
Learning Approximate Symbolic Solutions
to Burgers’ Equation using Symbolic

Regression ⋆

Benjamin G. Cohen ∗ Burcu Beykal ∗∗ George M. Bollas ∗∗∗

∗ Department of Chemical and Biomolecular Engineering, University of
Connecticut, Storrs, CT 60629 USA (e-mail:

benjamin.2.cohen@uconn.edu).
∗∗ Department of Chemical and Biomolecular Engineering, University
of Connecticut, Storrs, CT 60629 USA (e-mail: beykal@uconn.edu).

∗∗∗ Department of Chemical and Biomolecular Engineering, University
of Connecticut, Storrs, CT 60629 USA (e-mail:

george.bollas@uconn.edu).

Abstract: This work explores the application of symbolic regression to learn symbolic solutions
to Burgers’ equation without data. We demonstrate a stepwise symbolic regression strategy that
explores models that provide tractable logic from coordinates to state estimates. The first step
is to learn a model representing part of the system’s physics. This partial model is then used
to help discover a model capturing the entire physics of the system. The method was able to
learn a model of the solution of the diffusion equation with an R-squared value of 0.99 and
produced models for Burgers’ equation with different values of the convection coefficient, all
with R-squared values greater than 0.98. These solutions to Burgers’ equation, represented
as transformations of the solution to the diffusion equation, demonstrate the potential of
leveraging domain knowledge to simplify the symbol space and build useful primitives for
symbolic regression. This work highlights how domain knowledge, expert intuition, and symbolic
regression can complement each other to create more interpretable solutions to dynamical system
models.

Keywords: Artificial intelligence, Process modeling and identification, Evolutionary algorithms
in control and identification, Man-in-the-loop systems, Iterative modeling and control design

1. INTRODUCTION

First introduced in the study of viscous fluids over a cen-
tury ago, Burgers’ equation captures the motion of a one-
dimensional fluid (Bateman, 1915). Burger later applied it
to the study of the formation of shock waves to better un-
derstand turbulence (Burgers, 1948). In (1), u is the state,
x represents space, and t represents time. The equation,
shown in (1), is more than a mathematical curiosity that

contains both a second-order diffusive term, ν ∂2u
∂x2 where ν

is the kinematic viscosity, and a nonlinear convective term,
vu∂u

∂x where v is the constant convection coefficient. Partial
differential equations (PDEs) like (1) have a broad range
of applications in describing modern dynamical systems,
including fluid dynamics, Cosmology (Vergassola et al.,
1994), and traffic flow (Musha and Higuchi, 1978). PDEs
also have applications across computing and mathematics
for their ability to represent both shock waves and smooth
regimes (Bonkile et al., 2018) and serve as a benchmark
problem for modern computational and machine learning

⋆ This project was sponsored by the Pratt & Whitney Institute of
Advanced Systems Engineering (P&W-IASE) of the University of
Connecticut and Pratt & Whitney; and the National Institutes of
Health [NIH P42-ES027704].

methods (Bonkile et al., 2018; Rudy et al., 2017; Raissi
et al., 2019; Cohen et al., 2023).

∂u

∂t
= ν

∂2u

∂x2
− vu

∂u

∂x
(1)

Due to its prevalence, finding solutions to Burgers’ equa-
tion has long been an open research subject. Numerical
approximations can help predict the system dynamics de-
scribed by Burgers’ equation. However, these schemes can
struggle with stability and convergence. These problems
are especially problematic in the control of nonlinear sys-
tems, where computational resources may be insufficient
to predict, analyze, and respond to system inputs using
numerical evaluation of the PDE.

Given these limitations, identifying good analytical sur-
rogates or exact solutions is attractive. Analytical so-
lutions to Burgers’ equation have intrigued mathemati-
cians, engineers, and scientists since it was first intro-
duced (Bateman, 1915). Transformations, like the Cole-
Hopf transformation, provide analytical solutions to the
PDE in the weak form for cases with specific boundary
conditions (Cole, 1951; Hopf, 1950). However, a general
approach to deriving explicit analytical solutions for the
Burgers’ equation using mathematical methods has not
been developed.



In the age of artificial intelligence/machine learning
(AI/ML), the application of machine learning to PDEs
is rapidly developing and offers many approaches for mod-
eling Burgers’ equation. Researchers in this field address
questions like how to learn differential equations from
data (Rudy et al., 2017; Chen et al., 2022; Cohen et al.,
2024b), how to reveal unknown terms in grey-box models
(Daryakenari et al., 2024; Cohen et al., 2024a), and how
to learn operators that predict solutions of differential
equations (Lu et al., 2021). Physics-informed neural net-
works (PINNs) (Raissi et al., 2019), a pioneering work in
machine learning for PDEs, offer insights into addressing
the limitations of numerical and analytical approaches for
Burgers’ equation in modeling, simulation, and control of
dynamical systems.

PINNs can learn solutions to PDEs using only bound-
ary information and the known PDE structure. They ac-
complish this by constraining the network’s learning to
minimize the error between the approximated solution
and the known PDE(s). Derivative terms are evaluated at
collocation points to machine precision using automatic
differentiation (AD). When the neural network learns a
good approximation, its derivatives agree with the PDE.
Conversely, if the approximation is poor, the derivatives
will not match the PDE.

Using neural networks to approximation solutions to Burg-
ers’ equation allows for inexpensive retrieval of state esti-
mates at any point in space and time, making it a viable
modeling approach in many situations. However, when
health or safety is at stake black-box neural networks
can be difficult to justify. In such cases, alternatives that
offer clear logic between the coordinate system and state
estimates may be preferred over the black-box models
resulting from training PINNs.

One alternative to PINNs that offers this sort of concise
logic is to apply the same principle of learning solutions
by comparing their fidelity with a PDE evaluated at
collocation points but using symbolic regression (SR)
instead of neural networks. The application of SR to
learning PDEs was demonstrated in limited cases by
Tsoulos and Lagaris (2006) and Majumdar et al. (2023)
and generally for simple second-order linear PDEs in two
dimensions.

Applying SR to learn approximate solutions to PDEs,
herein called physics-informed symbolic regression (PISR)
and discussed in detail in section 2.1, predates PINNs by
more than a decade, first appearing in Tsoulos and Lagaris
(2006). An advantage of PISR over PINNs is that the
resulting models are human-interpretable, offering concise,
tractable logic from coordinates to state. Furthermore,
recent explorations of PISR have shown that using a
carefully selected primitive set, or set of basis functions,
can improve the interpretability and brevity of learned
models Cohen et al. (2025).

The remainder of this paper is structured as follows:
First, we introduce Burgers’ equation with the initial
and boundary conditions studied in this work. Next, we
review PISR, discussing its specific implementation and
the selection of physically meaningful primitives that allow
the symbolic regressor to manipulate simple primitives to

learn concise and interpretable approximate solutions to
Burgers’ equation. Finally, we demonstrate how SR can
learn accurate approximate solutions to Burgers’ equation
under certain conditions and offer concluding remarks.

2. METHODS

Herein, we explore the application of PISR to Burgers’
equation, the second-order quasi-linear PDE shown in (1).
We focus on the propagation of a Gaussian source across
a domain governed by Burgers’ equation. Formally, this
is described by the PDE with its initial and boundary
conditions in (2) where ν is the kinematic viscosity, v is
the convection coefficient, u is the particle velocity, and
x and t are the spatial and temporal coordinates, respec-
tively; while ut and ux represent the partial derivatives
of the state (u) with respect to time (t) and space (x),
respectively. To learn an approximate solution to Burgers’
equation with these initial and boundary conditions, we
will apply PISR.

ut = νuxx − vuux

u(x, 0) = exp(−0.2(x− 5)2), when t = 0

ux(0, t) = 0, when x = 0

ux(10, t) = 0, when x = 10

x ∈ [0, 10], t ∈ [0, 10]

(2)

2.1 Physics-Informed Symbolic Regression

PISR leverages known PDEs and symbolic regression
to learn approximate or exact solutions of the known
PDEs. Using symbolic regression via genetic programming
or similar evolutionary algorithms, SR can learn these
solutions in four steps:

(1) Build a population of models.
(2) Calculate derivatives for each model in the popula-

tion.
(3) Evaluate a fitness (or loss) function for each model,

considering how well the calculated derivatives align
with the known PDE.

(4) Evolve the population until termination criteria are
met

The symbolic regressor in this work was SymbolicRe-
gression.jl (Cranmer, 2023). It employs genetic operators
inspired by biological evolution to search a symbol space,
defined by an argument set, a unary primitive set, and a
binary primitive set, for expressions that meet specific cri-
teria. The argument set includes all possible arguments for
the expression, although the final model may omit one or
more of the arguments in the set. The primitive sets consist
of mathematical operators that manipulate the arguments
to achieve the objective. To learn approximate solutions
to PDEs, the fitness function shown in (3) was used, with
λ1 set to 0.8. First derivatives of candidate expressions
were calculated using the automatic differentiation feature
of the symbolic regressor, while second-order derivatives
were calculated using finite difference approximations. The
symbolic regressor managed the initialization and evolu-
tion of the population and returned a list of models that
balance complexity and fitness after each run.

L = LPDE + λ1LIC/BC (3)



Each individual’s fitness was calculated as shown in (3).
This fitness function is comprised of two terms: LPDE and
LIC/BC. The first term measures how well the expression
satisfies the PDE, while the second term measures how
it satisfies the initial and boundary conditions. Table 1
shows an example of evaluating candidate expression, û
for the PDE in (4). The fitness value for each expression
was calculated as the mean loss over a grid of nc = nt×nx

points, where nt = nx = 20 and nc = 400. nt represents
the number of points in time, and nx represents the
number of points in space. No data is required to evaluate
the fitness of these expressions, apart from necessary
boundary data for Dirichlet boundary conditions.

ut + 0.5ux = 0

u(0, t) = t, when x = 0

u(x, 0) = 0, when t = 0

x ∈ [0, 1], t ∈ [0, 1]

(4)

As an example, Table 1 lists expressions for the LPDE and
LIC/BC defined in (5). The second expression in the table,
t−2x, has a lower (better) fitness because it better satisfies
the PDE and the initial and boundary conditions in (4)
when evaluated at the collocation points. This expression
is also an analytical solution to the PDE in (4). In contrast,
the first expression, 0.5 exp(x), does not represent the PDE
well, resulting in a higher fitness value.

Table 1. An example of expressions, û that
might be generated by the symbolic regressor
to represent (4). The top expression is a bad
representation of (4) while the bottom expres-

sion is an analytical solution to (4).

Expression Derivatives LPDE LIC/BC

û ût ûx ût + 0.5ûx
(û(0, t)− t)2

+û(x, 0)2

0.5 exp(x) 0 0.5 exp(x) 0.431 3.589
t− 2x 1 −2 0.000 0.000

LPDE =
1

nc

nc∑
i=1

(ût(xi, ti) + vûx(xi, ti))
2

for all coordinate pairs (xi, ti) with i = 1, ..., nc

LIC/BC =
1

nt

nt∑
j=1

(û(0, tj)− tj)
2
+

1

nx

nx∑
k=1

(û(xk, 0))
2

for all j = 1, ..., nt and k = 1, ..., nx

(5)

2.2 Selection of Argument and Primitive Sets

Learning good models using SR depends heavily on the
selection of the argument and primitive sets. For example,
if the symbolic regressor is tasked with discovering u =
cos(xt) but the argument set does not include t and
the unary primitive set does not include cos or sin,
representing the solution concisely becomes challenging.
Including too few arguments or primitives results in an
inadequate hypothesis space for the symbolic regressor
to search. Conversely, defining the argument or primitive
sets too broadly can hinder the performance, as symbolic
regressors like SymbolicRegression.jl struggle to search
large symbol spaces.

Finding a balance between overly complex and overly
simple argument and primitive sets requires careful atten-
tion from domain experts. Custom primitives can also be
defined to accelerate the learning of solutions that approx-
imate PDEs well by offering domain knowledge. For ex-
ample, using the exact analytical solution to the diffusion
equation (ut = νuxx, k ∈ R) with appropriate boundary
conditions helped learn solutions to the second-order fully
linear convection-diffusion equation (ut = νuxx − vux)
Cohen et al. (2025) .

2.3 Learning Approximate Solutions to Burgers’ Equation

Recognizing that careful selection of the primitive set
can have a tremendous effect on the quality of solutions
learned by the symbolic regressor, we allowed the symbolic
regressor to learn solutions to Burgers’ equation in two
steps:

(1) Learn approximate solutions for the diffusion equa-
tion (when v = 0).

(2) Include the learned approximate solutions for the dif-
fusion equation in the primitive set to learn solutions
to Burgers’ equation.

By including the first step of learning solutions to the
diffusion equation, we can give the symbolic regressor
solutions to a similar problem that describes phenomena
important to Burger’s equation. Essentially, the two-step
approach allowed us to collect complicated, but useful
terms in the primitive set, to learn more interpretable
approximate solutions of Burgers’ equation.

ut − νuxx = 0

u(x, 0) = exp(−0.2(x− 5)2), when t = 0

ux(0, t) = 0, when x = 0

ux(10, t) = 0, when x = 10

(6)

The diffusion equation and its initial and boundary con-
ditions (6) models those of Burgers’ equation of (2) when
v = 0. To find solutions for the diffusion equation, we
defined the argument and primitive sets as shown in Table
2. We also limited discovery to the case when ν = 0.1. The
population size and number of generations are also shown
in Table 2. The initial condition, u0(x) = exp(−0.2(x −
5)2), was included in the primitive set to help learn useful
solutions because we expected the shape of the initial
condition to play a role in the overall solution. The number
of restarts tells the number of times we ran the symbolic
regressor from scratch. Running the symbolic regressor
from scratch multiple times is useful when searching for
solutions because the symbolic regressor of SymbolicRe-
gression.jl is stochastic, it may not return identical models
after each run.

Table 2. Symbolic regressor hyperparameters
for the discovery of symbolic approximations

to the diffusion equation of (6)

Hyperparameter Value

Argument Set {x, t}
Unary Primitive Set {exp, cos, sinh, u0(x)}
Binary Primitive Set {+,×}
Size of Population 50

Number of Generations 30
Number of Restarts 50



In addition to finding a solution to the diffusion equa-
tion using symbolic regression, we also solved the diffu-
sion equation using Eigenfunction expansion (Titchmarch,
1947). This is an analytical technique commonly used to
solve linear PDEs using an infinite series and served as a
benchmark against which the accuracy of the symbolically
regressed solution could be compared.

Once the symbolic representation of diffusion was estab-
lished, we moved to the problem of learning approximate
solutions to Burgers’ equation. The hyperparameters we
provided to the symbolic regressor are shown in Table 3.
The unary and binary primitive sets used in the discovery
of solutions to Burgers’ equation differ from those used to
discover solutions to the diffusion equation in two ways:
the initial condition was removed from the unary primitive
set; and the solution to the diffusion equation, uDIFF, was
included in the binary primitive set. The population size,
the number of generations and the number of restarts were
also reduced because we expected that much of the model
complexity was already captured in the solution to the
diffusion equation.

Table 3. Symbolic regressor hyperparameters
for the discovery of symbolic approximations

to Burgers’ equation of (2)

Hyperparameter Value

Argument Set {x, t}
Unary Primitive Set {exp, cos, sinh}
Binary Primitive Set {+,×, uDIFF}
Size of Population 30

Number of Generations 25
Number of Restarts 10

Furthermore, we explored solutions to Burgers’ equation
when ν = 0.1, just as it was for the diffusion equation, and
when v ∈ [0.05, 0.1, 0.15, 0.2, 0.25]. This range of values
for v will allow us to determine if there are consistent
patterns in the symbolically regressed solutions to Burgers’
equation across all of these values. Finding such a pattern
may be useful for describing solutions for different values
of v without going through the process of symbolically
regressing an entirely new solution. To validate the perfor-
mance of the symbolically regressed solutions to Burgers’
equation, the learned solutions were compared against
numerical solutions calculated using central finite differ-
ences to discretize in space and the backward differentia-
tion formula integrator implemented in Scipy’s integration
package Byrne and Hindmarsh (1975) in time.

Table 4. Symbolic regressor hyperparameters
for the discovery of symbolic approximations
to Burgers’ equation of (2) without in the

inclusion of uDIFF in (7).

Hyperparameter Value

Argument Set {x, t}
Unary Primitive Set {exp, cos, sinh}
Binary Primitive Set {+,×}
Size of Population 30

Number of Generations 25
Number of Restarts 10

Finally, to ensure that using the two-step strategy detailed
above does learn better symbolic solutions, we asked the
symbolic regressor to learn a solution to Burgers’ equation

without the assistance of the diffusion solution in the
primitive set when v = 0.2. The SR hyperparameters in
this case are shown in Table 4. Other than the binary
primitive set, all other hyperparameters are identical to
those used to learn Burgers’ equation using uDIFF.

3. RESULTS AND DISCUSSION

3.1 Learned Solution to the Diffusion Equation

Upon execution of the symbolic regressor, the best ex-
pression learned to represent the diffusion equation was
the one shown in (7). While this equation is not very
interpretable insofar as it gives physical meaning behind its
representation of diffusion, it does use the initial condition
as a starting point and provides tractable logic from inputs
(x, t) to output (u).

uDIFF(x, t) ≈ cos(u0(4.2758x))u0(x)

−0.0208t exp(u0(x)− 1.5333)
(7)

The symbolically regressed solution also approximates the
solution very well. The mean squared error against the
Eigenfunction Expansion solution is 8.512×10−04 and the
R-squared value is 0.9898. The solutions to the diffusion
equation are shown in Figure 1. Figure 1 shows that the
symbolically regressed solution has the highest error near
the boundaries of the domain near x = 0, t = 10 and x =
10, t = 10. Across most of the domain, the symbolically
regressed solution has very little error compared with the
solution derived using eigenfunction expansion.

Fig. 1. Comparison of the symbolically regressed (SR) and
eigenfunction expansion (EE) solution to the diffusion
equation. The left plot shows the solution determined
using eigenfunction expansion. The center plot shows
the solution learned using SR. And the right plot
shows the squared error between the two solutions.

3.2 Learned Solutions to Burgers’ Equation

The best symbolically regressed solutions for Burgers’
equation with different values of v are shown in Table 5.
All these expressions share a common form shown in (8),
suggesting that learning symbolic solutions to Burgers’
equation with different values of v may be simplified by
looking only for the specific form of f(x, t) in (8).

uBurgers’ ≈ uDIFF(x− f(x, t), t) (8)

The expressions also tend to get more complicated as
v grows. This is likely because the nonlinearity of the
convection term plays a more significant role in the dy-
namics of a system governed by (2) when v is larger. When
v = 0.05, a linear transformation of the diffusion equation
is sufficient to describe the solution. However, as v grows,
the transformation of the diffusion equation grows more
nonlinear.



Table 5. Learned symbolic solutions for Burg-
ers’ equation, (2), for different values of v when

ν = 0.1.

v Expression

0.05 uDIFF(x− 0.018t, t)
0.10 uDIFF(x− 0.0095xt, t)
0.15 uDIFF(x− 0.0129xt, t)
0.20 uDIFF(x− (0.0072t− 0.0039xt) exp(uDIFF(x, t)), t)
0.25 uDIFF(x− 0.0313 cos(−0.123x)xt, t)

The mean squared errors (MSEs) and R-squared values
of the symbolically regressed solutions are shown in Table
6. All these MSE values are on the order of 10−04 and
the R-squared values are greater than or equal to 0.99,
showing good agreement with the numerical solutions.
As the convection coefficient increases, the error does
not necessarily increase because the complexity of the
symbolically regressed models grows. This is likely an
artifact of the symbolic regressor which attempts to learn
solutions across a range of complexities. For small v,
the simple linear and nonlinear transformations to the
diffusion equation are very fit, satisfying the PDE and
initial/boundary conditions well. As v grows, these simple
transformations grow inadequate, motivating the need for
more complex transformations that capture the effects of
a more significant nonlinear term.

Table 6. The mean squared error (MSE) and
R-squared values of the learned symbolic so-
lutions for Burgers’ equation, (2), for different

values of v when ν = 0.1.

v MSE R2

0.05 5.809× 10−04 0.9934
0.10 4.626× 10−04 0.9939
0.15 7.802× 10−04 0.9897
0.20 3.183× 10−04 0.9956
0.025 7.021× 10−04 0.9912

A more detailed look at the error of the symbolically re-
gressed solutions across the entire domain is shown in Fig-
ure 2. These figures show that the symbolically regressed
solutions all seem to represent Burgers’ equation well, but
struggle to represent the solution correctly, mainly behind
the wave and where the diffusion solution struggled the
most. Behind the wave is where the nonlinearity of the
solution becomes most apparent, as the slight curvature
caused by diffusion in the opposite direction of the wave
is most visible. This is the nonlinearity that the symbolic
regressor attempts to capture using the nonlinear trans-
formations of the diffusion solution.

These transformations discovered by the symbolic regres-
sor are important to learn accurate solutions. When uDIFF

was excluded from the binary primitive set, the best
learned model with all other hyperparameters held con-
stant for Burgers’ equation when v = 0.2 had a MSE of
1.249 when compared to the numerical solution. This is
several orders of magnitude larger than the MSE solution
learned using uDIFF (3.183 × 10−04). Furthermore, the
form of the uncovered solution is four nested cos functions
which, while still offering tractable logic from inputs to
output, limits the physical interpretability of the sym-
bolic model. Given a smaller symbol space with identical
population size, number of generations, and number of
restarts, the symbolic regressor did not learn as good of

Fig. 2. Comparison of the symbolically regressed (SR)
and numerically calculated solution to Burgers’ equa-
tion. The left plot shows the solution calculated using
numerical methods. The center plot shows the solu-
tion learned using SR. And the right plot shows the
squared error between the two solutions.

model without the partial physics provided as it did when
the partial physics captured by the diffusion equation was
given as a primitive.

4. CONCLUSIONS

This study presents a novel approach to deriving approx-
imate symbolic solutions for Burgers’ equation through a
stepwise symbolic regression strategy. Initially, we learn a
symbolic model to represent part of the system’s physics,
and subsequently, we use this partial model to symbolically
regress a solution for the entire PDE. The outcome is a set
of symbolic expressions that represent Burgers’ equation,
incorporating the initial and boundary conditions specified
in (2).

Despite the inherent challenges in learning symbolic solu-
tions to PDEs like Burgers’ equation, this work provides
a clear roadmap for leveraging domain knowledge, expert
feedback, and symbolic regression. Understanding the lim-
itations and best practices of this method requires further
investigation. Future research should explore the use of
various operators, such as logic operators, to model com-
plex solutions, including those with shockwaves. Addition-
ally, identifying generalized solution forms that effectively
handle different boundary conditions is crucial.

The two-step symbolic regression strategy demonstrated
here shows how machine learning can benefit from do-
main knowledge to develop understandable models. Even
complex, nonlinear processes, such as those described by
Burgers’ equation, can be modeled by breaking down the
task into simpler components. Domain experts can identify
methods to decompose and reassemble problems in ways
that complement symbolic regression, reducing the sym-
bol space while learning solutions to PDEs. For instance,
this work did not consider using solutions to the linear
convection-diffusion or convection equations as primitives
to aid in the learning solutions to Burgers’ equation.



Nevertheless, the transformation of the diffusion solution
learned by the symbolic regression in this study, especially
for small v, resembles an analytical solution to the linear
convection equation.

This work demonstrates that symbolic regression can yield
interpretable models, even for nonlinear dynamical sys-
tems, providing clear tractable logic from inputs to out-
puts, unlike many other machine-learned representations.
At the highest level of abstraction, the solutions to Burg-
ers’ equation learned in this work can be viewed as nonlin-
ear transformations of the solution to the diffusion equa-
tion. The next level involves considering manipulations of
the initial condition to describe solutions, while the lowest
level uses basic mathematical and trigonometric operators.

ACKNOWLEDGEMENTS

This project was sponsored by the Pratt & Whitney In-
stitute of Advanced Systems Engineering (P&W-IASE)
of the University of Connecticut and Pratt & Whitney;
and the National Institutes of Health [NIH P42-ES027704].
Any opinions expressed herein are those of the authors and
do not represent those of the sponsor. The manuscript con-
tents are solely the responsibility of the grantee and do not
necessarily represent the official views of the NIH. Further,
the NIH does not endorse the purchase of any commercial
products or services mentioned in the publication.

During the preparation of this work the authors used
Microsoft Copilot to receive recommended feedback and
edits. After using these tools, the authors reviewed and
edited the content as needed and take full responsibility
for the content of this publication.

REFERENCES

Bateman, H. (1915). Some recent researches on the motion
of fluids. Monthly Weather Review, 43, 163–170. doi:
10.1175/1520-0493(1915)43<163:SRROTM>2.0.CO;2.

Bonkile, M.P., Awasthi, A., Lakshmi, C., Mukundan, V.,
and Aswin, V.S. (2018). A systematic literature review
of burgers’ equation with recent advances. Pramana, 90,
69. doi:10.1007/s12043-018-1559-4.

Burgers, J. (1948). A mathematical model illustrating
the theory of turbulence. volume 1 of Advances in Ap-
plied Mechanics, 171–199. Elsevier. doi:10.1016/S0065-
2156(08)70100-5.

Byrne, G.D. and Hindmarsh, A.C. (1975). A polyalgo-
rithm for the numerical solution of ordinary differential
equations. ACM Trans. Math. Softw., 1(1), 71–96. doi:
10.1145/355626.355636.

Chen, Y., Luo, Y., Liu, Q., Xu, H., and Zhang,
D. (2022). Symbolic genetic algorithm for discov-
ering open-form partial differential equations (sga-
pde). Physical Review Research, 4, 23174. doi:
10.1103/PhysRevResearch.4.023174.

Cohen, B., Beykal, B., and Bollas, G.M. (2024a). Data-
driven discovery of reaction kinetic models in dynamic
plug flow reactors using symbolic regression. In F. Ma-
nenti and G.V. Reklaitis (eds.), 34th European Sympo-
sium on Computer Aided Process Engineering / 15th
International Symposium on Process Systems Engineer-
ing, volume 53 of Computer Aided Chemical Engi-

neering, 2947–2952. Elsevier. doi:10.1016/B978-0-443-
28824-1.50492-0.

Cohen, B., Beykal, B., and Bollas, G. (2023). Dynamic
system identification from scarce and noisy data using
symbolic regression. In 2023 62nd IEEE Conference on
Decision and Control (CDC), 3670–3675. IEEE. doi:
10.1109/CDC49753.2023.10383906.

Cohen, B.G., Beykal, B., and Bollas, G.M. (2024b).
Physics-informed genetic programming for discovery of
partial differential equations from scarce and noisy data.
Journal of Computational Physics, 514, 113261. doi:
10.1016/j.jcp.2024.113261.

Cohen, B.G., Beykal, B., and Bollas, G.M. (2025). Physics-
informed symbolic regression for partial differential
equations: The forward and inverse problems. Journal
of Computational Physics, in preparation.

Cole, J.D. (1951). On a quasi-linear parabolic equation
occurring in aerodynamics. Quarterly of Applied Math-
ematics, 9, 225–236. doi:10.1090/qam/42889.

Cranmer, M. (2023). Interpretable machine learning for
science with pysr and symbolicregression.jl.

Daryakenari, N.A., Florio, M.D., Shukla, K., and Karni-
adakis, G.E. (2024). Ai-aristotle: A physics-informed
framework for systems biology gray-box identification.
PLOS Computational Biology, 20, e1011916. doi:
10.1371/journal.pcbi.1011916.

Hopf, E. (1950). The partial differential equation u t +
uu x = u xx. Communications on Pure and Applied
Mathematics, 3, 201–230. doi:10.1002/cpa.3160030302.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis,
G.E. (2021). Learning nonlinear operators via deeponet
based on the universal approximation theorem of op-
erators. Nature Machine Intelligence, 3, 218–229. doi:
10.1038/s42256-021-00302-5.

Majumdar, R., Jadhav, V., Deodhar, A., Karande, S., Vig,
L., and Runkana, V. (2023). Symbolic regression for
pdes using pruned differentiable programs.

Musha, T. and Higuchi, H. (1978). Traffic current fluc-
tuation and the burgers equation. Japanese Journal of
Applied Physics, 17(5), 811. doi:10.1143/JJAP.17.811.

Raissi, M., Perdikaris, P., and Karniadakis, G. (2019).
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems
involving nonlinear partial differential equations. Jour-
nal of Computational Physics, 378, 686–707. doi:
10.1016/j.jcp.2018.10.045.

Rudy, S.H., Brunton, S.L., Proctor, J.L., and Kutz, J.N.
(2017). Data-driven discovery of partial differential
equations. Science Advances, 3(4), e1602614. doi:
10.1126/sciadv.1602614.

Titchmarch, E. (1947). Eigenfunction expansions associ-
ated with second-order differential equations. Nature,
160, 174–175.

Tsoulos, I.G. and Lagaris, I.E. (2006). Solving differ-
ential equations with genetic programming. Genetic
Programming and Evolvable Machines, 7, 33–54. doi:
10.1007/s10710-006-7009-y.

Vergassola, M., Dubrulle, B., Frisch, U., and Noullez, A.
(1994). Burgers’ equation, devil’s staircases and the
mass distribution for large-scale structures. Astronomy
and Astrophysics, 289, 325–356.


