determination of the tilt, as opposed to manual



Fig. 4. Excerpt of a force signal with segment boundaries
in red

methods that rely on the judgment of the operator. The
results of this procedure are illustrated in Figure 3.

Finally, profile pairs from corresponding polishing runs
were subtracted from each other to calculate the Material
Removal Rate (MMR) by depth. The MMR by depth
was then divided into 141 segments and integrated to
calculate the total material removed for a segment. The
141 segments correspond to the number of raster tracks in
the tool-path used during the polishing trials. Finally, the
values were scaled by a factor of 106 to avoid operations
on extremely small numbers and mitigate floating-point
precision errors.

3.3 Forces data preprocessing

Polishing forces were recorded as a time series with a
sampling rate of 500 Hz. To reduce the signal noise that
was in the range of ±0.5 kg we applied an arbitrary 20-
point moving average filter. The standard deviation of a
signal was reduced from 0.23, 0.26 and 0.15 down to 0.05,
0.06 and 0.03 kg for the x, y, and z axis, respectively.
In the initial step of force data processing, an offset was
calculated and subtracted from each channel to ensure
that the recordings started from a relative zero signal.
The sensors corresponding to each axis were then summed
together and manually trimmed to align with the start
and end of the polishing process. Manual operation was
necessary because data acquisition was manually triggered
before initiating the CNC machine run, thus recording
data before and after polishing.

As in the case of the profile data, the forces were divided
into 141 segments, corresponding to the number of raster
tracks, and integrated to calculate the total force applied
over each segment length. It should be noted that the
forces had to be manually synchronised with the raster
tracks, as simply dividing the time series into 141 equal
parts was not effective. This issue can be attributed to the
fact that the data acquisition software utilised software-
timed acquisition and that the IRP600 modulates feed
rates when the bonnet tool approaches the turning points
of the tool-path.

3.4 Machine Learning Models

Estimating MRR is a regression type of problem, where
the objective is to estimate continuous values of the target
variable, MRR, based on the predictor variables - total
forces along the X, Y and Z axes. Four models were
developed and evaluated: random forest (RF), XGBoost
(XGB), linear regression (LR) and multilayer perceptron
(MLP) artificial neural network. The models were chosen
to represent a range of simple, easy-to-implement tech-
niques with different learning approaches including linear,
non-linear and ensemble methods.

The dataset was split into training (60%), validation (20%)
and test (20%) sets, to evaluate model performance on the
previously unseen data. Both test and validation datasets
included 5, 10 and 20-minute-long polishing profiles. The
models were tuned using the validation set, and the
following hyperparameters were found optimal:

• Random Forest: 200 estimators and maximum feature
selection of 2

• XGBoost: Squared loss objective
• Linear Regression: Used as a baseline with no hyper-

parameters
• Multilayer Perceptron: Comprised of three hidden

layers (10, 60 and 10 neurones) with ReLU activa-
tion and L2 regularisation. The model used Adam
optimiser and learning rate reduction on a plateau.

4. RESULTS AND DISCUSSION

4.1 Model Performance

Four machine learning models - RF, XGB, LR and ANN
- were evaluated on the test dataset. The models were
evaluated on the basis of mean absolute error (MAE) and
mean absolute percentage error (MAPE). The formulas for
each metric are defined as follows:

• Mean Absolute Error (MAE):

MAE =
1

n

n∑
i=1

|yi − ŷi| (2)

• Mean Absolute Percentage Error (MAPE):

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100% (3)

where yi is the actual value, ŷi is the predicted value, and
n is the number of observations in the test dataset.

Table 1 summarizes the performance of each model based
on these metrics.

Table 1. Summary of the performance metrics
for RF, XGB, LR, and ANN

Model MAE (µm) MAPE (%)

RF 0.1115 13.61

XGB 0.1394 14.83

LR 0.0716 10.72

ANN 0.0713 10.03

The ANN model achieved the lowest MAE of 0.0713 µm
and MAPE of 10.03%, demonstrating the best overall



Fig. 5. Absolute removal rate by depth per raster track

performance in predicting MRR. The LR model performed
similarly, with only a slight increase in error metrics.
This comparable performance between LR and ANN could
be attributed to insufficient data or a lack of complex
non-linear relationships within the data that typically
provide ANN models an advantage over other techniques.
In contrast, the RF and XGB models showed higher error
metrics, with RF having an MAE of 0.1115 µm and MAPE
of 13.61%, and XGB slightly higher with an MAE of 0.1394
µm and MAPE of 14.83%.

Table 2. Summary of performance metrics for
the ANN model

Polishing time MAE (µm) MAPE (%)

5 min 0.0539 11.91

10 min 0.0572 10.16

20 min 0.1027 8.01

Average 0.0713 10.03

In table 2 detailed performance metrics for the ANN model
are presented at 5 min, 10 min, and 20 min polishing runs.
At 5 and 10 minutes polishing time, the model achieved
relatively low error metrics with a slight increase for 10-
minute long runs. However, for 20-minute experiments,
performance significantly deteriorates with a noticeable
increase in MAE while MAPE decreases. It indicates that
there are more fluctuations closer to the actual values.

4.2 Visual Comparison of Predicted and Actual MRR

Figure 5 presents a plot of predicted versus true MRR
values for the best-performing ANN model. The majority
of the predicted points closely align with the actual values,
indicating a strong correlation, however, some noticeable
deviations are most pronounced in the beginning, centre
and at the end of the profiles. Poor estimation performance
in the terminal regions is related to only partial coverage
of the bonnet tool at the very edge of the polishing area,
leading to a reduced amount of removed material with the
same amount of applied force. We can also observe some
fluctuations in predicted values, which can be associated
with relative fluctuations of force readings that are caused
by the miscalibrated load cells’ gain. A mismatch in the
centre of each of the profiles is caused by periodic etching
of the alignment trench on the workpiece surface, which
gives a false perception of elevated or lowered amounts of
material removed.

To mitigate the impact of edge zones on the overall
model performance, we trained an additional ANN model

Table 3. Summary of performance metrics for
the ANN model

Polishing time MAE (µm) MAPE (%)

5 min 0.0379 7.16

10 min 0.0403 5.64

20 min 0.0631 3.47

Average 0.0471 5.43

excluding a 12.71 mm region from the edge zones. This
12.71 mm corresponds to the spot size of the R41 bonnet
tool contact area with the workpiece at a 0.5 mm tool
offset. Furthermore, we removed 2mm from the centre of
the profile to exclude the artificially generated trench. The
re-trained model achieved an MAE of 0.0471 µm and a
MAPE of 5.43%, representing improvements of 34% and
46%, respectively, relative to the initial error metrics. The
results are presented in Table 3.

5. CONCLUSION

In this paper, we developed a data-driven approach to
predict the material removal rate (MRR) by depth in the
pre-polishing routine for bonnet polishing. Using machine
learning techniques, this approach demonstrated promis-
ing accuracy in estimating the MRR based on the forces
exerted by the polishing bonnet along three axes. Among
the models evaluated, the artificial neural network model
(ANN) performed the best and, with improved data pro-
cessing, achieved 0.0541 µm MAE or 5.89% MAPE. Accu-
rately estimating the amount of material removed enables
improved process control and, even with imperfect con-
vergence and determinism, reduces the need for metrology
checks after each polishing run, thereby improving factory
throughput. By providing precise estimates of MRR, this
approach can help in reducing costs and lead times for
ultra-precision components.

While the ANN model effectively estimated MRR, some
limitations were observed. Model performance decreased
with longer polishing durations, indicating that temporal
factors, such as changes in particle size distribution, tool
wear, pH, or temperature, may need to be considered for
improved accuracy. Moreover, the raster tool-path track
limits our ability to synchronise force data with the exact
position on the workpiece due to the older CNC control
system on the IRP machine used in these experiments.
In addition, this study focused on a specific type of ma-
chine, tool, slurry, and material; therefore, the results may
vary under different conditions. Finally, both data col-
lection and preprocessing were extremely time consuming



Fig. 6. Absolute removal depth rate by depth excluding the edge zones and trench area

and required substantial manual intervention. A potential
method to automate and standardise the data acquisition
process is to trigger measurement and polishing processes
simultaneously or at known intervals. This approach would
establish a predetermined and consistent section before
the start of usable data in the recorded files, thereby
eliminating the need for manual selection of the starting
point.

Future research could explore the integration of additional
process parameters, such as the particle size distribution of
the slurry, pH, and the tool wear, to improve the precision
and robustness of the model. Moreover, hybrid modelling
techniques such as physics-informed learning could be con-
sidered to include known mechanics of material removal.
Furthermore, it is essential to evaluate how this approach
performs beyond the pre-polishing routine, particularly
during corrective polishing where feed rates are modulated
to achieve varying material removal. However, this requires
precise knowledge of the tool’s position at any given time,
synchronised with the force readings.
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