
Privacy-preserving federated learning
for robust approximate MPC

Joshua Adamek† ∗ Janis Adamek† ∗∗ Moritz Schulze Darup ∗∗
Sergio Lucia ∗

∗Department of Biochemical and Chemical Engineering, TU Dortmund
University, 44227 Dortmund, Germany (e-mail:

joshua.adamek@tu-dortmund.de)
∗∗Department of Mechanical Engineering, TU Dortmund University, 44227

Dortmund, Germany (e-mail: janis.adamek@tu-dortmund.de)

Abstract: Approximate model predictive control based on imitation learning methods enables real-
time implementation of optimal constrained control even for large-scale systems under uncertainty.
Training the underlying neural networks often requires large datasets of, which can be challenging for
a single process operator to gather. A federated learning scheme, where multiple operators combine
smaller datasets, could alleviate this issue. Yet, off-the-shelf federated learning may conflict with privacy
requirements of the participants. In this paper, we present a collaborative federated learning scheme
for robust approximate model predictive control. To protect data privacy with respect to the central
computing server, we integrate homomorphic encryption, allowing for encrypted learning.

Keywords: Model predictive control, Artificial Intelligence and Machine Learning, Process control

1. INTRODUCTION

Model predictive control (MPC) optimally controls nonlinear
systems under state and input constraints (Rawlings et al.,
2017). Robust MPC methods handle parametric uncertainties
to ensure constraint satisfaction despite model mismatches
(Campo and Morari, 1987). For nonlinear systems, common
approaches include multi-stage MPC (Lucia et al., 2013) and
tube-based MPC (Mayne et al., 2011). A key challenge in
robust MPC, especially for nonlinear systems, is real-time fea-
sibility, as the computational complexity of the optimization
problem grows exponentially with uncertainties and prediction
horizon. Explicit MPC (Bemporad et al., 2002) precomputes
solutions offline but are impractical for complex nonlinear sys-
tems due to storage and computation constraints.

Approximate MPC (AMPC), an approach that has recently
attracted much interest, using neural networks to approximate
MPC control laws (Chen et al., 2018), (Karg and Lucia, 2020).
While AMPC reduces online computation, generating suffi-
cient offline samples for accurate control law approximation is
computationally expensive. Another challenge of AMPC is the
difficulty to adapt to changes in parameters. Addressing new
operating conditions requires either retraining the network or
expanding the sampling space to include new parameters, as
in Abu-Ali et al. (2022). This paper addresses the challenges
of AMPC in settings where multiple process operators (par-
ticipants) control similar systems under different conditions.
Training an approximate controller for all participants is in-
efficient, as retraining is costly when conditions change. In-
stead, we propose pooling participant data to create a controller
that generalizes across various conditions. However, directly

⋆ Financial support by the German Research Foundation (DFG) under the
grant SCHU 2940/5-1 is gratefully acknowledged.
† Both authors contributed equally to this work

Central Server

Approximate
Robust MPC 1

Federated Learning

Approximate
Robust MPC 2

Approximate
Robust MPC N

Encrypted
gradients

Homomorphic
 encryption level

Fig. 1. Overview of privacy-preserving federated learning for
approximate MPC. The central server updates encrypted
gradients from each local network, enabling training
across all approximate MPC networks.

sharing full datasets is inefficient and raises privacy concerns.
Federated learning mitigates these issues (Zhang et al., 2021)
by training models locally and sharing only model updates
(McMahan et al., 2017). To reduce communication overhead,
a third-party server aggregates updates, but as shown by Gu
et al. (2022), even these updates can reveal underlying data dis-
tributions, leading to privacy risks. Privacy-preserving methods
such as differential privacy (Dwork, 2008) and homomorphic
encryption (HE) (Marcolla et al., 2022) can counteract this. We
opt for HE, as it provides stronger confidentiality guarantees
than differential privacy. While Xu and Wu (2024) explored
privacy-preserving federated learning for MPC, their approach
focuses on data communication between subsystems and ap-
proximates the model rather than the MPC law itself. Our key
contribution is the first encrypted federated learning algorithm
for training parametric robust MPC controllers. Figure 1 illus-
trates the setup, featuring multiple approximate controllers and
encrypted federated learning. This method improves controller
performance across parameter sets without resampling while
preserving data privacy, enabling scalable robust MPC deploy-
ment. The remainder of this paper is structured as follows:

The next section revisits parametric robust multi-stage MPC
approximation using neural networks. After introducing feder-
ated learning and HE, we present our privacy-preserving fed-
erated learning algorithm. We then evaluate the approach on a
nonlinear case study, demonstrating functionality and sampling
efficiency. Finally, we conclude with future research directions.

2. PARAMETRIC ROBUST APPROXIMATE MPC

2.1 Robust multi-stage MPC

This Section summarizes the main idea of multi-stage nonlinear
MPC as described by Lucia et al. (2013) with the addition of
changing but known process parameters c. Within this frame-
work, uncertainties are handled by a tree of discrete scenarios,
where each scenario reflects a concrete uncertainty realization.
In this work, we consider the following discrete-time nonlinear
system

x j
k+1 = f (xp(j)

k ,u j
k,d

r(j)
k ,ck) , (1)

where the next state x j
k+1 ∈R

nx for each scenario j is computed

as a nonlinear function of the parent state xp(j)
k , the input vector

u j
k, its respective realization r of the uncertainty dr(j)

k ∈Rnd and
parameters ck such as process conditions that can be changed
but are known. The set of indices (j,k) in the scenario tree is
denoted by I and Si denotes the i-th scenario which is the path
from the root node x0 to one of the leaf nodes. A reasonable
strategy to build a scenario tree is to consider as branches
all possible combinations of the extreme and nominal values
of the parameters assumed to be uncertain. The number of
combinations grows therefore exponentially with the number
of uncertainty parameters. Furthermore, the combination of all
uncertainty realizations leads to an exponential growth of the
scenario tree with the prediction horizon Npred of the MPC

Nscen = n
Npred
d . Typically the scenario tree is only branched up

to a certain horizon, called robust horizon NR, which is much
smaller than the prediction horizon to limit the exponential
growth. After the robust horizon, uncertainties are considered
fixed. Then the multi-stage optimization problem can be for-
mulated as

min
x j

k,u
j
k,∀(j,k)∈I

Nscen

∑
i=1

ωiJi (Xi,Ui) (2a)

subject to:

x j
k+1 = f (xp(j)

k ,u j
k,d

r(j)
k ,ck) , ∀(j,k+1) ∈ I, (2b)

0 ≥ g(x j
k+1,u

j
k,d

r(j)
k ,ck) , ∀(j,k) ∈ I, (2c)

u j
k = ul

k if xp(j)
k = xp(l)

k , ∀(j,k),(l,k) ∈ I , (2d)

where Xi, Ui are the set of states and control inputs that be-
long in the scenario Si with the probability of occurrence ωi.
State and input constraints are denoted by g(⋅). Note the non-
anticipativity constraints in (2d), as the control inputs cannot
anticipate the current realization of the uncertainty. The cost of
each scenario Ji(⋅) is the summation of the cost function value
L(⋅) for each predicted timestep in the respective scenario with
a terminal cost Ti(⋅)

Ji(Xi,Ui) =

Npred−1

∑
k=0

L(x j
k,u

j
k,ck)+T(xNpred), ∀x j

k, u j
k ∈ Si . (3)

2.2 Parametric approximate MPC

The first input u⋆0 of an MPC optimization problem that is
applied to the system as the control policy ΠMPC can be
regarded as a nonlinear function over the current state x0 and
previous input u−1. Approximate MPC suffers from the fact
that the solution is only optimal for a fixed set of parameters
c0 of the model. We therefore explicitly consider the process
parameters, which could change during the online application
of the controller, as inputs of the control policy:

ΠMPC = u⋆0 (x0,u−1,c0) , (4)
where u⋆0 is the first input value of the solution of equation (2).
Note that the uncertainty realizations for the uncertain parame-
ters d0 are fixed and therefore not part of the function space. We
define the approximate MPC controller as a feedforward neural
network, parameterized by a number of layers l, the number
of neurons m, a nonlinear activation function, and its network
parameters θ . The control law

Πapprox =N (x0,u−1,c0;θ) , (5)
is generated by imitating ΠMPC on a dataset

D = {{x j,u j−1,c j}→ {u⋆j }∣ j ∈ {0, Ndata}} . (6)
This dataset is sampled by offline computation of (2). The train-
ing of the neural network parameters θ is done by minimizing
the mean squared error between Πapprox(θ) and ΠMPC on the
dataset

min
θ

1
Ndata

Ndata

∑
j=0
∣ΠMPC(x j,u j−1,c j)−Πapprox(x j,u j−1,c j;θ)∣

2 .

(7)

3. BACKGROUND ON PRIVACY IN COLLABORATIVE
LEARNING

3.1 Basics of federated learning

Federated learning is a collaborative machine learning algo-
rithm designed for training a deep neural network on N dis-
tributed datasets. We consider N datasets of input-output data
pairs {zi

j,y
i
j} for i = 1 . . .N and j = 1 . . .Ki with Ki being the

local dataset sizes. The machine learning task is to jointly train
a deep neural network N (zi

j;θ) to match the labels yi
j over all

datasets by finding

θ = argmin
1

∑
N
i=1 Ki

N

∑
i=1

Ki

∑
j=1

ℓ(zi
j,y

i
j), (8)

for some loss function ℓ(⋅). To prevent the exchange of local
data, the participants perform gradient updates on their local
data, which are then aggregated to a central update step at a
third-party server. The most general framework for describing
federated learning algorithms is the FedOpt framework, pre-
sented by Reddi et al. (2020), which we extended by using
the ideas of Li et al. (2019) for non-uniform dataset sizes. In
communication round r, a subset Pr of participants is used to
update the global model weights θr stored at the server. The
participants do a batch gradient descent of E epochs in which
B batches of data, expressed by the set Br,e,b (the lower indexes
representing the communication round, epoch, and batch of the
dataset), are drawn. To update the local parameters, which at the
beginning of each iteration are set to the global model weights,
the participants use the the function

θr,e,b+1 = fParticipant(θ
i
r,e,b,g

i
r,e,b) (9)

based on the old weights and the new gradient gi
r,e,b from

the drawn batch. This function could include a learning rate
scheduling based on previous gradients, as in Adam (Kingma
and Ba, 2014) and AdamW (Loshchilov, 2017) optimizers. For
simplicity, we omit the updates in the internal parameters of the
optimizer function in our notation. Afterward, the difference to
the global model

∆θ
i
r = θ

i
r,E+1,B+1−θr (10)

is uploaded to the server, which aggregates the weight differ-
ences to a pseudo-gradient

∆θr =
N
∣Pr ∣
∑

i∈Pr

Ki

∑
N
i=1 Ki

∆θ
i
r. (11)

This pseudo-gradient includes the information of all datasets
from participants in Pr and is subsequently used to update the
model parameters with the server update function

θr+1 = fServer(θr,∆θr) (12)

in which again internal parameters are not included for read-
ability.

3.2 Essentials on homomorphic encryption

A method for achieving privacy in collaborative machine learn-
ing is homomorphic encryption (HE), which allows arithmetic
operations on encrypted data, a feature that is typically not
available for standard cryptosystems. As with any public key
cryptosystem, an HE scheme defines a public key pk and an
encryption primitive ct(a) = Enc(a,pk) to encrypt a message
a into a ciphertext ct(a). Only with the possession of the
secret key, the message can be recovered using the decryption
primitive a = Dec(ct(a),sk). All proper HE schemes present
confidentiality guarantees of ciphertext messages and ensure
the hardness of inferring the secret key from the public key,
such that the public key can be made publicly available.

Different from standard encryption, partially HE methods like
the Paillier cryptosystem (Paillier, 1999) define operations ⊕
and ⊙ on ciphertexts that are equal to additions of the ci-
phertexts ct(a1) and ct(a2) and multiplications with a plain-
text scalar s

Dec(ct(a1)⊕ct(a2),sk) = a1+a2

Dec(ct(s)⊙ct(a1),sk) = s ⋅a1.

We can therefore simply write

ct(a1+a2) = ct(a1)⊕ct(a2), ct(s ⋅a1) = s⊙ct(a1).

Since the Paillier cryptosystem has a message space containing
integer numbers from a finite field, we will turn to the more
powerful fully HE method CKKS (Cheon et al., 2017). It uses
a message space v ∈ Rn and further defines an elementwise
multiplication operation

ct(v1)⊗ct(v2) = v1v2

on the two ciphertexts corresponding to v1 ∈ Rn and v2 ∈ Rn.
As updates and model parameters of neural networks are large
vectors, the implementation of privacy-preserved collaborative
learning is according to Ma et al. (2022) significantly faster
using CKKS. This is because multiple elements can be pro-
cessed in parallel as they are encrypted in a single ciphertext.
In addition, the cryptosystem also provides the possibility for
additional privacy benefits.

Algorithm 1 Privacy-preserving federated learning algorithm

Require: Initial parameters θ1
for r = 1 . . .rmax do

for participant i = 1 . . .N in parallel do
θ

i
r,1,1 = θr

for e = 1 . . .E do
for b = 1 . . .B do

gi
r,e,b =∇

1
∣Bi

r,e,b∣
∑(zi

j ,y
i
j)∈B

i
r,e,b

ℓ(zi
j,y

i
j)

θ
i
r,e,b+1 = fParticipant(θ

i
r,e,b,g

i
r,e,b)

θ
i
r,e+1,1 = θ

i
r,e,B+1

∆θ
i
r = θ

i
r,E+1,B+1−θr

Encrypt ct(∆θ
i
r) and send to server

Server: ct(∆θr) =⊕
N
i=1(

Ki
∑N

i=1 Ki
⊙ct(∆θ

i
r))

for participant i = 1 . . .N in parallel do
Obtain ct(∆θ

i
r) from server and decrypt

θr+1 = θr +∆θr

4. PRIVACY-PRESERVING FEDERATED LEARNING
FOR APPROXIMATE MPC

4.1 Federated learning for parameterized AMPC tasks

In the following, we present our proposed approach to apply
privacy-preserving federated learning to learn robust approxi-
mate MPC controllers. We consider a scenario where N partic-
ipants control different instances of the same process using an
approximation of a robust MPC. Small differences between the
processes can be dealt with as uncertainties within the robust
MPC design. Typically, each participant would sample data
locally and train its neural network only on this data. How-
ever, this local approach is only reasonable for smaller systems
where the sampling effort is manageable and is furthermore
only applicable for a fixed set of operating parameters c.

To enable the potential use of approximate MPC for large-scale
systems and different operating parameters, there is a need to
cooperate to use the computation resources of all participants.
As sharing the sampled data is inefficient and can cause privacy
concerns, we propose the following privacy-preserving feder-
ated learning method. In our approach, the gradients of the local
training are exchanged and then encrypted. The update step
on the central server is computed only on the encrypted gra-
dients. These updates are passed back to the local participants,
where they get decrypted and the local approximation updated.
This enables privacy-preserving learning on the entire sample
dataset such that each participant can use its obtained solution
on the entire parameter set.

In the following, we adapt the principle federated learning al-
gorithm of Reddi et al. (2020) as explained in Subsection 3.1
to the new algorithm presented in Algorithm 1, which incor-
porates privacy through HE. The equations (7) and (8) show
that federated learning is applicable in the case of distributed
parameterized robust approximate MPC datasets. The inputs to
the neural network are zk = {xk,uk−1,ck} and the outputs (labels
during training) are the corresponding optimal inputs computed
via MPC yk =ΠMPC(zk).

First, we assume an industrial-type cooperation with few and
reliant participants but a strong need for privacy of the ex-
changed information. Therefore, we do not sample subsets of

the participants such that Pr is always the full number of par-
ticipants and subsequently grant all participants access to the
global model weights in all communication rounds. As can be
seen in Algorithm 1, the local update step of each participant
updating its own local parameter set θ

i
r,E+1,B+1 as well as the

difference to the global parameter set ∆θ
i
r remains as described

in (9) and (10). The fundamental difference is the encryption of
said difference using HE such that ct(∆i

r) is sent to the central
server. Therefore, the calculation of the weighted sum as in eq.
11 will be done on the encrypted differences

ct(∆θr) =
N
⊕
i=1
(

Ki

∑
N
i=1 Ki

⊙ct(∆θ
i
r)) . (13)

Note that different from typical federated learning where the
update of the global parameter θr from this weighted sum is
calculated on the server as in (12), this encrypted weighted sum
is sent back to the participants where each one decrypts the
value and updates the global parameter set by simply adding the
weighted sum θr+1 = θr +∆θr. The second major modification
to the federated learning approach of Reddi et al. (2020) is
a more complex update rule fParticipant(⋅). We now use the
effectiveness of batch gradient descent with adaptive solvers
like Adam (Kingma and Ba, 2014) or AdamW (Loshchilov,
2017), which is used for fServer(⋅) in the original algorithm.

Both steps identify the weighted sum as the central need for
exchanging the user information and therefore being the only
operation that has to be calculated in an encrypted fashion at the
server. The reasoning is that we avoid very long iterative calcu-
lations on the encrypted values on the central server, which are
hard for HE schemes due to the limited amount of successive
multiplications (see (Marcolla et al., 2022) for more details). By
shifting the more complex gradient update to fParticipant(⋅), we
can express all HE operations by multiplications and additions.

4.2 Establishing privacy

We model all participants and the server as semi-honest, such
that they will honestly follow the algorithm but try to infer
as much information as possible. To obtain the privacy of the
gradient updates against the server, we rely on the confiden-
tiality guarantees of the CKKS HE scheme. In Algorithm 1,
the weights of the different gradients are available in plaintext
to the server. To keep the sizes of the datasets private, the
participants can exchange this side information beforehand and
only send the encrypted weights to the server, which then uses
the ⊗ operation instead of ⊙. The CKKS secret key is generated
by one of the participants and shared with the other participants.
Since every participant would be able to decrypt the messages
of other participants, we need another symmetric encryption
like AES to encrypt all communication with the central server
to achieve privacy towards the other participants. Since we
model all agents as semi-honest we assume no exchange of the
secret key between the server and the participants. However,
this cooperation can be counteracted by the use of a thresh-
old variant of CKKS like it is implemented in the OpenFHE
(Al Badawi et al., 2022) library.

5. CASE STUDY

5.1 Nonlinear robust MPC of a CSTR

We test the algorithm described in Section 3 on the case
study of a parametric robust approximate MPC applied to the

continuous stirred tank reactor described by Klatt and Engell
(1998). We will allow to adapt the temperature of the inlet Tin
that is fixed during one operation but could change in different
operation settings. The system dynamics for the four states cA
(concentration of substance A), cB (concentration of substance
B), TR (Temperature of the reactor), and TK (Outlet temperature
of the coolant) can be described as:

dcA

dt
=F (cA,0−cA)−k1cA−k3c2

A,
dcB

dt
= −FcB+k1cA−k2cB,

dTR

dt
=F (Tin−TR)+

kWAR

ρCp,RVR
(TK−TR) ,

−
k1cA∆HR,1+k2cB∆HR,2+k3c2

A∆HR,3

ρCp,R

dTK

dt
=

Q̇+kWAR (TR−TK)

mKCp, K
,

k1 =βk0,bc exp(
−EA,bc

R(TR+T0)
) , T0 = 273.15K

k2 =k0,ab exp(
−EA,ab

R(TR+T0)
) , k3 = k0,ad exp(

−αEA,ad

R(TR+T0)
) ,

where the cooling power Q̇ and the dilution rate F are the
input variables. The values of the constant parameters of the
system model are the same as in (Klatt and Engell, 1998). The
parameters α and β are considered uncertain.

Therefore, a robust MPC is designed that aims to control the
concentration to the setpoint ca = 0.7 and cb = 0.6 without
violating the state constraints. The cost for each scenario as in
(3) can be described as:

L(xk,uk) = (xk − x̄)T Q(xk − x̄)+∆uT
k R+∆uk , (14)

with Q=diag(1,1,0,0), x̄= (0.7,0.6,0,0)T , R=diag(0.1,0.001).

The state and input constraints can be found in Table 1. This ta-
ble also shows the range for the two uncertain parameters α and
β as well as the range of possible values of the known parameter
Tin that can be changed during the runtime of the reactor. The
prediction horizon of the robust MPC is Npred = 20, and the
robust horizon is NR = 1. For the MPC, the continuous dynamics
are discretized using orthogonal collocation, with ∆t = 0.005h.
The case study is implemented in the do-mpc (Fiedler et al.,
2023) framework and the code is openly available 1 .

Table 1. Lower (LB) and upper bounds (UB) for
states, inputs, and variable parameters.

cA cB TR TK Q̇ F α β Tin

LB 0.1molL−1 0.1 50○C 50○C −8500 5 0.95 0.9 125
UB 2molL−1 2 140○C 140○C 0 100 1.05 1.1 135

5.2 Federated learning results

We compare the federated learning approach against the train-
ing on local datasets. The dataset is sampled as closed loop
trajectories with random trajectory starting points within the
state space and a trajectory length of Ntraj = 20. We assume
Npart = 6 participants that each sample 1000 random trajectories
with different fixed values of Tin for each participant. As some
trajectories will be infeasible, each local training datasetDi will
1 https://github.com/JoshuaAda/2024 privacy federated learning approx mpc

0 80 160 240 320 400 480 560 640 720
Total Epochs

10 6

10 5

10 4

10 3

10 2

Lo
ss train loss local

train loss federated
val loss local

val loss federated

Fig. 2. Training and validation loss for the local approach
trained on a dataset with fixed Tin = 125○C in comparison
to the encrypted federated training and validation loss.

contain Ki = 8000 sampling values. All other sampling values
are collected in the validation dataset (21880 sampling values),
which is then validating the loss for different values of Tin.
For a simpler training of the neural networks on the datasets, a
box-based scaling using the state, input, and parameter bounds
is performed. While the privacy-preserving federated learning
algorithm combines the information of all datasets Di in the
way it is described in Section 3, the local training for partic-
ipant i is only based on Di. For both the local as well as the
federated approach, the neural networks are initialized with
the same weights for three fully connected layers with 500
neurons. The training is done within the Pytorch library using
the AdamW solver (Loshchilov, 2017) with a learning rate
scheduling (dropping the learning rate by a factor of 10 every
200 epoch). This training corresponds to the local update step
fParticipant(⋅) in Algorithm 1. We use the OpenFHE (Al Badawi
et al., 2022) library for the CKKS implementation. The training
and validation loss for the approximate MPC training can be
found in Figure 2 both for one of the local training and for one
of the federated learning networks. While the training loss of
the local networks reaches in general a lower value than the
federated approach, the validation loss remains high. This is
expected, since changes in Tin are not accounted for. For the
federated approach, the validation loss is related to the training
loss as both decrease during the training.

To incorporate the information of all participants in each local
controller, every participant would have to extend their dataset
by sampling the whole dataset separately, which needs roughly
5 hours of additional computational time on an Intel i7 proces-
sor. Since the federated learning approach parallelizes the local
updates, it is almost as fast the compared centralized training
on the concatenated dataset. The training for both approaches
took around 15 minutes on an NVIDIA Geforce RTX 3050
Ti GPU. Therefore, our method provides significant computa-
tional advantages even in this simple example with only one
process parameter. For this reason, we believe that our proposed
methodology is a promising direction to achieve large-scale
approximate MPC.

5.3 Closed-loop performance evaluation

We evaluate the local and federated approach in a closed-loop
application of the resulting controllers on the system. We con-
sider 100 closed loop trajectories of length 0.2h with different
values of Tin and random uncertainty realizations within the
described bounds in Table 1. We evaluate the mean tracking
cost (MTC), which is the sum of the difference between the

Fig. 3. Concentration and input trajectories for one random
initial state vector with a trajectory length of 0.2h and
Tin = 125○C. In the figure the closed-loop trajectories
are compared against each other for the exact MPC, the
federated approach, and the local approaches trained on a
dataset with Tin = 125○C and Tin = 135○C. The black line
represents the desired concentrations to be tracked.

Table 2. Mean tracking cost (MTC), the relative
frequency of constraint violations (RFV), percent-
age deviation from the constraints (PDV) over 100
trajectories for all six locally trained networks, the

federated approach, and the exact MPC.

Network MTC [−] RFV states [%] PDV state[%]
Local Tin = 125○C 0.103 4.31 4.82
Local Tin = 127○C 1.22 2.93 7.24
Local Tin = 129○C 0.394 1.88 4.14
Local Tin = 131○C 0.598 0.22 1.18
Local Tin = 133○C 0.118 0.00 0.00
Local Tin = 135○C 2.90 0.00 0.00

Federated 0.031 0.005 1.03
Exact MPC 0.025 0.00 0.00

actual concentration and the setpoint throughout the trajectory.
Furthermore, state constraints violations are evaluated with the
relative frequency of occurrence (RFV) as well as the percent-
age deviation from the constraints (PDV) defined as

PDV =
⎧⎪⎪
⎨
⎪⎪⎩

xk−xub
xub−xlb

, if xk > xub
xlb−xk
xub−xlb

, if xk < xlb
(15)

with xlb and xub being the lower and upper bound for the respec-
tive state. Table 2 shows the results of the mean tracking cost
over all scenarios. The tracking cost of the federated approach
is close to the cost of the exact MPC, indicating that it is a valid
approximation of the controller. The tracking costs of all six
locally trained approximations are much higher, showing that
for this case study, it is indeed necessary to train on the entire
dataset. Furthermore, this table shows the relative number of
constraint violations and the mean percentage deviation to the
constraint bound for state constraints. While there exist few
state constraint violations for the federated approach because of
the approximate nature of the controller, the mean percentage
deviation from the constraint is small in comparison to the

local approximations. For some of the local approaches, the
number of constraint violations is much larger. For the local
networks with Tin = 133○C and Tin = 135○C, no constraint vio-
lations occur but the resulting performance is very conservative
when compared to the exact MPC or the proposed federated
approach. One exemplary trajectory for this behavior can be
seen in Figure 3. Figure 3 shows the example trajectory for
x0 = (0.8 ,0.5134.14 ,130)T and Tin = 125○C for the federated
approach, the local approach trained on a dataset with Tin =
125○C and Tin = 135○C as well as the exact robust MPC in com-
parison. As expected, the performance of the local approach
trained on the correct Tin is satisfactory with a tracking cost of
0.0155, while the tracking cost for the local approximation on
a different training set is much worse with a tracking cost of
5.59. Additionally, input constraint violations for the cooling
power can be observed. In contrast, the federated approach has
an tracking cost of 0.0158 on this trajectory, which is similar to
the tracking cost of the exact MPC (0.0153) with almost similar
control actions, showing the validity of the approach.

6. CONCLUSION AND OUTLOOK

We presented the first distributed machine learning algorithm
for approximate model predictive control tasks to decrease the
sampling burden of the participants and to build upon existing
datasets and solutions. To ensure privacy of the local data,
we develop a privacy-preserving federated learning algorithm
based on homomorphic encryption. We show the advantages of
the method by reducing the sampling time for each participant
as well as a better approximation of the control law for the
federated approach in comparison to training only on a local
dataset. Future work will extend our method to real-world sce-
narios in which sampling efficiency and privacy are essential.

REFERENCES

Abu-Ali, M., Berkel, F., Manderla, M., et al. (2022). Deep
Learning-Based Long-Horizon MPC: Robust, High Per-
forming, and Computationally Efficient Control for PMSM
Drives. IEEE Transactions on Power Electronics, 37(10),
12486–12501.

Al Badawi, A., Bates, J., Bergamaschi, F., et al. (2022).
Openfhe: Open-source fully homomorphic encryption li-
brary. In Proceedings of the 10th Workshop on Encrypted
Computing & Applied Homomorphic Cryptography, 53–63.

Bemporad, A., Borrelli, F., Morari, M., et al. (2002). Model
predictive control based on linear programming˜ the explicit
solution. IEEE transactions on automatic control, 47(12),
1974–1985.

Campo, P.J. and Morari, M. (1987). Robust model predictive
control. In 1987 American Control Conference, 1021–1026.

Chen, S., Saulnier, K., Atanasov, N., Lee, D.D., Kumar, V.,
Pappas, G.J., and Morari, M. (2018). Approximating Ex-
plicit Model Predictive Control Using Constrained Neural
Networks. In 2018 Annual American Control Conference
(ACC), 1520–1527. IEEE.

Cheon, J.H., Kim, A., Kim, M., and Song, Y. (2017). Homo-
morphic encryption for arithmetic of approximate numbers.
In Advances in Cryptology – ASIACRYPT 2017, 409–437.

Dwork, C. (2008). Differential privacy: A survey of results.
In International conference on theory and applications of
models of computation, 1–19. Springer.

Fiedler, F., Karg, B., Lüken, L., Brandner, D., Heinlein, M.,
Brabender, F., and Lucia, S. (2023). do-mpc: Towards FAIR

nonlinear and robust model predictive control. Control
Engineering Practice, 140, 105676.

Gu, B., Xu, A., Huo, Z., Deng, C., and Huang, H. (2022).
Privacy-Preserving Asynchronous Vertical Federated Learn-
ing Algorithms for Multiparty Collaborative Learning. IEEE
Transactions on Neural Networks and Learning Systems,
33(11), 6103–6115.

Karg, B. and Lucia, S. (2020). Efficient Representation and
Approximation of Model Predictive Control Laws via Deep
Learning. IEEE Transactions on Cybernetics, 50(9), 3866–
3878.

Kingma, D.P. and Ba, J. (2014). Adam: A
Method for Stochastic Optimization. URL
https://arxiv.org/abs/1412.6980. Publisher:
arXiv Version Number: 9.

Klatt, K.U. and Engell, S. (1998). Gain-scheduling trajectory
control of a continuous stirred tank reactor. Computers &
Chemical Engineering, 22(4-5), 491–502.

Li, X., Huang, K., Yang, W., Wang, S., and Zhang, Z. (2019).
On the convergence of fedavg on non-iid data. arXiv preprint
arXiv:1907.02189.

Loshchilov, I. (2017). Decoupled weight decay regularization.
arXiv preprint arXiv:1711.05101.

Lucia, S., Finkler, T., and Engell, S. (2013). Multi-stage
nonlinear model predictive control applied to a semi-batch
polymerization reactor under uncertainty. Journal of Process
Control, 23(9), 1306–1319.

Ma, J., Naas, S.A., Sigg, S., and Lyu, X. (2022). Privacy-
preserving federated learning based on multi-key homomor-
phic encryption. International Journal of Intelligent Systems,
37(9), 5880–5901.

Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek,
F.H., and Aaraj, N. (2022). Survey on fully homomorphic
encryption, theory, and applications. Proceedings of the
IEEE, 110(10), 1572–1609.

Mayne, D.Q., Kerrigan, E.C., Van Wyk, E.J., and Falugi, P.
(2011). Tube-based robust nonlinear model predictive con-
trol. International Journal of Robust and Nonlinear Control,
21(11), 1341–1353.

McMahan, B., Moore, E., Ramage, D., Hampson, S., and Arcas,
B.A.y. (2017). Communication-Efficient Learning of Deep
Networks from Decentralized Data. In A. Singh and J. Zhu
(eds.), Proceedings of the 20th International Conference on
Artificial Intelligence and Statistics, volume 54 of Proceed-
ings of Machine Learning Research, 1273–1282. PMLR.

Paillier, P. (1999). Public-key cryptosystems based on compos-
ite degree residuosity classes. In J. Stern (ed.), Advances in
Cryptology — EUROCRYPT ’99, 223–238. Springer Berlin.

Rawlings, J.B., Mayne, D.Q., Diehl, M., et al. (2017). Model
predictive control: theory, computation, and design, vol-
ume 2. Nob Hill Publishing Madison, WI.

Reddi, S., Charles, Z., Zaheer, M., Garrett, Z., Rush,
K., Konečnỳ, J., Kumar, S., and McMahan, H.B.
(2020). Adaptive federated optimization. arXiv preprint
arXiv:2003.00295.

Xu, Z. and Wu, Z. (2024). Privacy-preserving federated ma-
chine learning modeling and predictive control of heteroge-
neous nonlinear systems. Computers & Chemical Engineer-
ing, 187, 108749.

Zhang, C., Xie, Y., Bai, H., Yu, B., Li, W., and Gao, Y. (2021).
A survey on federated learning. Knowledge-Based Systems,
216, 106775.

