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Abstract: Resource allocation models have been proven to be a highly effective tool to study the
growth of microorganisms. Here, we use one such growth model describing the metabolism of a
given bacterium in an artificial (e.g. biotechnological) environment. This model involves two controls,
one quantifying the protein precursors allocation (i.e. the cellular internal control) and the other
representing the nutrient concentration in the culture. We seek to determine the controls that maximize
the resulting growth rate of cells living in this controlled environment. We first carry out a theoretical
analysis of this optimal control problem (OCP) by means of the Pontryagin’s Maximum Principle
(PMP). We show the bang-bang structure of the optimal resource allocation control. We find the
environmental control to follow a bang-singular-bang structure, and give an expression for its singular
arc depending on the state and costate given by the PMP. We solve the OCP in fixed final time using a
direct optimization method, implemented on the BOCOP software. This resolution reveals an intrinsic
period of the optimal control, corresponding to the solution of the periodic OCP in free final time.
Moreover, we find a singular arc of the environment coinciding with the analytical expression given
before. Our study highlights the optimality of periodic, non-constant environments in maximizing
bacterial growth.
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1. INTRODUCTION

Microorganisms are widely used in many bio-industrial pro-
cesses, such as food and drug production or waste-water treat-
ment (Liao et al., 2016; Yegorov et al., 2019; Yabo et al., 2024).
The optimization of these processes is thus an important ques-
tion. Answering this question is non-trivial, partly due to the
difficulty of studying the complex metabolism of microor-
ganisms. A natural way to simplify this problem is by using
appropriate mathematical models, which are often found to
reproduce and explain many empirical observations on many
microorganisms.

In this work, we use optimal control theory to approach this
optimization problem, a tool which has been applied to opti-
mize many bio-industrial processes (Park and Fred Ramirez,
1988; Harmand et al., 2019; Espinel-Rı́os et al., 2024; Banga
et al., 2005). Optimal control theory provides an ideal behavior
which can be used as a benchmark for the comparison of other
control strategies. See our previous work (Innerarity Imizcoz
et al., 2024) for an example of such study of another control
strategy.

Most articles investigating the mathematical modelization of
the metabolism of microorganisms considered only steady-
state conditions (Edwards et al., 2001; Ibarra et al., 2002; Lewis
et al., 2010; Scott et al., 2014; Maitra and Dill, 2015). Other

studies introduced dynamical modeling of the response of bac-
teria after a single shift in their environment (Giordano et al.,
2016; Pavlov and Ehrenberg, 2013; van den Berg et al., 1998;
Yabo et al., 2022; Ehrenberg et al., 2013; Yegorov et al., 2019;
Waldherr et al., 2015). In our previous work (Innerarity Imizcoz
et al., 2024), we studied the optimization of resource alloca-
tion in micro-organisms dwelling in a periodically-changing
environment, using a simple model of the metabolism of a
given cell. All of this work is based on the hypothesis that
microorganisms optimize their growth as a result of evolution.

In this article we shall study the same resource allocation prob-
lem as in (Innerarity Imizcoz et al., 2024) but in a controlled
environment, where nutrient concentration in the external
medium of a cell can be set to any reasonable value at any time.
This question addresses the general objective of maximizing
biomass production in bioprocesses. In this situation, our con-
trol problem translates into an optimization of resources, not
only within the cell itself but also by controlling the culture
medium. The internal resource allocation of the cell can be
externally manipulated by different means, of which the most
promising one is probably optogenetics (Lindner and Diepold,
2022; Benisch et al., 2024).

The paper is organized as follows. We introduce the model of
interest in Section 2, where the environment is another control
variable. Then, we state the optimal control problem (OCP) in



Section 3. We address this OCP through Pontryagin’s Max-
imum Principle (PMP) in Section 4. Finally, we numerically
obtain the solution of the problem in Section 5.

2. THE MODEL

We use the self-replicator model first stated in (Giordano et al.,
2016), representing the reactions forming the metabolism of a
micro-organism. The external medium (𝐸𝑀 ) of this cell con-
tains a substrate which can be absorbed and transformed into
precursor metabolites (𝑃 ) by the metabolic machinery (𝑀) of
the cell. The gene expression machinery (𝑅) then converts
these precursors into the macromolecules forming 𝑅 and 𝑀 .
At each time 𝑡 , the proportion of precursors used to fabricate
𝑅 is denoted by the resource allocation parameter 𝛼 (𝑡). Figure
1 summarizes this process.

We can conveniently divide the variables by the total volume
of the cell, which is assumed to be proportional to the total
machinery mass,𝑉 = 𝛽 (𝑀 +𝑅), with 𝛽 > 0. We thus obtain the
variables 𝑝 , 𝑟 and𝑚, representing the respective concentration
of their uppercase variables. We also suppose that reactions
follow Michaelis-Menten dynamics. After normalization, these
variables obey the following equations.
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Fig. 1. Diagram of our model of bacterial metabolism. The
control variable 𝛼 represents the proportion of protein
precursors allocated to producing 𝑅. In this article, the
external medium 𝐸𝑀 is the other control variable.

¤𝑝 = (1 − 𝑟 )𝐸𝑀 − (1 + 𝑝) 𝑝

𝐾+𝑝 𝑟

¤𝑟 = (𝛼 − 𝑟 ) 𝑝

𝐾+𝑝 𝑟

¤𝑉 =
𝑝𝑟

𝐾+𝑝𝑉 ,

(1)

where𝑚 does not need to appear in these equations as it can
be defined by 𝑚 = 1 − 𝑟 . The resource allocation parameter
𝛼 (𝑡) ∈ [0, 1] is, as in (Giordano et al., 2016; Innerarity Imizcoz
et al., 2024), a control exerted on the system. The parameter 𝐾
is intrinsic to the metabolism of the cell, and will therefore
be treated as a constant. In (Giordano et al., 2016) the pa-
rameter 𝐸𝑀 , representing the richness of the external medium
(summing up a Michaelis Menten function of the substrate),
is considered to be constant. In our previous work (Innerar-
ity Imizcoz et al., 2024), we considered the problem where 𝐸𝑀
was a dynamic, periodic but fixed input. Here, we propose to
set it as a control 0 ≤ 𝐸𝑀 (𝑡) ≤ 𝐸max

𝑀
∀𝑡 , with 𝐸max

𝑀
> 0. Thus,

we have two controls on the system, 𝛼 and 𝐸𝑀 .

3. THE OPTIMAL CONTROL PROBLEM

We begin by considering the problem on a long, fixed time
interval 𝑡 ∈ [0,𝑇 ], with 𝑇 > 0. We set reasonable initial
conditions on the concentrations of metabolites in the cell

Fig. 2. The solution of the optimal control with fixed initial
conditions. In red, the resource allocation control 𝛼 and
in green, the environment 𝐸𝑀 . The bottom plot shows the
phase plot of (𝑝 , 𝑟 ), where we can see a periodic pattern
emerging.

(𝑝 , 𝑟 ) (0) = (𝑝0, 𝑟0), as well as the constraint on the average
substrate availability

1
𝑇

∫ 𝑇

0
𝐸𝑀 𝑑𝑡 = 𝐸𝑀 ,

for a previously fixed 𝐸𝑀 ∈ [0,𝐸max
𝑀

].
The admissible controls are measurable functions of the form
𝛼 : [0,𝑇 ] → [0, 1] and 𝐸𝑀 : [0,𝑇 ] →

[
0,𝐸max

𝑀

]
verifying the

condition on the average 𝐸𝑀 . The objective is, as in (Giordano
et al., 2016; Innerarity Imizcoz et al., 2024), the maximization
of the final volume of micro-organisms. Since

𝑉 (𝑡) = 𝑉 (0) exp
∫ 𝑡

0

𝑝𝑟

𝐾 + 𝑝 (𝜏) 𝑑𝜏 ∀𝑡 ≥ 0,

we can rewrite our objective as the maximization of the inte-
gral ∫ 𝑇

0
𝜇 (𝜏) = 𝑝𝑟

𝐾 + 𝑝 (𝜏) 𝑑𝜏 .

We will call the quantity 𝜇 (𝑡) the specific growth rate of the
cell.

The numerical solution (obtained with BOCOP software, see
below) of the resulting problem when the initial conditions are
(𝑝0, 𝑟0) = (0.024, 0.18) and the final time is 𝑇 = 15 is shown
in Figure 2. We can see a first transient arc, after which the
controls follow a periodic pattern, corresponding to a periodic
evolution of the state variables. Toward the end of the fixed
time interval, the controls exit this periodic pattern to consume
most of the protein precursors 𝑝 on a second transient arc. In
order to avoid these transient arcs, we will from now on set
the periodic constraints (𝑝 , 𝑟 ) (0) = (𝑝 , 𝑟 ) (𝑇 ).

4. PONTRYAGIN’S MAXIMUM PRINCIPLE

To integrate the constraint on the average nutrient availability
into our model, we define the variable 𝑒 following the differ-



ential equation
¤𝑒 = 1

𝑇
𝐸𝑀 ,

such that 1
𝑇

∫ 𝑇
0 𝐸𝑀 𝑑𝑡 = 𝑒 (𝑇 ) − 𝑒 (0).

The expanded system thus reads
¤𝑝 = (1 − 𝑟 )𝐸𝑀 − (1 + 𝑝) 𝑝

𝐾+𝑝 𝑟

¤𝑟 = (𝛼 − 𝑟 ) 𝑝

𝐾+𝑝 𝑟

¤𝑒 =
𝐸𝑀
𝑇

.
The Hamiltonian of this modified system is given by

𝐻 (·) = 𝜆𝑝 ¤𝑝 + 𝜆𝑟 ¤𝑟 + 𝜆𝑒 ¤𝑒 + 𝜆0 (
𝑝𝑟

𝐾 + 𝑝 )

= 𝜆𝑝

[
(1 − 𝑟 )𝐸𝑀 − (1 + 𝑝) 𝑝𝑟

𝐾 + 𝑝

]
+ 𝜆𝑟 (𝛼 − 𝑟 ) 𝑝𝑟

𝐾 + 𝑝

+ 𝜆𝑒
𝐸𝑀

𝑇
+ 𝜆0

𝑝𝑟

𝐾 + 𝑝 .

With 𝜆0 ≥ 0 and the adjoint variables 𝜆 = (𝜆𝑝 , 𝜆𝑟 , 𝜆𝑒 ) fulfilling
the equations

¤𝜆𝑝 = − 𝜕𝐻
𝜕𝑝

= 𝜆𝑝
𝑟 (2𝐾𝑝+𝐾+𝑝2 )

(𝐾+𝑝 )2 + 𝜆𝑟 (𝑟 − 𝛼) 𝐾𝑟
(𝐾+𝑝 )2

−𝜆0
𝐾𝑟

(𝐾+𝑝 )2

¤𝜆𝑟 = − 𝜕𝐻
𝜕𝑟

= 𝜆𝑝

[
𝐸𝑀 + (1+𝑝 )𝑝

𝐾+𝑝

]
+ 𝜆𝑟 𝑝 (2𝑟−𝛼 )𝐾+𝑝 − 𝜆0

𝑝

𝐾+𝑝

¤𝜆𝑒 = − 𝜕𝐻
𝜕𝑒

= 0.
Therefore, 𝜆𝑒 is a constant.

By the periodicity of the state, the adjoint variables must also
fulfill (𝜆𝑝 , 𝜆𝑟 ) (0) = (𝜆𝑝 , 𝜆𝑟 ) (𝑇 ).
We have the maximization condition

𝐻 (𝑡 ,𝑝 , 𝑟 , 𝜆, 𝜆0,𝛼 (𝑡),𝐸𝑀 (𝑡)) =
max

𝑢,𝑣∈[0,1]×[0,𝐸max
𝑀

]
𝐻 (𝑡 ,𝑝 , 𝑟 , 𝜆, 𝜆0,𝑢, 𝑣) a.e. on [0,+∞).

Finally, the Hamiltonian follows the equation
𝑑𝐻

𝑑𝑡
=
𝜕𝐻

𝜕𝑡
= 0,

and so is constant. Since the Hamiltonian is affine in both
controls, this gives the following proposition.
Proposition 4.1. The optimal control (𝛼opt,𝐸

opt
𝑀
), is given by

𝛼opt =


1 if Φ𝛼 > 0
0 if Φ𝛼 < 0
? if Φ𝛼 = 0

and

𝐸
opt
𝑀

=


𝐸max
𝑀

if Φ𝐸𝑀 > 0
0 if Φ𝐸𝑀 < 0
? if Φ𝐸𝑀 = 0,

where
Φ𝛼 = 𝜆𝑟 ,

Φ𝐸𝑀 = 𝜆𝑝 (1 − 𝑟 ) +
𝜆𝑒

𝑇
are the switching function of 𝛼 and 𝐸𝑀 , respectively. Addition-
ally, if 𝛼 = 0 on the singular arc for 𝐸𝑀 (a time interval 𝑡 ∈
[𝑡1, 𝑡2], with 𝑡1 < 𝑡2, over which Φ𝐸𝑀 = 0), the expression for this
control on this arc is given by

𝐸𝑀 = 𝐴/𝐵,
where
𝐴 = 𝑟 ((−(2𝑝 (𝐾 − 𝑟 + 1)) +𝐾 (𝑟 − 1) + 𝑝2 (𝑟 − 3)) (𝜆0 − 𝜆𝑟𝑟 )
+ 𝜆𝑝 (𝑝 + 1) (𝑝 (𝐾 − 2𝑟 + 2) −𝐾𝑟 +𝐾 − 𝑝2 (𝑟 − 2))),

𝐵 = 2(𝑟 − 1) (𝐾 + 𝑝) (𝜆𝑝 (𝐾 + (𝑝 + 1)𝑟 − 1)
+ (𝑟 − 1) (𝜆𝑟𝑟 − 𝜆0)).

Proof. These expressions come from the maximization condi-
tion on the Hamiltonian 𝐻 and from the fact that it is affine
in both controls. The expression on the singular arc 𝐸𝑠

𝑀
, which

depends on the state and adjoint state variables, can be ob-
tained by taking the second-order time derivative Φ′′

𝐸𝑀
of the

switching function for this control. Then it suffices to remark
that, if 𝐸𝑀 has a singular arc, then Φ′′

𝐸𝑀
is null on that arc, and

to solve for the value of 𝐸𝑀 . □

By the periodicity of all the variables of the extended system,
we have that the switching functions of the controls fulfill
Φ𝛼 (0) = Φ𝛼 (𝑇 ) and Φ𝐸𝑀 (0) = Φ𝐸𝑀 (𝑇 ). If either of this
function, which we will denote Φ, is non null at the initial time,
we can formulate the following property. If Φ(0) > 0, then the
associated control begins and ends by a bang arc where it takes
its maximal value. Symmetrically, if Φ(0) < 0, then the control
which depends on its sign will both begin and end by an arc
where it is equal to zero.

4.1 Singular arcs

We can have that 𝛼 has a singular arc, that 𝐸𝑀 is singular over
an interval, or both at the same time.

An arc where only 𝛼 is singular must be contained in a single
bang arc for 𝐸𝑀 . Indeed, if 𝛼 is singular over an interval then

𝜆𝑟 = 0 =⇒ 0 = ¤𝜆𝑟 = 𝜆𝑝
[
𝐸𝑀 + (1 + 𝑝)𝑝

𝐾 + 𝑝

]
− 𝜆0

𝑝

𝐾 + 𝑝 .

In particular, this last expression is continuous. If 𝐸𝑀 presents
some discontinuity, since all the other variables that appear
are continuous, it must be that 𝜆𝑝 = 0. Combining this with
the equation above, one finds that 𝜆0

𝑝

𝐾+𝑝 = 0, and therefore, by
the positivity of 𝑝 , we must have that 𝜆0 = 0, which contradicts
optimality conditions. So 𝐸𝑀 is constant over any singular arc
for 𝛼 unless 𝐸𝑀 is also singular.

Moreover, combining this equation with the fact that the
Hamiltonian is constant,

𝜆𝑝

[
(1 − 𝑟 )𝐸𝑀 − (1 + 𝑝) 𝑝𝑟

𝐾 + 𝑝

]
+ 𝜆𝑒

𝐸𝑀

𝑇
+ 𝜆0

𝑝𝑟

𝐾 + 𝑝 = constant,

we find that
(
𝜆𝑝 + 𝜆𝑒

𝑇

)
𝐸𝑀 is also constant over this arc. In

this case, since 𝐸𝑀 is constant, we have that ¤𝜆𝑝 = 0. We can
combine the equations ¤𝜆𝑟 = 0 and ¤𝜆𝑝 = 0 as in (Innerar-
ity Imizcoz et al., 2024) to find that in a singular arc 𝛼 , 𝑝 and 𝑟
must take specific values depending on the value of 𝐸𝑀 , which
are given in (Innerarity Imizcoz et al., 2024) under the names
𝛼 = 𝛼∗opt (𝐸𝑀 ) and (𝑝 , 𝑟 ) = (𝑝∗opt, 𝑟 ∗opt) (𝐸𝑀 ). Since for 𝐸𝑀 = 0 we
have 𝑝∗opt = 𝑟 ∗opt = 0, which is impossible by the positivity of
each of these variables, it must hold that over a singular arc for
𝛼 but not for 𝐸𝑀 , this last control must take its maximal value.



Likewise, if 𝐸𝑀 is in a singular arc and 𝛼 is in a bang-bang arc,
then 𝛼 cannot switch. As we have just done, we can prove this
by noticing that the switching function for 𝐸𝑀 is

Φ𝐸𝑀 = 𝜆𝑝 (1 − 𝑟 ) +
𝜆𝑒

𝑇
= 0

over this whole interval. Therefore,
0 = ¤Φ𝐸𝑀 = ¤𝜆𝑝 (1 − 𝑟 ) − 𝜆𝑝 ¤𝑟
=(1 − 𝑟 )·[
𝜆𝑝
𝑟 (2𝐾𝑝 +𝐾 + 𝑝2)

(𝐾 + 𝑝)2 + 𝜆𝑟 (𝑟 − 𝛼)
𝐾𝑟

(𝐾 + 𝑝)2 − 𝜆0
𝐾𝑟

(𝐾 + 𝑝)2

]
− 𝜆𝑝 (𝛼 − 𝑟 ) 𝑝𝑟

𝐾 + 𝑝 .

In particular, this expression is continuous, and thus if 𝛼 is
discontinuous at some time 𝑡 , we must have that the coefficient
of this control is null, i.e.(

−𝜆𝑟
𝐾𝑟 (1 − 𝑟 )
(𝐾 + 𝑝)2 − 𝜆𝑝

𝑝𝑟

𝐾 + 𝑝

)
(𝑡) = 0.

Since 𝛼 can only be discontinuous if it switches, or over a
singular arc, which in any case implies that 𝜆𝑟 = 0, this implies
that 𝜆𝑟 (𝑡) = 𝜆𝑝 (𝑡) = 0. Since the switching function of 𝐸𝑀 is
zero, we also have that 𝜆𝑒 (𝑡) = 0. Finally, by the expression
of ¤𝐸𝑀 , we find that 𝜆0 = 0 too. Therefore, (𝜆, 𝜆0) = 0,
which contradicts the conditions of Pontryagin’s Maximum
Principle. We have just proved that over any singular arc for
𝐸𝑀 , the resource allocation control 𝛼 must be continuous. In
particular, if𝛼 is not singular, then the singular arc for 𝐸𝑀 must
be contained in a single bang arc for 𝛼 . This is in accordance
with what we will observe in the following section.

5. NUMERICAL RESULTS

We add 𝑒 (0) = 0 and 𝑒 (𝑇 ) ≤ 𝐸𝑀 to the previously defined
periodic boundary conditions (𝑝 , 𝑟 ) (0) = (𝑝 , 𝑟 ) (𝑇 ), so that
1
𝑇

∫ 𝑇
0 𝐸𝑀 𝑑𝑡 = 𝑒 (𝑇 ) − 𝑒 (0) ≤ 𝐸𝑀 , i.e. one does not consume

more resources than available. We shall see that this is, in
practice, equivalent to simply setting 𝑒 (𝑇 ) = 𝐸𝑀 , as the optimal
strategy is logically to use all available resources.

We have solved this problem using the numerical resolution
software BOCOP (Team Commands, 2017), with a final time of
𝑇 = 5 and the constant 𝐾 = 0.003 given by (Giordano et al.,
2016), together with the constants 𝐸𝑀 = 0.6 and 𝐸max

𝑀
= 1.

The numerical parameters used are 𝑁 = 4000 time steps and a
relative tolerance of 10−14.

5.1 Resolution of the OCP in fixed final time

We observe in Figure 3 that the controls follow a bang-bang
structure, taking alternatively their maximal and minimal val-
ues. Additionally, the environment 𝐸𝑀 presents a singular arc,
which is contained in a single bang arc for𝛼 , in agreement with
our theoretical analysis. We can also appreciate an apparent
periodic pattern, with a subperiod about 𝑇 ≈ 0.6 emerging.
The optimality of a periodic environment with respect to an
equivalent constant one (here 𝐸𝑀 = 𝐸𝑀 ) is a property that has
been observed in a number of biological optimal control prob-
lems, such as (Ali Al-Radhawi et al., 2021). We will investigate
this subperiod in the following subsection.
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Fig. 3. The two controls 𝛼 (red) and 𝐸𝑀 (green) for a fixed long
period and periodic boundary conditions. We observe a
periodic pattern appearing.

5.2 Free final time OCP

We define the problem where the final time 𝑇 is an optimiza-
tion parameter with the objective of finding the origin of the
subperiod we observed in the previous subsection. We seek to
find

(𝛼opt,𝐸𝑀opt,𝑇opt) maximizing 𝜇 =
1
𝑇opt

∫ 𝑇opt

0
𝜇 (𝜏) 𝑑𝜏 ,

where 𝑇opt > 0. We call 𝜇 the average growth rate of the cell.

In order to integrate 𝑇 into the equations describing the sys-
tem, we normalize it by dividing the time variable by𝑇 , so that
the equivalent system reads

𝑑𝑝

𝑑𝑡
(𝑡 = 𝑡/𝑇 ) = 𝑇

[
(1 − 𝑟 )𝐸𝑀 − (1 + 𝑝) 𝑝

𝐾+𝑝 𝑟
]

𝑑𝑟
𝑑𝑡
(𝑡 = 𝑡/𝑇 ) = 𝑇

[
(𝛼 − 𝑟 ) 𝑝

𝐾+𝑝 𝑟
]

𝑑𝑉
𝑑𝑡

(𝑡 = 𝑡/𝑇 ) = 𝑇
𝑝𝑟

𝐾+𝑝𝑉
𝑑𝑒
𝑑𝑡
(𝑡 = 𝑡/𝑇 ) = 𝐸𝑀 ,

(2)

where the boundary conditions are now (𝑝 , 𝑟 ) (0) = (𝑝 , 𝑟 ) (1),
𝑒 (0) = 0 and 𝑒 (1) ≤ 𝐸𝑀 . The maximization objective can be
rewritten as

𝜇 =
1
𝑇opt

∫ 𝑇opt

0
𝜇 (𝜏 = 𝑡) 𝑑𝜏 =

∫ 1

0
𝜇 (𝜏 = 𝑇𝑡) 𝑑𝑡 .

We notice that, if the tuple (𝛼opt,𝐸𝑀opt,𝑇opt) is a solution of the
problem, then ((𝛼opt,𝐸𝑀opt) (𝑡 (mod 𝑇 )),𝑛 ·𝑇opt) is also a solu-
tion ∀𝑛 ∈ 𝑁 . In order to obtain a unique solution for the prob-
lem, we define𝑇opt as the smallest𝑇 that maximizes the average
growth rate. As we observed a subperiod of about𝑇obs ≈ 0.6 in
Figure 3, we set the bound 𝑇 ∈ [0.3, 0.9] = [𝑇obs/2, 3𝑇obs/2].
The numerical resolution of this problem gives the controls
shown in Figure 4, with 𝑇opt ≈ 0.656.

If instead we let 𝑇 ∈ [0.9, 1.5] = [3𝑇obs/2, 5𝑇obs/2] we obtain
the controls shown in Figure 5, with𝑇 ≈ 1.313 ≈ 2𝑇opt. We see
how the pattern from Figure 4 is repeated twice in this case.

The difference between the resulting average growth rates of
both problems, the one with a fixed final time and the one
with a free final time is of the order of 10−6, which means
that repeating the solution to this free final time problem is
indeed the optimal strategy in long time. We also observe that
the subperiod appearing in the solution of our original fixed-
time problem corresponds to the solution of the free-time one.
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Fig. 4. The two controls 𝛼 and 𝐸𝑀 of the solution of the free-
time problem. We observe the same periodic pattern as in
Figure 3.
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Fig. 5. The two controls 𝛼 and 𝐸𝑀 for a free longer period. We
observe the same periodic pattern repeating twice.

Fig. 6. Plot of the control 𝐸𝑀 (green) and of the analytical
value for its singular arc (gray). Both plots coincide on
the singular arc of 𝐸𝑀 . On the bottom plot, Φ𝐸𝑀 , the
switching function of 𝐸𝑀 . The interval over which Φ𝐸𝑀
is zero corresponds to the singular arc of 𝐸𝑀 .

5.3 The singular arc of 𝐸𝑀

The plot of the environmental control 𝐸𝑀 presents a singular
arc, both in Figure 3 and 4, which is contained in a bang arc
𝛼 = 0 for the other control. By Theorem 4.1, we have an
expression depending on the state and adjoint state variables
for the value of 𝐸𝑀 in this singular arc. We have plotted the
value of this expression given by the numerical resolution of
the problem with free final time in Figure 6, together with
the computed value of the environmental control. Both plots
overlap on the singular arc of 𝐸𝑀 .

6. CONCLUSION

In this work, we studied the optimization of cellular growth
of micro-organisms living in a controlled environment. We
modified the environmental input of the model proposed in
(Giordano et al., 2016) to set it as a control variable on the
system, in order to better represent human-controlled envi-
ronments, such as bio-reactors. This control was considered
in addition to the cellular internal resource allocation control
which was introduced in (Giordano et al., 2016).

We defined an optimal control problem, which we theoretically
studied using Pontryagin’s Maximum Principle (PMP). Using
this theorem, we proved that the optimal resource allocation
control follows a bang-bang structure. We also showed that the
environmental control must be bang-singular-bang, and found
an analytical expression for the value of its singular arc, which
depends on the state and costate variables given by the PMP.

We computed the solution of the OCP, and observed the emer-
gence of the same subperiod in both controls. We solved the
related periodic OCP in free time, whose solution coincides
with the subperiod we had previously observed.

We numerically observed a singular arc for the environmental
control, which was included in a bang arc for the resource
allocation control. We compared the analytical expression for
the value of this singular arc found previously with the value
of the control given by the numerical resolution of the OCP,
and found that they coincide.

This article highlights the surprising fact that a periodic envi-
ronment can emerge from a controlled one and result in higher
growth rates than an equivalent constant one. Moreover, the
optimal controls present an intrinsic optimal period which is
independent of the final time of the OCP. In a future work,
we intend to deepen our study of this optimal period, and find
biological reasons to explain its emergence.
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