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Abstract: The development of optimal control strategies for bioprocesses has become essential
in pharmaceutical and industrial applications due to the growing demand for sustainable
bioproducts. Traditional model-based methods rely heavily on the accuracy of the system
model, requiring frequent recalibration and experimentation to sustain performance. In contrast,
advanced model-free control techniques, such as Reinforcement Learning (RL), are widely
researched. However, training RL controllers online is constrained by the need for extensive
online interactions with the biosystem environment, which can be costly and present safety risks.
To overcome these limitations, we propose leveraging offline Reinforcement Learning algorithms
to train control agents using historical data collected from previous bioprocess operations. These
agents can subsequently be fine-tuned, improving current control strategies by utilizing past
data without extensive real-time interactions with the system. The effectiveness of offline RL
for policy training was demonstrated through an in-silico semi-batch bioprocess case study,
where it achieved superior performance compared to alternative machine learning methods.
Additionally, the proposed fine-tuning approach successfully transitioned the offline RL-trained
policy into the online operational setting, highlighting the practical advantages of combining
offline training with targeted online adaptation to improve real-time performance.
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1. INTRODUCTION

The control and optimization of bioprocesses have been ex-
tensively researched due to their potential to produce valu-
able bioproducts. These processes are valued for producing
competitive alternatives to fossil fuel-derived chemicals
and high-value biopharmaceuticals (Brennan and Owende,
2010). Traditional control and optimization strategies for
bioprocesses are derived by formulating optimization prob-
lem with respect to the target, represented by a mathe-
matic model that can precisely describe the process dy-
namics is essential. However, biological processes often ex-
hibit highly stochastic and nonlinear behaviors and involve
complex bioreaction kinetics, making the optimization
problem not only computationally intensive but also vul-
nerable to model-plant mismatches, which can compromise
the effectiveness of the resulting optimization strategies
(Del Rio-Chanona et al., 2019; Narayanan et al., 2020).
Consequently, traditional model-based methods require
regular experimentation for model recalibration, which
leads to significant laboratory cost for bioprocess industry.
On the other hand, model-free optimization schemes are
widely researched to provide alternative solution to this
problem, where model-free Reinforcement Learning (RL)
can be considered as an effective method. Unlike model-
based RL, model-free RL estimates the value or action-
value function directly from data without depending on
a physical model. Value-based functions predict the to-

tal achievable cost based on the current state and input
values. As a result, the control policy can be adjusted to
optimize the overall cost, all without the need for a model.

1.1 Model-free Reinforcement Learning for bioprocess
optimization

Implementation of model-free RL algorithms to train the
control agent for process control and optimization has
been proved as an effective method in both biochemical
and chemical engineering fields. A deep RL controller
was implemented by Spielberg et al. (2019) for set-point
tracking in distillation column control. For bioprocess,
Petsagkourakis et al. (2020) utilized the policy gradient
algorithm to train a control policy for batch-to-batch op-
timization, demonstrating that RL is capable of achieving
near-optimal policies for stochastic biosystems. Building
on the successful application of the policy gradient al-
gorithm for optimal control policy identification, Sachio
et al. (2021) further incorporated RL-based optimal policy
identification into an integrated chemical process design
and optimization framework. Similarly, Ma et al. (2021)
successfully applied Proximal Policy Optimization (PPO)
algorithm on the fed-batch optimization task. On the other
hand, instead of applying on-policy algorithm like the pol-
icy gradient algorithm, Oh et al. (2022) implemented the
double deep Q-network (DDQN) algorithm for off-policy
learning to train the control policy for semi-batch bioreac-
tor optimization. Compared with the on-policy training,



Q-learning based off-policy learning shows advantages in
terms of the data efficiency, since the policy can learn
from past trajectories that stored in the data buffer. To
leverage this advantage, Monteiro and Kontoravdi (2024)
applied off-policy learning algorithm for the optimization
of monoclonal antibodies production process. Besides us-
ing RL for upstream tasks, Nikita et al. (2021) employed
deep Q-learning to optimize process chromatography in
continuous biopharmaceutical production.

Despite significant advancements, several challenges per-
sist in the implementation of RL for bioprocess optimiza-
tion. One of the primary obstacles is the data-intensive
nature of online RL training, which requires a substantial
amount of process data or the development of a model,
thereby returning to the original problem. This limitation
arises from two key factors: firstly, in many RL frame-
works, both the value function approximation and the
control policy are parameterized using machine learning
models, such as artificial neural networks (ANNs). The
performance of these models is heavily dependent on the
quantity and quality of training data; insufficient data can
lead to overfitting, thereby reducing the predictive accu-
racy of the ANN. Furthermore, RL training necessitates
continuous interaction between the control agent and the
operational environment, during which the agent learns
through a trial-and-error process, thus making the learning
procedure highly data-demanding. However, real-time in-
teractions are often impractical in real-world applications
due to potential high operational costs and safety risks.
Additionally, it is important to note that in many studies,
the control policy is trained using an offline process model
that simulates system behavior. Thus, the effectiveness of
the trained policy may be constrained by model accuracy,
and valuable process information is often lost as training
data is not reused.

To address these challenges, RL algorithms that enable
policies to learn from historical data have been researched.
One such approach is behavior cloning, a supervised
learning technique where the control policy is trained by
replicating previously collected optimal control behaviors
(Levine et al., 2020). Apprenticeship learning, which in-
corporates modified RL techniques, has also been applied
to chemical process optimization (Mowbray et al., 2021),
demonstrating the advantages of RL over supervised learn-
ing for policy training based on historical data. Addition-
ally, cutting-edge offline RL methods have been proposed
and continue to be a subject of active research. As a
variant of RL, the control policy learns from fixed, pre-
collected process datasets without interacting with bio-
processes during training. Unlike traditional RL, which
requires real-time exploration and data collection, offline
RL works by training policies on historical data. The
goal is to optimize a policy that can be deployed in real
environments without exploration, making it particularly
useful when interacting with the environment is impracti-
cal. Furthermore, leveraging historical process data helps
address data scarcity in policy training, particularly for
limited bioprocess datasets.

2. METHOD AND INTEGRATION

2.1 Offline Reinforcement Learning

Due to the focus on policy learning from static datasets,
off-policy learning algorithms like Q-learning are partic-
ularly well-suited for offline RL compared to on-policy
algorithms. This is because off-policy methods decouple
the process of policy learning from the data collection
phase. Unlike on-policy methods, which require real-time
interaction between the agent and the environment, Q-
learning allows the agent to learn from previously collected
data, a critical feature in offline RL where real-time inter-
action is not feasible (Levine et al., 2020). In a standard
Q-learning framework, the objective is to maximize the
expected cumulative reward in a Markov decision process
(MDP). MDPs can be defined by a tuple (S,A, P,R, γ),
where S,A are the state and action spaces respectively,
P is the state transition probability function, defined as
P (s′ | s, a), represents the probability of transitioning to
a new state s′ when action a is taken in state s. R is the
reward function which provides the expected immediate
reward received after taking action a in state s and tran-
sitioning to state s′, and γ is the discount factor. Based
on the defined MDP, a Q-function can be approximated
by a ANN and the predicted Q-value, denoted as Qθ, can
learned by minimizing the Bellman error as shown in Eq.
1:

LQ(θ) = E(s,a,r,s′)∼D [(Qθ(s, a)

−
(
r + γmax

a′
Qθ(s

′, a′)
))2

]
(1)

However, directly applying Q-learning in an offline RL
setting can result in suboptimal training performance due
to the presence of out-of-distribution (OOD) actions (Ku-
mar et al., 2020). In online Q-learning, the control policy
frequently interacts with the environment, allowing it to
receive accurate reward feedback for each action taken.
Conversely, in offline RL, the correct reward information
cannot be obtained for actions if the action-reward pair is
absent in the training dataset, leading to Q-values that are
poorly estimated. This limitation may lead the policy to
overestimate Q-values for these OOD actions, and the re-
sulting inaccurate Q-value estimates can lead to incorrect
control decisions by the policy.

Therefore, one of the state-of-art offline RL algorithms
such as the Implicit Q-Learning (IQL) is designed to
penalize the overestimation of the Q-values (Kostrikov
et al., 2021). IQL penalize the OOD action by adding the
penalty term into the objective function which discourages
high Q-values for unsupported actions:

LIQL = E(s,a,r,s′)∼D

[
(Q(s, a)− (r + γV (s′)))

2

+α max (Q(s, a)− τ, 0)
2
]

(2)

where V (s′) represents the value function for the state
s′, α is the hyperparameter that controls the weight of
the penalty term, and τ is the threshold that defines
the conservative level in Q-values. In this equation, the
penalty term is max (Q(s, a)− τ, 0)

2
, which penalize the

Q-value that exceed the value of τ . In this way, the OOD
actions which may lead to over optimistic prediction of
Q-values are penalized, thus the agent is encouraged to



rely more on actions well-supported in the data, reducing
the risk of overestimating values for actions that are not
representative of the actual system dynamics.

Instead of updating the control policy by directly maxi-
mizing the Q-value, an implicit policy improvement step
using advantage-weighted actions is applied in the IQL
algorithm. The advantage function A(s, a) estimates the
difference between Q-value and the value function, which
can show how much better (or worse) action a is compared
to the average action the policy would take in state s. IQL
algorithm embeds a soft advantage-weighted policy update
as shown in Eq. 3:

π∗(a|s) ∝ exp

(
A(s, a)

β

)
πBC(a|s) (3)

where A(s, a) = Q(s, a)− V (s) is the advantage function,
β controls how sharply the policy favors high-advantage
actions, and πBC(a|s) is the empirical behavior cloning
prior. Frequent, high-reward dataset actions yield higher
advantages, thus penalizing out-of-distribution actions.
The algorithm table detailing the implementation of Q-
Learning (IQL) is provided in Algorithm. 1:

Algorithm 1 Implicit Q-Learning Algorithm

1: Input: Dataset D of transitions, discount factor γ,
penalty weight α, temperature parameter β.

2: Initialize: Q-function Q(s, a) and value function V (s).
3: for each iteration do
4: Sample a mini-batch (s, a, r, s′) from the dataset D.
5: Value function update: Estimate the value func-

tion V (s) using the Q-values:

V (s) = Ea∼π(·|s)[Q(s, a)]

6: Q-function update: Compute the Implicit Q-
learning loss with a penalty to discourage overestima-
tion:

LIQL =
(
Q(s, a)−

(
r + γV (s′)

))2
+α max (Q(s, a)− τ, 0)2

7: Update Q-function parameters by minimizing
LIQL.

8: Advantage-weighted policy improvement: Com-
pute the advantage function A(s, a):

A(s, a) = Q(s, a)− V (s)

9: Update the policy with advantage-weighted soft-
max:

π∗(a | s) ∝ exp

(
A(s, a)

β

)
πBC(a | s)

10: end for

2.2 Online Finetuning

To enhance adaptability and robustness, the IQL-trained
agent undergoes online fine-tuning with Twin Delayed
Deep Deterministic Policy Gradient (TD3), using an expe-
rience replay buffer that mixes offline historical data and
new real-time interactions. The replay buffer employs a
dynamically updated FIFO structure, prioritizing recent
experiences. Exploration during fine-tuning is encouraged
by adding Ornstein-Uhlenbeck (OU) noise to actions, en-
abling smooth and continuous action exploration:

a′ = πθ(s) + xt (4)

with OU noise updated as:

xt+1 = θ(µ− xt) + σ · N (0, 1) (5)

where denotes the mean reversion rate, the mean, the
volatility, and Gaussian noise.

The TD3 objective combines a Q-learning loss for the critic
networks:

LQ(θ) =

(
Qθ(s, a)−

(
r + γ min

i=1,2
Qθi(s

′, πθ(s
′))

))2

(6)

with delayed policy updates to maximize the critic’s esti-
mated Q-value:

∇θπJ ≈ 1

N

∑
∇aQθ1(s, a)∇θππθ(s) (7)

This integration of TD3 improves stability and robustness
during online fine-tuning by introducing controlled action
noise, promoting exploration without generating extreme
or unseen actions that could destabilize learning. The algo-
rithm for the online fine-tuning procedure is summarized
in Algorithm. 2.

Algorithm 2 Mixed Experience Replay with Twin De-
layed Deep Deterministic Policy Gradient algorithm

1: Input: Initialize dataset D with offline transitions and
set up FIFO replay buffer B with capacity limit L.
Define discount factor γ.

2: Initialize: Initialize Q-function Qθ(s, a) (critic) and
policy πθ(s) (actor).

3: For each iteration do
Sample a mini-batch (s, a, r, s′) from B.
Critic Update: Compute the Q-learning loss for the

critic:

LQ(θ) =
(
Qθ(s, a)−

(
r + γQθ(s

′, πθ(s
′))

))2
Experience Mixture Sampling: Sample a mixture

of offline and online experiences from B based on
sampling ratio α:

Mini-batch = α ·Online Experiences

+ (1− α) ·Offline Experiences

Exploration Strategy:
For each action a chosen by the policy, add

exploratory action noise. The action is calculated as:

a′ = πθ(s) + xt

Update the Ornstein-Uhlenbeck process noise xt:

xt+1 = θ(µ− xt) + σ · N (0, 1)

Actor Update: Update the policy (actor) by taking
a gradient step to maximize the Q-value estimated by
the critic:

∇θπJ ≈ 1

N

∑
∇aQθ(s, a)∇θππθ(s)

Buffer Update: Add new online experience
(s, a, r, s′) to B, ensuring the buffer size limit L is
maintained.

4: Repeat until convergence: Continue the process,
gradually increasing the ratio of online experiences in
B as more data is collected in the online environment.



2.3 Full Methodology

In this work an offline RL framework is developed by ap-
plying Implicit Q-learning (IQL) algorithm to develop an
optimal control strategy for bioprocess optimization from
historical data that previously collected from bioprocess
operation. The methodology consists of three steps: First,
historical bioprocess data is prepared for IQL training.
This dataset, collected across diverse operating conditions
and policy variations, provides a comprehensive founda-
tion of states, actions, and rewards, allowing the RL agent
to learn system dynamics without online interaction. Sec-
ond, a control policy is trained on this offline dataset
using IQL, which applies a penalty to reduce Q-values for
actions outside the dataset distribution, thus maintaining
a conservative approach.

Finally, the offline-trained policy is fine-tuned online
through the integration of TD3 algorithm with Experi-
ence Replay, allowing it to adapt to real-time bioprocess
conditions. By learning from a blend of offline and online
data, the policy transitions smoothly to the real-time envi-
ronment while retaining knowledge from the offline phase.
This integrated approach enhances the effectiveness and
stability of the policy in optimizing bioprocess operations.
The full methodology is summarized in the Algorithm 3.

Algorithm 3 IQL-based Offline Policy Optimization with
TD3 Online Fine-tuning

1: Input: Historical bioprocess operational data from past

operations across diverse conditions.

2: Output: Robust optimized control policy for real-time

bioprocess operation

3: Step 1: Offline Dataset Preparation

4: Collect historical bioprocess operation data.

5: Preprocess data into state-action-reward tuples.

6: Step 2: Offline Training using IQL

7: Initialize IQL agent.

8: Train agent using the offline dataset.

9: Apply advantage-weighted penalties to limit out-of-

distribution actions.

10: Optimize conservative Q-function to remain within

dataset distribution.

11: Step 3: Online Fine-Tuning with TD3

12: Initialize Experience Replay Buffer (FIFO) with offline

data.

13: Continuously collect new online bioprocess data.

14: Dynamically update replay buffer, retaining recent expe-

riences.

15: Fine-tune agent using TD3 algorithm:

16: Update critic networks using TD3 targets.

17: Update actor with delayed policy updates for stability.

18: Apply Ornstein-Uhlenbeck noise for controlled explo-

ration.

It is worth mentioning that the proposed framework is
flexible to incorporate other offline RL algorithms such as
the Conservative Q-Learning (Kumar et al., 2020), Batch-
Constrained Q-Learning (BCQ) (Fujimoto et al., 2019)
and Decision Transformer (Chen et al., 2021) instead of
the IQL algorithm.

3. CASE STUDY

The proposed methodology is tested by optimizing a fed-
batch photobioreactor. This biosystem models the dy-
namic changes in biomass growth, nitrate consumption,
and bioproduct formation, represented by a system of
ordinary differential equations (ODEs) based on Monod
kinetics. The reactor volume is assumed to remain con-
stant throughout the process. It is assumed that the vol-
ume of the fed-batch reactor remains constant throughout
the operational process. This bioprocess is controlled by
regulating the feeding rate of nitrate FN (mg · L−1 · h−1)
and the light intensity I (µmol · m−2 · s−1).The effects
of light intensity on microalgae growth and bioproduct
formation, incorporating the phenomena of photolimita-
tion, photosaturation, and photoinhibition are described
the Aiba model (Bradford et al., 2020). The biosystem is
represented from Eq. 8.a to Eq. 8.c.

dCX

dt
= um · I

1 + ks +
I2

ki

· CX · CN

CN +KN
− ud · CX

(8.a)

dCN

dt
= −YNX · um · I

1 + ks +
I2

ki

· CX · CN

CN +KN
+ FN

(8.b)

dCqc

dt
= km · I

1 + ksq +
I2

kiq

· CX − kdCqc

CN +KNp
(8.c)

where CX is the biomass concentration (g/L), CN is the
nitrate concentration (mg/L), and Cqc is the concentra-
tion of phycocyanin (bioproduct) in the photobioreactor
(mg/L). The control actions are implemented as piece-
wise constant values over fixed time intervals, with each
interval set to 10 hours in this case. During the bioreactor
operation, a total of 20 control actions are executed. The
objective of the bioprocess optimization is to find the
optimal control actions that can maximize the concentra-
tion of the bioproduct throughout the entire process while
simultaneously penalizing the control actions to account
for economic considerations. Consequently, the optimal
control problem for this bioprocess can be defined as
follows:

max
u

JOCP =

T∑
t=0

Cqc(t)− penaltyI ·
∑
i∈T

(
I(i)

400

)2

− penaltyFN
·
∑
i∈T

(
FN (i)

40

)2

(9.a)

s.t. ẋ = f(x(t),u(t), t) (9.b)

x(0) = x0 (9.c)

0 ≤ FN (t) ≤ 40 (9.d)

0 ≤ I(t) ≤ 400 (9.e)

where the JOCP is the objective function, penaltyI and
penaltyFN

are assigned values of 0.0001 and 0.008 re-
spectively, to penalize the corresponding control actions.
The state vector and control vector for this optimal con-
trol problem are defined as x = [CX , CN , Cqc]

T and
u = [I, FN ]T , the initial condition is represented as x0 =
[CX0, CN0, Cqc0]

T , and both control actions are limited



to be below 40 mg · L−1 · h−1 and 400 µmol · m−2 · s−1

respectively during the whole operating horizon.

In this case, 1,000 trajectories, each containing 20 data
points, are generated as in-silico historical data to train
the control agent. These trajectories are produced by
varying the initial operating conditions of the biosystem
to simulate industrial conditions, the total number of
data points in each trajectory is kept relatively low to
reflect the limited data availability typically encountered
in bioprocess engineering. The variations are introduced
by sampling values within ±30% of the baseline condi-
tions for the initial biomass concentration CX0 and initial
nitrate concentration CN0, set at 1.0 g/L and 150 mg/L,
respectively. In this case, the optimal control solutions are
solved in the Python optimization environment Pyomo
(Hart et al., 2017), by firstly discretise the NLP problem
through collocation and then solving the problem using the
Interior Point Optimization (IPOPT) as nonlinear solver.
The objective function of this optimal control problem is
also used for the estimation of the stage cost for the IQL
training.

4. RESULT AND DISCUSSION

The training of control agents using the Implicit Q-
Learning (IQL) and Behavioral Cloning (BC) algorithms
was conducted using an open-source offline deep reinforce-
ment learning library provided by Seno and Imai (2022).
To enhance the training efficiency, all states and rewards
were normalized using standard normalization techniques,
and actions are scaled to the range [-1, 1] to align with
the tanh activation function in the actor neural network.
The offline-trained IQL agent was subsequently fine-tuned
online using the TD3 algorithm, following the proposed
offline-to-online fine-tuning methodology.

The online fine-tuning was conducted using the same
mechanistic bioprocess model described by Eqs. 8.a to 8.c.
For the online evaluation phase, this mechanistic model
was again utilized, by assuming the mechanistic model
represents the ground truth of the bioreaction kinetics. All
three agents were tested over 50 episodes under varying
system disturbance to assess robustness and operational
effectiveness. Comparative performance results of these
agents are illustrated in Fig. 1.

As shown in Fig. 1, both the IQL-trained and BC-trained
offline policies effectively manage nitrate flowrate, exhibit-
ing overlapping mean trajectories and confidence inter-
vals despite measurement noise, indicating a consistent
approach to nitrate management. However, for controlling
light intensity, the BC-trained policy displays greater fluc-
tuations and broader uncertainty bands, reflecting more
variability in response, likely due to stronger penalization
associated with deviations in light intensity.

In contrast, the TD3-fine-tuned agent demonstrates signif-
icantly reduced uncertainty and achieves higher cumula-
tive rewards (Fig. 2), outperforming both directly applied
offline-trained policies. This improvement is expected and
reasonable, given that offline reinforcement learning inher-
ently produces conservative policies that avoid unfamiliar,
potentially risky actions. Thus, the introduction of TD3
for offline-to-online fine-tuning effectively addresses the

Fig. 1. Average states and actions during the online im-
plementation of control agents trained with Implicit
Q-Learning, Behavioral Cloning and TD3 finetuned
policy. Shaded areas indicate the standard deviation
caused by measurement disturbances in the states.

overly cautious nature of offline RL, enabling the agent to
better adapt and robustly perform in real-time bioprocess
operations. This highlights the advantage of leveraging
TD3 integration to bridge the gap between conservative
offline learning and dynamic online application.

Fig. 2. Average cumulative reward.

5. CONCLUSION

This work proposes an offline Reinforcement Learning
(RL) framework for bioprocess optimization, leveraging
historical process data to train control agents without
direct interaction with the real biosystem. The results
demonstrate that offline RL algorithms, particularly Im-
plicit Q-Learning (IQL), effectively learn optimal control
policies from historical datasets. Through a case study, the
IQL-trained agent demonstrated robust performance in
maximizing bioproduct concentration even under system



disturbances, outperforming the Behavioral Cloning (BC)-
trained agent in cumulative reward.

Moreover, integrating the Twin Delayed Deep Determinis-
tic Policy Gradient (TD3) algorithm for online fine-tuning
on the same mechanistic model substantially enhanced the
performance of agents, reducing uncertainty and further
increasing cumulative reward. This integration addresses
the conservatism inherent in offline RL, enabling effective
adaptation to real-time operational conditions.

Future directions for this framework include exploring
safer online fine-tuning methodologies, such as Safe RL
techniques, to further minimize risks during real-time
adaptation. Additionally, leveraging transfer learning for
online fine-tuning will be considered to improve efficiency
and scalability. Ultimately, the framework will be ex-
tended to test more complex bioprocess systems subject
to higher degrees of disturbance, validating the robustness
and adaptability of the offline-trained RL agents.
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