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Abstract: We propose an Economic Model Predictive Control (EMPC) framework that is
robust to model structure error. The approach integrates parameter estimation with gradient
correction to improve controller performance. At each sampling time, the algorithm performs
parameter estimation over past samples, followed by a gradient correction step that updates
model parameters to match the gradients of the model and plant using transient measurements.
To match the gradients while maintaining model accuracy, a correction term is added, which
ensures an upper bound on the model error. The approach is validated on a continuous penicillin
production process subject to model-plant mismatch. Results demonstrate that the proposed
EMPC with gradient correction drives the process closer to the true plant optimum values
and achieves better convergence to optimal operating conditions than a similar EMPC without
gradient correction.
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1. INTRODUCTION

Fermentation processes in the pharmaceutical sector are
typically operated in batch, fed-batch, or perfusion modes.
While such operations were reasonable in the past due to
the lower risk of contamination, they may be unsustainable
as the demand for pharmaceuticals increases and their cost
exceeds the purchasing power of the public. Continuous
manufacturing is an alternative manufacturing strategy
that relies less on human labor and transitioning steps
between unit operations, requires potentially smaller facil-
ities, and is more suitable for automation and adaptation
across different drug products. Continuous manufacturing
is gaining increasing popularity in the pharmaceutical
industry (Khanal and Lenhoff, 2021). Hence, there is an
increasing interest in the optimization of continuous phar-
maceutical operations. Since optimization algorithms gen-
erally rely on mathematical models, the accuracy of such
models is crucial for finding the true optimum. Models of
pharmaceutical processes are particularly prone to model
structure errors due to either model simplification or a lack
of prior information about certain phenomena and, if not
accounted for, they can lead to sub-optimal results.

Optimization of an economic cost for batch and fed-batch
operations in the presence of model structure errors has
been extensively tackled with batch-to-batch optimization
algorithms, which involve successive identification and op-
timization steps until convergence (Bonvin, 1998; Mandur
and Budman, 2015). These batch-to-batch algorithms uni-
formly required matching of the measured and predicted
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gradients in order to ensure convergence to the true eco-
nomic optimum in the presence of model errors.

Economic Model Predictive Control (EMPC) has been
proposed for the economic optimization of continuous
processes. EMPC integrates economic process optimiza-
tion and process control into one optimization layer in-
stead of the traditional two-layer optimization approach
involving a real-time optimization of set-points followed
by Model Predictive Control (MPC) about the calculated
set points(Darby et al., 2011). Different formulations of
EMPC have been reported (Rawlings et al., 2012), and
studies on the robustness of EMPC with respect to an
error in model parameters have been reported (Santander
et al., 2016; Schwenkel et al., 2020).

In view of the ability of batch-to-batch algorithms to find
an economic optimum in the presence of model structure
errors, researchers have investigated the application of
these algorithms to continuous processes. A key contrib-
utor to the ability of batch-to-batch techniques to deal
with model structure error is the matching of measured
and model gradients of the cost with respect to the de-
cision variables, which is not done in traditional EMPC
algorithms.

A widely used batch-to-batch optimization approach is
the Modifier Adaptation (MA), which adjusts the cost
function and constraints of the optimization problem to
account for differences between measured and expected
gradients (Marchetti et al., 2009). More recently, the MA
methodology was used in real-time optimization (Patrón
and Ricardez-Sandoval, 2023) and also integrated into
EMPC algorithms for continuous processes (Vaccari and



Pannocchia, 2016, 2018) based on steady-state gradients of
the cost and constraints. To address problems with slow
convergence to a steady state, transient measurements
have also been used to estimate the plant’s gradients
(François and Bonvin, 2014; Speakman and François, 2020;
Oliveira-Silva et al., 2021). A common feature of all MA
algorithms is the use of a filter to reduce sensitivity to
noise that must be tuned in an ad-hoc fashion.

Another approach that was previously applied for batch-
to-batch economic optimization in the presence of model-
plant mismatch (MPM) was originally proposed in Man-
dur and Budman (2015) and then extended by Ghodba
et al. (2025) to deal with unmeasured disturbances. The
algorithm involves 4 sequential steps that are repeated
until convergence to the optimum: model identification,
gradient matching, model-based optimization, and experi-
mentation in the neighborhood of the calculated optimum.

The current work modifies and extends the algorithm
of Ghodba et al. (2025), previously used solely in batch
processes, for application to continuous operations. Dis-
tinctive features of the current approach are:

• It does not require a tunable filter in contrast to the
MA method; instead, it relies on performing model
adaptation to provide such filtering ability.

• The algorithm provides a good model approximation
in the neighborhood of the optimum, which may
be useful for state estimation or for testing critical
constraints.

• The economic objective function does not have to be
modified.

The approach includes an identification step at each sam-
pling time to identify model parameters and is followed by
a gradient correction step that updates model parameters
to match the model and measured plant gradients. A
model correction term is introduced to match gradients
while ensuring a user selected upper bound on the predic-
tion error. Dynamic gradients are calculated in this work
using transient measurements. Then, the model is updated
by the identification and gradient matching steps and is
used in the EMPC to determine the optimum input vari-
ables for the next control horizon. Since gradient matching
is a salient feature of the proposed EMPC as compared to
conventional EMPC, the focus of this study will be to test
whether this matching contributes to improve closed-loop
performance.

The paper is organized as follows. The structure of the
proposed EMPC used in the paper is presented in Section
2. Then, Section 3 describes the case study of Penicillin
production. The results of the proposed methodology are
presented in Section 4. Finally, Section 5 presents the
conclusions and future work.

2. PROPOSED ROBUST EMPC METHODOLOGY

The new proposed method involves four steps: i—a model
is updated based on measured plant inputs along an
identification horizon; ii—measured and predicted cost
gradients with respect to decision variables are matched
along a time horizon subject to an upper bound on the
prediction error; iii—EMPC is used to optimize an integral
cost over a prediction horizon; iv—a square pulse signal

Fig. 1. The general schematic of proposed EMPC

is added to the calculated optimal inputs, and the entire
procedure is again repeated from step i above.

A general schematic representation of the proposed EMPC
is illustrated in Fig.(1). In the following, each step is
detailed.

2.1 Step i: Parameter Estimation

In this step, the sum of squared errors between model
predictions and the measurements is minimized according
to Eq.(1).

Θ = argmin
Θ

nk∑
k=λ

∥∥yp(tk)− y(x, tk)
∥∥2 (1a)

s.t.
.
x = f(x,Θ,u) (1b)

y = h(x)−C (1c)

Θ ∈ [Θlb,Θub] (1d)

λ = (nk − LIH) ·H (nk − LIH) (1e)

where the subscript p refers to plant. x ∈ Rnx is the
vector of states evaluated at sampling times tk with k ∈
{λ, ..., nk} where nx and nk represent the number of state
variables and total time intervals by current sampling
instance. Θ ∈ RnΘ , where nΘ represents the number of
parameters, are model parameters at the current sampling
time that are calibrated to minimize the sum of square
error between plant and model outputs. The bounds Θlb ∈
RnΘ and Θub ∈ RnΘ provide a permissible range of pa-
rameter values. u ∈ Rnu , where nu represents the number
of input variables, are determined input variables of the
process. yp ∈ Rny×(nk−λ) are the plant measurements

whereas y ∈ Rny×(nk−λ) is the model prediction where
ny represents the number of outputs. Also, f ∈ Rnx is
a set of differential equations representing the correlation
between model states and process inputs and h ∈ Rny is a
mapping between model states and predicted outputs. C
is a correction term that will be explained in Section 2.2.
Also, λ indicates the starting point of the identification
horizon that is determined by the Heaviside function, H,
and the length of the identification horizon is shown by
LIH. The LIH is chosen according to the largest time
constant expected in the process. For simplicity, in the
current study, a straightforward least squares regression
was used. We are currently investigating the use of an
Extended Kalman Filter or a Moving Horizon Estimator
to identify the states and model parameters.



2.2 Step ii: Gradient Matching

In the presence of structural MPM, the model parameters
estimated by Eq.(1) do not necessarily result in correct
predictions of the plant gradients. Thus, the predicted gra-
dients from the model must be matched to the measured
gradients of the process to drive the optimization search
toward the plant optimum. To do this, the parameters’
values that were obtained in the identification step are
perturbed by an amount ∆Θ to fit the predicted to the
measured gradients of the cost function and constraints as
follows:

∆Θ = arg min
∆Θ

(

nk∑
ti=γ

wT
ϕ

∣∣∣∣∂ϕp(ti)

∂u
− ∂ϕ(y(x), ti)

∂u

∣∣∣∣
+

nk∑
ti=γ

ng∑
j=1

wT
g,j

∣∣∣∣∂gp,j(ti)∂u
− ∂gj(y(x), ti)

∂u

∣∣∣∣) (2a)

s.t.
.
x = f (x,Θ+∆Θ,u) (2b)

y = h (x)−C (2c)∥∥ϵT∥∥∞ ≤ ϵTmax (2d)

Θ +∆Θ ∈ [Θlb,Θub] (2e)

γ = (nk −GCH) ·H (nk −GCH) (2f)

where ∆Θ ∈ RnΘ is the change introduced in the parame-
ter estimates, with respect to Θ, required to minimize the
difference between the predicted and measured gradients
along the gradient correction horizon (GCH). ∂ϕ

∂u ∈ Rnk−γ

and
∂gj
∂u ∈ Rnk−γ with j = 1, ..., ng are the gradients of

cost and constraints, respectively. The measured gradients
are denoted by the subscript p. The plant gradients are
obtained with a dynamic perturbation method using the
finite difference method between the values of the cost
function at two consecutive time steps with respect to
the difference between input variables. wϕ ∈ Rnk−γ and

wg ∈ Rng×(nk−γ) are used to weight the gradient-matching
objectives.

Finding parameter values that simultaneously satisfy both
the minimization of square errors and gradient-matching
objectives is impeded in the presence of model structure er-
ror because these objectives are conducted separately (the
advantage of this approach over combining Eqs.(1) and (2)
is that weighting each objective function is challenging,
and in the proposed method, parameters can be identi-
fied without the need to determine appropriate weights.)
In other words, parameters estimated to reduce gradient
differences may not simultaneously minimize prediction
error. To approximately reconcile these objectives, a first-
order Taylor expansion is used to estimate the difference
between the model outputs generated by the model iden-
tification step (Section 2.1) and the output generated by
the current gradients’ matching step.

y(x(Θ+∆Θ, tk))− y(x(Θ, tk)) ∼= Dy(x(Θ, tk)) ·∆Θ (3)

where Dy(x(Θ, tk)) ∈ Rny×nΘ is the Jacobian matrix of
the states with respect to model parameters at sampling
time tk. Then, to maintain a similar fitting accuracy
to that obtained in the parameter estimation step, a
correction term C ∈ Rnk×ny , is subtracted in (Eq.(2c))

from the output resulting from the gradient matching step.
This correction term is recursively calculated as follows:

C(tk) = C(tk−1) +Dy(x(Θ, tk−1)) ·∆Θ (4)

where C(tk) is the current correction term. Then, the
truncation error introduced by the linear correction term
in Eq.(3) can be calculated as follows

ϵT =
y(x(u,Θ+∆Θ))−Dy(x(u,Θ)) ·∆Θ− y(x(u,Θ))

y(x(u,Θ))
(5)

Accordingly, inequality (Eq.(2d)) imposes an upper bound
on the prediction error, thus ensuring a pre-specified level
of accuracy in the model prediction despite the changes
in parameters’ values that were required to match the
gradients. Low epsilon values restrict the flexibility of
gradient correction, while high values may cause the model
to diverge significantly from the parameter estimation
step. ϵTmax = 0.05 has been selected in this study.

2.3 Step iii: EMPC calculation

The dynamic model updated based on the previous model
identification and gradient matching steps, i.e. Θ′ = Θ +
∆Θ, is used in the EMPC algorithm to calculate optimal
input variables along a prediction horizon based on the
current measured states of the system. The corresponding
EMPC formulation is as follows:

min
u

∫ t+TP

t

le(x̃(τ), ũ(τ))dτ (6a)

s.t.
.

x̃(τ) = f(x̃(τ), ũ(τ), θ′, w(τ)) (6b)

ỹ = h (x̃)−C (6c)

g(x̃(τ), ũ(τ), θ′, w(τ)) ≤ 0 (6d)

x̃(t) = x(t) (6e)

ũ(τ) ∈ U, ∀τ ∈ [t, t+ TC ] (6f)

ũ(τ) = ũ(t+ TC), ∀τ ∈ [t+ TC , t+ TP ] (6g)

where TP and TC are the prediction and the control
horizon with TC ≤ TP . Eq.(6a) represents the economic
stage cost (le). x̃ denotes the predicted state sequence,
which is the solution of Eq.(6b) driven by the input signal
ũ(.) : [t, t+ TP ] −→ U under the initial condition x(t). At
each sampling instance, the state measurements are used
via Eq.(6e), so the dynamic model is initialized by the
actual system state and predicts future system behavior. In
this preliminary study, the full state vector is assumed to
be measured. Future studies will consider state estimation
based on a limited set of measurements. Eq.(6f) fixes the
input beyond the control horizon.

2.4 Step iv: Addition of square pulse and data collection

In batch-to-batch optimization, several experiments are
run simultaneously with nominal values of input variables
and perturbations with respect to these nominal values to
calculate the plant’s gradients. However, in a continuous
process, running simultaneous experiments is not possible



since there is a single process, and experiments must be
collected from this single process. Instead, perturbations
must be introduced in the form of a square pulse signal
entering the process at each time interval. The purpose
of this signal is twofold: i– to provide persistent excita-
tion for parameter estimation and ii– to excite the pro-
cess sufficiently to permit the calculation of meaningful
gradients. Accordingly, the pulse signal must be large
enough to overcome the noise but not too large so as to
avoid significant deviation from optimal performance. The
dither is particularly crucial when the process approaches
a steady-state operation, so the signal provides excitation
to avoid convergence to a suboptimal condition. In this
study, a square pulse whose frequency matches the control
horizon. That is done to avoid the occurrence of the same
input variables at two consecutive points, leading to an
undefined (or infinite) gradient. After the addition of this
signal to the input variable, it is applied to the system,
and state variables in the next sampling instance are
measured. Then, the entire procedure is repeated starting
from Section 2.2 above.

3. CASE STUDY: CONTINUOUS PENICILLIN
PROCESS

A continuous operation of a penicillin fermentation process
is used to illustrate the proposed algorithm. An unstruc-
tured model for penicillin production in a batch/fed-batch
process was developed by (Birol et al., 2002), and it was
modified to a continuous process to test the proposed
methodologies. This model is used for the generation of
in silico data needed for the current study. This process is
described by the following set of equations:

dX

dt
= (

µXSX

KXX + S
)− FX

V
(7a)

dP

dt
= (

µPSX

KP + S + s2

KI

)−KHP − FP

V
(7b)

dS

dt
= − 1

YX/S
(

µXSX

KXX + S
)− 1

YP/S
(

µPSX

KP + S + s2

KI

)

−mXX +
Fsf
V

− FS

V
(7c)

where X, P, and S represent biomass concentration (g/l),
penicillin concentration (g/l), and substrate concentration
(g/l), respectively. F is the feed flow rate of the substrate
(l/h). Model parameters (kinetic parameters) are shown
in Table 1. The initial conditions are shown in Table 2.

Table 1. Model Parameters for Eq.(7)

Parameter Value

Yield constant: Yx/s (g biomass/g glucose) 0.45

Yield constant: Yp/s (g penicillin/g glucose) 0.9

Maintenance coefficient on substrate: mx (per h) 0.014
Maximum specific growth rate: µx (per h) 0.092
Contois saturation constant: Kx (g/l) 0.15
Specific rate of penicillin production: µp (per h) 0.005
Inhibition constant: Kp (g/l) 2e-4
Inhibition constant for product formation: KI (g/l) 0.1
Penicillin hydrolysis rate constant: KH (per h) 0.04
Feed substrate concentration: sf (g/l) 5
Reactor volume: V (l) 120

Table 2. Initial operating conditions for the
simulations

Biomass conc. (X0) 0.1 (g/l)
Product conc. (P0) 0 (g/l)
Substrate Concentration (S0) 15 (g/l)
Initial Substrate Feed rate (F0) 6 (l/h)

The structural model-plant mismatch is intentionally in-
troduced into the model used by EMPC by eliminating the
penicillin consumption term occurring via hydrolysis and
substrate consumption for the maintenance requirements
of the microorganism. Thus, the model used for EMPC is
given Eq.(8):

dP

dt
= (

µPSX

KP + S + s2

KI

)− FP

V
(8a)

dS

dt
= − 1

YX/S
(

µXSX

KXX + S
)− 1

YP/S
(

µPSX

KP + S + s2

KI

)

+
Fsf
V

− FS

V
(8b)

4. RESULTS AND DISCUSSION

The simulations assume 5% uniform noise in all process
states (X, P, S) generated by the process simulator. The
objective of the optimization problem is the maximization
of penicillin production (

∫
P (t)dt) during the operation

time. The decision variable is the substrate feed rate,
F(t). The MATLAB function fmincon was utilized for all
optimization problems considered in this section using the
interior-point algorithm as the optimization solver. The
processor of the system is 12th Gen Intel(R) Core(TM)
i7-12700 and is equipped with 16GB of RAM. Seven
parameters are considered for parameter estimation and
gradient matching;

• Yx/s , Yp/s , µx , Kx , µp , Kp , KI

Their initial guesses in the first iteration are selected as
shown in Table 1. In this study, the sampling time interval
is 4 hours. This sampling interval duration is typical in
fermentation processes because of the lack of some online
sensors for faster data acquisition. Also, the identification
horizon (LIH) and gradient correction horizon (GCH) are
chosen according to the estimated largest time constant,
which is 200 hours, and the prediction horizon is 160 hours.
The control horizon is 8 hours to allow the system enough
time to exhibit meaningful dynamic changes and make
gradient estimation reliable.

First, we tested the effect of model structural errors by
comparing the proposed EMPC that used a model with
structural errors with an EMPC that used a perfect model.
Fig.(2) presents a comparison between these two cases.
In the dynamic model without structural errors, the pro-
cess model (Eq.(7)) is used as the model simulator, and
no MPM is present. As shown in Fig.(2), the proposed
EMPC drives the process close to the real optimum of
the process, and both converge to the same optimal state
variables. This shows that the gradient correction step,
in combination with the identification step, could model
the correct gradients of the plant in the presence of model
structural errors. However, Fig(2c) exhibits that in the



(a)

(b)

(c)

Fig. 2. Comparison of the proposed EMPC using the model
structural errors with EMPC using perfect model, in
terms of a) specific productivity, b) biomass density,
and c) input variables

presence of model structure error, the robust EMPC con-
troller needs larger control actions to keep the process
close to optimum values compared to the case without
error. Fig.(2a) shows that the penicillin concentrations
have fallen below optimal values at some time intervals due
to inaccurate predictions of the system’s actual behavior.
This may be due to insufficient excitation (pulse signal) in
the system for estimating parameters and gradients, which
will be examined in future work. Nevertheless, the con-
troller attempted to increase biomass—and subsequently
penicillin production—by injecting more feed at certain
time intervals.

As a second comparative case study, the improvement of
the proposed EMPC algorithm with gradient correction
is compared to the EMPC without gradient matching.
In both cases, the model was assumed to have struc-
tural errors as discussed above. Fig.(3a) illustrates the

(a)

(b)

Fig. 3. Comparison between the proposed EMPC with gra-
dient correction and regular EMPC without gradient
correction in the presence of model-plant mismatch
in terms of a) specific productivity, and b) input
variables

plant production of penicillin. As shown in this figure,
the EMPC without gradient correction is unable to reach
the optimum economic cost and fast dynamic behavior
in the initial moments (0-100 hr) because the dynamic
model has errors and there has not been sufficient data for
training. These errors also lead to discrepancies between
the gradients of the model and the system, ultimately
resulting in incorrect predictions of input variables. In
contrast, with the controller incorporating the gradient
correction step, despite the lack of data for model training
in the initial time, it is able to improve the economic cost
function after matching the gradients of the model with
the plant. Another notable point is the deviations from the
optimum along the continuous operation. In the regular
EMPC without gradient correction, a significant deviation
from the optimal input trajectory occurred after 400 hours.
This deviation is not observed in the proposed EMPC
with gradient correction, underscoring the effectiveness of
gradient correction in steering the process toward opti-
mality. Fig.(3b) also shows the deviation in the feed rate
in EMPC without a gradient in the presence of MPM.
As discussed earlier, in this case, the system deviates
from the optimum after 400 hours, and the model’s higher
uncertainty also led to some significant deviations in the
last 200 hours. In contrast, the identified model is more
accurate with gradient correction, contributing to greater
robustness around the optimal points.

As a last case study, we evaluate the ability of the proposed
method to drive the system to the true economic optimum.



Table 3. Comparison of the obtained economic
function using noise-free measurement of peni-

cillin concentration

Scenario Value

Steady-state optimum of the plant 79.36
EMPC using the perfect model 80.32
EMPC using model structural errors with
gradient correction 77.21
EMPC using model structural errors without
gradient correction 63.55

The steady-state optimum of the plant (optimum eco-
nomic function) is determined by optimizing the steady-
state of Eq.(7) and compared for three different strategies:
regular EMPC with the perfect model, regular EMPC
with MPM, and the proposed EMPC with MPM and
gradient correction. The results are given in Table 3. To
calculate the steady-state optimal economic function of the
plant, it is assumed that the process starts at the optimal
steady state. However, in EMPC with a perfect model,
a transition period is required to reach this steady-state
optimum, during which the optimum can be increased as
compared to steady state optimum. Hence, EMPC with
a perfect model yields a slightly higher economic function
value than the steady-state optimum of the plant. Also,
the proposed EMPC with gradient correction approaches
the steady-state optimum of the process, and it reaches
an optimal cost that is very close to the one achieved by
an EMPC with a perfect model. In contrast, the optimal
solution for the regular EMPC without gradient correction
is approximately 20% lower than the true optimum. The
introduction of disturbances into the process will resemble
the initial period of operation in terms of the expected
deviations of the identified model from the process behav-
ior. Similar to the initial period of operation considered
in this study, significant model updates will be required
to compensate for these disturbances correctly. Future
studies will be conducted on the ability of the proposed
algorithm to reject disturbances.

5. CONCLUSION

A novel robust EMPC methodology for continuous pro-
cesses in the presence of structural model-plant mismatch
is proposed. The method is inspired by methodologies pre-
viously used in batch-to-batch optimization procedures,
which involve the matching of gradients of the cost func-
tion of the process and the model with respect to deci-
sion variables. It is shown that the gradient correction
significantly improves the economic optimum as compared
to a similar algorithm that does not employ such a cor-
rection. The methodology was validated on a continuous
penicillin production process with the intentionally intro-
duced model-plant mismatches. The case study involved
relatively large sampling intervals that are typical in fer-
mentation processes due to the unavailability of online
sensors in such systems. Future studies will investigate the
optimal design of dithering signals for a selected sampling
interval and the effect of disturbances on the performance
of the algorithm.
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Birol, G., Ündey, C., and Cinar, A. (2002). A modular
simulation package for fed-batch fermentation: penicillin

production. Computers & chemical engineering, 26(11),
1553–1565.

Bonvin, D. (1998). Optimal operation of batch reactors—a
personal view. Journal of process control, 8(5-6), 355–
368.

Darby, M.L., Nikolaou, M., Jones, J., and Nicholson, D.
(2011). RTO: An overview and assessment of current
practice. Journal of Process control, 21(6), 874–884.

François, G. and Bonvin, D. (2014). Use of transient
measurements for the optimization of steady-state per-
formance via modifier adaptation. Industrial & Engi-
neering Chemistry Research, 53(13), 5148–5159.

Ghodba, A., Richelle, A., McCready, C., Ricardez-
Sandoval, L., and Budman, H. (2025). A robust batch-
to-batch optimization framework for pharmaceutical ap-
plications. Computers & Chemical Engineering, 193,
108935.

Khanal, O. and Lenhoff, A.M. (2021). Developments and
opportunities in continuous biopharmaceutical manu-
facturing. In MAbs, volume 13, 1903664. Taylor &
Francis.

Mandur, J.S. and Budman, H.M. (2015). Simultaneous
model identification and optimization in presence of
model-plant mismatch. Chemical Engineering Science,
129, 106–115.

Marchetti, A., Chachuat, B., and Bonvin, D. (2009).
Modifier-adaptation methodology for real-time opti-
mization. Industrial & engineering chemistry research,
48(13), 6022–6033.

Oliveira-Silva, E., de Prada, C., and Navia, D. (2021). Eco-
nomic MPC with modifier adaptation using transient
measurements. In Computer Aided Chemical Engineer-
ing, volume 50, 1253–1258. Elsevier.

Patrón, G.D. and Ricardez-Sandoval, L. (2023). Direc-
tional modifier adaptation based on input selection for
real-time optimization. Computers & Chemical Engi-
neering, 177, 108351.

Rawlings, J.B., Angeli, D., and Bates, C.N. (2012). Funda-
mentals of economic model predictive control. In 2012
IEEE 51st IEEE conference on decision and control
(CDC), 3851–3861. IEEE.

Santander, O., Elkamel, A., and Budman, H. (2016).
Economic model predictive control of chemical processes
with parameter uncertainty. Computers & Chemical
Engineering, 95, 10–20.
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