
Trajectory Tracking Control of a Batch
Process using Deep Reinforcement

Learning

M U Abuthahir ∗ Nabil Magbool Jan ∗

∗ Indian Institute of Technology Tirupati, Andhra Pradesh, 517619,
India (e-mails: ch25s001@iittp.ac.in, nabil@iittp.ac.in).

Abstract: Batch processes are indispensable for the production of low-volume and high-value
products. However, control of a batch process is challenging due to the inherent nonlinearity,
and time-varying characteristics. In this work, we consider the problem of nonlinear trajectory
tracking control in batch processes. We assume that the reference trajectory is known in
advance, and does not change between batches as it is common in repetitive processes. The
main objective of this work is to develop a reinforcement learning approach to perform tracking
control in a repetitive batch process. To this end, the batch process control is formulated as
a Markov decision process with a suitable characterization of state vector, and reward design.
A model-free function approximation approach based on deep Q learning is developed as a
Deep Reinforcement Learning (DRL) controller. A nonlinear batch reactor system is used to
demonstrate the efficacy of the proposed DRL controller. Further, we present the performance
of the proposed DRL controller under feed and parametric uncertainties.

Keywords: tracking control, batch process, nonlinear model predictive control, deep Q
learning, deep reinforcement learning

1. INTRODUCTION

Batch processes play an important role in low-volume,
high-value products due to their flexibility in producing
different products using the same processing equipment.
However, control of batch process is challenging due to
it’s inherent nonlinear, time-varying and non-stationary
behavior. Industrial applications of batch processes in-
clude the manufacture of pharmaceutical drugs and bio-
chemicals like ethanol, specialty chemicals, and polymers
(Bonvin et al., 2006). One of the most studied controllers
for batch processes is nonlinear model predictive control
due to its capability to handle constraints. However, it
requires a reliable process model to achieve satisfactory
performance (Rho et al., 1998; Corbett et al., 2013; Mag-
bool Jan and Narasimhan, 2024). On the other hand,
reinforcement learning provides a model-free approach in
the control of process systems (Spielberg et al., 2019;
Ankalugari et al., 2024). Reinforcement learning-based ap-
proaches have been studied in the optimization and control
of batch processes (Yoo et al., 2021a). Some of the relevant
works focus on maximizing economic objectives, produc-
tion rates, product quality, or minimizing batch time.
Peroni et al. (2005) developed an approximate dynamic
programming approach to simultaneously minimize batch
time and maximize production rates in the production
of invertase. Very recently, Byun et al. (2020) developed
a proximal policy optimization approach with the RL
goal of maximizing the production rates in a fed batch
bioethanol process. The focus of this work is to develop a
Deep Reinforcement Learning (DRL) approach to perform
a nonlinear setpoint tracking control in batch processes.

Reinforcement learning has also been used in the tracking
control of batch processes. Yoo et al. (2021b) developed
an RL approach to perform batch control based on pro-
cess economic performance and path and end constraint
satisfaction using Monte Carlo Deep Deterministic Policy
Gradient (MC-DDPG) method. The above work studies
the nonlinear setpoint tracking with the use of phase
segmentation to account for rapidly changing slopes. MC-
DDPG algorithm is also shown to handle non-stationary,
and irreversible characteristics of a batch process. Very
recently, Abuthahir and Jan (2024) presented the perfor-
mance of tabular reinforcement learning approaches for
tracking control in a batch reactor. Although this approach
can deal with nonlinear setpoint tracking for within-batch
control, it is not suitable for high-dimensional state and
action space.

In this work, we develop the deep Q learning-based DRL
controller for tracking a nonlinear setpoint trajectory
without phase segmentation in a batch process. To this
end, we propose time-augmented output variables as state
variables to account for the time-varying nature of a
batch process, and the reward design was based on the
stage-wise cost of a model predictive controller. Finally,
we demonstrate the efficacy of the aforementioned DRL
controller in a simulated batch reactor system with feed
uncertainty and parametric uncertainty.

The rest of this paper is organized as follows. Section
2 presents the problem statement for tracking control
of a batch process. In section 3, we present the deep
reinforcement learning framework for batch process control
with continuous states and discrete actions. In section 3.1,

we formulate the optimal control problem as a Markov
decision process, and propose the DRL controller design
for nonlinear trajectory tracking. Finally, in section 4, we
demonstrate the efficacy of tracking control in a batch
reactor system.

2. PRELIMINARIES

2.1 System Description

Consider a discrete-time dynamic model of a batch pro-
cess. It can be mathematically expressed in state space
representation as follows:

xk+1 = f(xk, uk, dk, θ̄) (1)

yk = h(xk, uk) (2)

where f : Rnx × Rnu × Rnd → Rnx is a vector mapping
of manipulated variables uk ∈ Rnu , disturbance variables
dk ∈ Rnd , and state variables xk ∈ Rnx to the next state
xk+1, h : Rnx × Rnu → Rny is a vector mapping of input
variables uk and state variables xk to the output variables
yk, and θ̄ denotes the nominal values of parameters.
These model equations are often derived from material
and energy balances.

2.2 Optimal Control Problem

In general, the goal of within-batch control is to perform
a setpoint tracking of one or more process variables in a
batch process. The setpoint trajectory signifies the recipe
obtained from recipe optimization. In this work, we assume
the recipe is already available, and the objective is to find
the optimal control policy to achieve the desired recipe as
defined by the time-varying setpoint trajectory (denoted
by ysp,k). Thus, the discrete-time optimal control problem
can be formulated as follows:

min
u0:N

J =

N−1∑
k=0

∥yk − ysp,k∥2Φ + ∥uk+1 − uk∥2Λ (3)

s.t. xk+1 = f(xk, uk, θ̄) given x0 (4)

yk = h(xk, uk) ∀k = 0 to N (5)

c(xk, uk) ≤ 0 (6)

where J is the cost function that we need to minimize
to achieve the control goal, ∥a∥Φ =

√
aTQa denotes the

quadratic norm of vector a with respect to matrix Φ, c
denotes the set of inequalities for safety and environmental
reasons, ysp,k denotes the time-varying setpoint trajectory
as prescribed by recipe optimization, N denotes the num-
ber of time steps in a fixed batch time tf , and x0 denotes
the initial values of state variables. Notice that the first
term in the objective function minimizes the tracking er-
ror, whereas, the second term minimizes the control effort.
Φ and Λ are weighting matrices that are chosen to achieve
the trade-off between tracking error and control effort. The
optimal solution u∗

0:N is the control sequence one needs to
implement to achieve the time-varying setpoint tracking
control for the given initial state x0 and nominal values
of parameter θ̄. Owing to uncertainties and disturbances,
the determined open-loop policy is often not suitable.
Therefore, a Batch Nonlinear Model Predictive Control
(BNMPC) is often used in a shrinking horizon fashion or
a combination of shrinking and receding horizon fashion
(Nagy and Braatz, 2010).

Fig. 1. Reinforcement learning based control of a batch
process

3. DEEP REINFORCEMENT LEARNING BASED
BATCH PROCESS CONTROL

In this section, we design a model-free deep Q learning
based DRL controller for the time-varying setpoint trajec-
tory tracking problem in a batch process. We assume that
the reference trajectory is known in advance and does not
change between batches. Reinforcement learning belongs
to a class of machine learning algorithms in which the
learning is achieved for the predefined objective by directly
interacting with the environment or system (in our case, it
is a batch process). The main philosophy of reinforcement
learning in the context of batch process control is depicted
in Figure 1. Reinforcement learning can be applied to
sequential decision making problems some of which can be
formulated as a Markov Decision Process. Markov decision
process, defined by a tuple (S,A,P,R), is a stochastic
process that takes a state from the set S to the next state
in the same set through probability transition function P
by taking action from the set A, and quantify the merit of
this action in terms of the reward function R.
State (sk ∈ Rm = S) is the set of variables that describe
the environment at kth time step. State may contain
observations, sensory inputs or any other relevant data
that describes the environment that the agent can observe.
Owing to the time-varying nature of a batch process, the
state is given by sk = [tk yk]

T . Thus, m = ny + 1.

Action, denoted by ak ∈ A = {a1, a2, · · · , an}, is the
decision made by the agent. This action is executed on
the environment and the next state sk+1 is observed.
The agent executes the next action ak+1 at k + 1th time
step, and so on. In this way, the agent interacts with
the environment to find the best action for any state to
achieve the desired goal. Actions can be either discrete
or continuous, depending on the nature of the problem.
For the batch process control problem, the action is the
manipulated variable, that is, ak = [uk]. In this work, we
consider discrete actions. The agent acquires a reward at
each timestep after executing an action which quantifies
the effectiveness of the action with respect to the desired
goal. It is denoted by rk ∈ R = R. Reward in our case is
given by,

rk = −∥yk − ysp,k∥2Φ − ∥uk − uk−1∥2Λ
This is the same as the stage-wise cost in optimal control
problem. Policy is a function mapping from state sk to

action ak that the agent follows to choose an action on a
given state. It is denoted by π. The relation between policy
π, state sk and action ak is given below:

π(sk) = ak (7)

There may exist several policy or function mapping. Our
aim is to determine the optimal policy π∗ that enables us
to accomplish our control goal.

Return is the exponentially discounted sum of rewards
from kth timestep till the termination of the state action
sequence. It is denoted by Gk ∈ R. For a sequence of
rewards rk+1, rk+2, rk+3, ..., we can define returns as,

Gk =

N∑
n=0

γkrk+n+1 (8)

Where γ ∈ [0, 1] is the discount factor and N is the
timestep where the state action sequence will terminate.
γ can be 1 when N is finite and cannot be 1 when N is
infinite. When γ is 0, the agent gives importance to the
immediate reward, whereas, when γ is 1, the agent tries
to maximize long-term rewards.

Action-value function is the effectiveness of taking
action ak starting from state sk following policy π. It is
denoted by qπ(sk, ak). Therefore, it is the expected return
given the state sk and action ak, and is given by,

qπ(sk, ak) = Eπ[Gk|Sk = sk, Ak = ak]

= Eπ

[N∑
n=0

γnrk+n+1|Sk = sk, Ak = ak

]
(9)

The process of obtaining the action-value function qπ(sk, ak)
for a policy π is called policy evaluation, and the process of
finding a new better policy from the action-value function
is called policy improvement. Optimal policy belongs to
set of policies that has the highest value function out of
all possible policies in the policy space Π. It is denoted by
π∗. Thus, the optimal control problem is formulated as the
one that determines the optimal control policy such that
it maximizes the expected return. Therefore, the optimal
control policy π∗ can be expressed in terms of optimal
action-value function q∗ as:

π∗(si) = argmax
aj∈A

q∗(si, aj) ∀si ∈ Rm (10)

It is important to notice that value functions have a fun-
damental property that they satisfy a particular recursive
relationship expressed by the Bellman equation, and it is
given below.

q∗(sk, ak) = Esk+1
[rk+1 + γmax

ak+1

q∗(sk+1, ak+1)|sk, ak]

(11)

In general, the set of algorithms that find an optimal
policy based on repeated policy evaluation and policy
improvement are known as generalized policy iteration
methods.

3.1 Deep Q Learning based Batch Process Control

In this work, we use Deep Q learning to design a DRL
controller that can achieve nonlinear setpoint tracking of a
batch process. To improve the generalization performance
and to make the training of RL agent more scalable for
higher dimensions of states, we can use a parameterized

function approximator q∗(sk, ak; θ) ≈ q∗(sk, ak) where
θ is the parameter. In this case, a neural network is
used as a nonlinear function approximator. The DRL
controller consists of a deep neural network that takes
continuous states sk at kth time step as an input and
outputs q∗(sk, a

j ; θ)∀aj ∈ A. The action ak at kth time
step will be obtained based on the chosen exploration-
exploitation trade-off strategy. In particular, we use the
ϵ-greedy strategy.

In this work, we use a feedforward neural network g :
Rm −→ Rn as a function approximator for the action-
value function. It consists of m neurons for the input layer,
L hidden layers with ni neurons per layer, and the output
layer contains n neurons which correspond to n possible
control actions. Given this definition, a neural network can
be described as a composition of functions as given below:

g(sk, θ) = λL+1 ◦ z ◦ λL ◦ z ◦ ... ◦ z ◦ λ1(sk) (12)

where λl is an affine transformation of the output from the
(l − 1)th layer, and it is given by,

λl(ζl−1) = Wlζl−1 + αl (13)

where ζl−1 ∈ Rnl−1 , ζl−1 = z(λl−1(ζl−2)) is the input to
the current layer, and it is the output from the previous
layer. It is important to notice that ζ0 = sk is the input
of the neural network. Further, z : Rnl −→ Rnl denotes
a non linear activation function. In this work, we use a
rectified linear activation function and it is given by,

z(λl(ζl−1)) = max(0, λl(ζl−1)) (14)

The parameters of the neural network
θ = {W1, α1,W2, α2, ...WL+1, αL+1} contains the weights
Wl and biases αl and they are represented as follows,

Wl ∈ Rnl×nl−1 ∀l ∈ 1, 2, ...L+ 1 (15)

αl ∈ Rnl ∀l ∈ 1, 2, ...L+ 1 (16)

Notice that n0 = m and nL+1 = n. The goal in Deep Q
Learning is to learn the neural network parameters θ by
interacting with the batch process environment.

To this end, the deep Q network is trained to reduce
the mean squared error in the bellman equation where
the optimal target values rk+1 + γmaxaj q∗(sk+1, a

j) are
substituted with approximate target values, y = rk+1 +
γmaxaj qπt (sk+1, a

j ; θ−), where θ− is the parameters of the
target Q network, and these parameters are updated every
C steps by resetting it to the same parameters of current
Q network. This leads to a sequence of loss functions that
changes at every interval (Mnih et al., 2015).

Lp(θp) = Esk,ak,rk+1
[(Esk+1

[y|sk, ak]− qπ(sk, ak; θp))
2]
(17)

= Esk,ak,rk+1,sk+1
[(y − qπ(sk, ak; θp))

2]

+ Esk,ak,rk+1
[Vsk+1

[y]]
(18)

where Esk,ak,rk+1
[Vsk+1

[y]] is the variance of targets y. This
term is independent of θp, and thus the gradient of this
term is zero, and removing this term does not affect the it-
erative updates to the parameters θp in theQ network. The
agent is trained with experiences ep = (sk, ak, rk+1, sk+1)
that is stored in a dataset D = {e1, · · · , ep} called re-
play memory. However, owing to memory limitations, this
dataset D contains only the last D experiences (that is,
D = {ep−D, · · · , ep}). D denotes the size of the replay
memory. During learning, we apply Q learning updates on

minibatch of experiences e ∼ U(D) drawn uniformly at
random from the replay memory. The loss function used
is

Lp(θp) = Esk,ak,rk+1,sk+1∼U(D)[(y − qπ(sk, ak; θp))
2] (19)

The loss function Lp(θp) is optimized using stochastic
gradient descent to update the weights of the Q network
for each iteration p. Taking the gradient of this loss
function with respect to θp and simplifying, we get

∇θpLp(θp) = Esk,ak,rk+1,sk+1∼U(D)[(rk+1

+ γmax
aj

qπt (sk+1, a
j ; θ−)

− qπ(sk, ak; θi))∇θpq
π(sk, ak; θp)] (20)

This version of Deep Q learning in which we use a separate
target network to generate labels is called Double Deep Q
learning (van Hasselt et al., 2016). The detailed algorithm
for tracking control of a batch process is presented in
Algorithm 1.

Algorithm 1: Deep reinforcement learning for batch
process control

Initialize replay memory D of size D;
Initialize action-value function qπ(θ) with random
weights θ;
Initialize target action-value function qπt (θ

−) with
weights θ− = θ;
repeat until convergence

Choose initial state s0 ∈ S s.t. all states have
probability > 0;

for each step in the episode do
Select random control action ak with
probability ϵ ;

Otherwise, ak = argmax
aj∈A

qπ(sk, a
j ; θ);

Take control action ak;
Measure states sk+1 and compute reward rk+1;
Store state transitions (sk, ak, rk+1, sk+1) in D;
Sample random minibatch of state transitions
(sb, ab, rb+1, sb+1) from D;
for each transition b in batch do

if episode terminates at b+ 1 then
yb = rb+1;

else
yb = rb+1 + γmaxaj∈A qπt (sb+1, a

j ; θ−);

Perform a stochastic gradient descent on (19)
with respect to the network parameters θ;
Reset qπt (θ

−) = qπ(θ) every C steps ;
k ← k + 1;

until k = N ;

4. CASE STUDY

In this section, we demonstrate the application of Deep Q
learning in a nonlinear batch reactor system undergoing
the A −→ B, at nonisothermal conditions in which the
goal is to maximize the product quality (Lee et al.,
2000; Abuthahir and Jan, 2024). This can be achieved by
controlling the temperature trajectory of the reactor by
manipulating the jacket temperature. Let CA,k denotes the
concentration of reactant A inside the reactor at time step
k, Tk denotes the temperature inside the reactor at time

Table 1. Hyperparameter settings

Symbol Description Value

α Learning rate 10−3

µ Decay rate 10−5

γ Discount factor 1

C Target reset
steps

9

ϵ ϵ-greedy policy 0.05

- Batch size 1.2× 104

- Hidden layer [400, 300, 200]

step k, Tj,k denotes the jacket temperature at time step
k. In this work, we consider the discrete-time, nonlinear
state space model of the batch reactor. It is given by,

CA,k+1 = CA,k +∆t(−k0e
−Ea
RTk C2

A,k) (21)

Tk+1 = Tk +∆t(β1(Tk − Tj,k) + β2k0e
−EA
RTk C2

A,k) (22)

where ∆t is the sampling interval, β1 = −UA
MCp

is the

constant relating overall heat transfer coefficient, β2 =
(−∆H)V

MCp
is the constant relating heat of reaction, k0 is

the reaction rate constant, EA

R is the constant related to
activation energy, T0 is the initial reactor temperature,
CA0 is the initial reactor concentration and tf is the batch
time. For a description of the model parameters and the
corresponding values used in the simulation, an interested
reader is referred to the work of (Abuthahir and Jan,
2024). To formulate the batch process control problem as
a Markov decision process, we define the following state
measurements as xk = [tk Tk CA,k]

T , and manipulated
variable as uk = [Tj,k]. Assuming the states are directly
measured (that is, yk = xk), the reward function is given
by,

rk = −∥yk − yk,ref∥2Φ − ∥uk+1 − uk∥2Λ (23)

where Φ and Λ are chosen to be I and 0.1, respectively.

For training, the episodes start with a state s0 =
[0 T0 CA0]

T where T0 is randomly chosen in the interval
[293, 308] and CA0 is randomly chosen in the interval [0, 1]
with uniform probabilities respectively. The hyperparam-
eter settings used are tabulated in Table 1. The designed
DRL controller is trained with 70000 episodes for N = 30
timesteps, and 100000 episodes for N = 40 timesteps.
Further, we use ϵ−greedy exploration strategy during
training. Figure 2 shows the episode versus return during
the training of DRL controller. It can be noticed that
as the number of episodes increases, the return increases
and then flattens which signifies the convergence of DRL
algorithm. In the testing phase, we initialize the episode
with a state s0 = [0 298 0.6]T with a greedy policy to assess
the tracking performance. Figure 3 presents the tracking
performance of the proposed DRL controller obtained with
40 uniform discretization points in time space.

In Figure 3, the top row presents the tracking performance
under nominal feed condition of T0 = 298 K and CA0 =
0.6 mol/l. It can be observed that the temperature inside
the reactor closely follows the desired reference trajectory.
The corresponding concentration profiles inside the batch
reactor, and the required changes in jacket temperature to
achieve the tracking control is also presented in the top
row of Figure 3.

Fig. 2. Episode vs return obtained using Deep Q Learning

4.1 Effect of Feed Variations

Feed variations (such as initial feed composition or feed
temperature) is a common occurrence in batch processes,
and it often affects the product quality. In this subsection,
we aim to show the tracking performance of the designed
DRL controller despite feed variations. The middle row of
Figure 3 shows the tracking performance for two different
feed conditions (that is, Feed Condition 1: T0 = 295 K
and CA0 = 0.8 mol/l and Feed Condition 2: T0 = 302 K
and CA0 = 0.5 mol/l) are presented. Despite uncertainties
in the feed, the designed DRL controller was able to track
the desired reactor temperature profile. However, due to
the feed variations, it can be inferred that it takes a few
time steps to achieve good tracking performance. Further,
the corresponding concentration profiles inside the batch
reactor for two different feed conditions, and the required
changes in jacket temperature for these feed conditions
are also presented in the bottom row of Figure 3. It is
important to notice that due to the feed variations, the
initial control moves under feed uncertainties are different
from the nominal control moves obtained under nominal
feed conditions.

Table 2 presents the performance metrics of the designed
DRL controller for different feed conditions. As the feed
condition in the nominal case is the same as the initial
point in the reference trajectory, the mean absolute error
and root mean square error are the least. However, for the
non-nominal feed conditions, due to a different initial point
than the reference point, the controller takes a few initial
time steps to follow the reference trajectory. This can be
inferred from the higher mean absolute error and root
mean square error for the non-nominal feed conditions. On
the other hand, the control effort required is large under
nominal conditions. This can be attributed to a large step
change in jacket temperature in the initial time step as can
be observed in Figure 3.

For the purpose of comparison, we consider the state-of-
the-art BNMPC technique with a prediction and control
horizon of 10. All other settings for BNMPC are similar
to RL settings. Following the work of Nagy and Braatz
(2010), we employ a combination of receding horizon

Table 2. Performance metrics

Controller MAE RMSE Control
Effort

BNMPC 0.57 0.92 4.30
DRL Controller (Nominal) 0.32 0.45 37.67
Feed Variation
Feed Condition 1 0.46 0.68 17.84
Feed Condition 2 0.53 0.92 20.76
Parameter Variation
Parameter Condition 1 0.396 0.51 49.52
Parameter Condition 2 0.37 0.475 12.51

and shrinking horizon. It can be observed that BNMPC
emphasizes on the control effort at the cost of tracking
error. This can also be observed from Table 2.

4.2 Effect of Parametric Uncertainty

In this subsection, we study the effect of parametric un-
certainty on the designed DRL controller. To this end, we
consider that the reaction frequency factor k0 is known
with uncertainty. Figure 3 shows the tracking perfor-
mance of the trained DRL controller for different val-
ues of k0 (that is, Parameter Condition 1: k0 = 1.9 ×
1019 l mol−1min−1 and Parameter Condition 2: k0 = 4.4×
1019 l mol−1min−1), and it can be observed that the pro-
posed DRL controller is robust to parametric uncertainty.
The corresponding tracking performance of DRL controller
is presented in Table 2.

5. CONCLUSIONS

A model-free, function approximation-based DRL con-
troller was designed to compute the optimal policy for
the manipulated input. The proposed approach shows ex-
cellent tracking performance despite feed and parametric
uncertainty. It is important to notice that this approach
scales well in high-dimensional state space, but does not
scale well for action space. It is worth mentioning that the
number of interactions between the DRL controller and
the batch process to attain satisfactory training is very
high. Therefore, we are currently investigating on improv-
ing the sample efficiency of the proposed methodology.
Furthermore, we are working on extending the approach
to account for batch-to-batch variations.

REFERENCES

Abuthahir, M.U. and Jan, N.M. (2024). Time-varying set-
point tracking for batch process control using reinforce-
ment learning. In 2024 18th International Conference on
Control, Automation, Robotics and Vision (ICARCV),
1148–1153.

Ankalugari, R.Y., Abuthahir, M.U., Jan, N.M., and
Joseph, A.G. (2024). Control of van de vusse reactor
using deep reinforcement learning. In 2024 18th Inter-
national Conference on Control, Automation, Robotics
and Vision (ICARCV), 1154–1159.

Bonvin, D., Srinivasan, B., and Hunkeler, D. (2006). Con-
trol and optimization of batch processes: Improvement
of process operation in the production of specialty chem-
icals. IEEE Control Systems Magazine.

Byun, H.E., Kim, B., and Lee, J.H. (2020). Robust dual
control of batch processes with parametric uncertainty

Fig. 3. Performance of the DRL controller: (a) Top row - under nominal condition, (b) Middle row - under two different
feed conditions, (c) Bottom row - under two different parameter conditions

using proximal policy optimization. In 2020 59th IEEE
Conference on Decision and Control (CDC), 3016–3021.

Corbett, B., Macdonald, B., and Mhaskar, P. (2013).
Model predictive quality control of polymethyl
methacrylate. In 2013 American Control Conference,
3942–3947.

Lee, J.H., Lee, K.S., and Kim, W.C. (2000). Model-based
iterative learning control with a quadratic criterion for
time-varying linear systems. Automatica, 36(5), 641–
657.

Magbool Jan, N. and Narasimhan, S. (2024). Economic
performance of model predictive control at back-off op-
erating point. Journal of Process Control, 139, 103231.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidje-
land, A.K., Ostrovski, G., et al. (2015). Human-level
control through deep reinforcement learning. nature,
518(7540).

Nagy, Z.K. and Braatz, R.D. (2010). Control system
applications. CRC press.

Peroni, C., Kaisare, N., and Lee, J. (2005). Optimal control
of a fed-batch bioreactor using simulation-based approx-
imate dynamic programming. IEEE Transactions on

Control Systems Technology, 13(5), 786–790.
Rho, H.J., Huh, Y.J., and Rhee, H.K. (1998). Application

of adaptive model-predictive control to a batch mma
polymerization reactor. Chemical Engineering Science,
53(21), 3729–3739.

Spielberg, S., Tulsyan, A., Lawrence, N.P., Loewen, P.D.,
and Bhushan Gopaluni, R. (2019). Toward self-driving
processes: A deep reinforcement learning approach to
control. AIChE Journal, 65(10), 1–20.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep
reinforcement learning with double q-learning. Proceed-
ings of the AAAI Conference on Artificial Intelligence,
30(1).

Yoo, H., Byun, H.E., Han, D., and Lee, J.H. (2021a). Re-
inforcement learning for batch process control: Review
and perspectives. Annual Reviews in Control, 52, 108–
119.

Yoo, H., Kim, B., Kim, J.W., and Lee, J.H. (2021b).
Reinforcement learning based optimal control of batch
processes using monte-carlo deep deterministic policy
gradient with phase segmentation. Computers & Chem-
ical Engineering, 144, 107133.

