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Abstract:
Mechanical faults, mud loss, and insufficient cuttings transport bear significant costs and can
appear at unpredictable times during drilling operations. Early detection and diagnosis of such
faults to support decisions is essential to avoid severe consequences and lengthy delays. We
propose a novel system for Drilling Fault Diagnosis that combines principles of Physics-Informed
Neural Networks (PINN) and Multitask Learning (MTL). Since measurements down-hole in the
well are rarely available in real time, our proposed system uses measurements of flow and pressure
at the drilling rig, only, from which type of fault and accompanying diagnostics such as depth
in the well of the fault and its severity are predicted. State-of-the-art strategies of MTL with
PINNs are deployed for effective Neural Network (NN) training. Generalization performance is
shown to be high as evaluated using randomly generated values for the diagnostic variables.
Drilling data collected during normal drilling-ahead conditions may be utilized in the training
phase to identify uncertain characteristics of the well, thereby increasing the quality of the
physics prior available to the PINN, and in turn improving prediction accuracy of faults. The
potential usefulness of the method is illustrated in a simulation, admittedly under quite ideal
conditions.
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1. INTRODUCTION

Fault Detection and Diagnosis (FDD) is a general field
of engineering that is tasked with detecting the presence
of a system fault (i.e., specifying which one is active)
and diagnosing it (i.e., quantifying and localizing it).
To this day, accurate and reliable FDD remains a chal-
lenge. Many traditional techniques have been developed
for FDD (Isermann (2006)). These can be divided in data-
based and model-based techniques. Data-based techniques
(Venkatasubramanian et al. (2003)) leverage historic pro-
cess knowledge. In factories, for instance, data from prior
faults can be used to detect faults or even predict faults
before they happen. In the drilling case, no historic data
is available, because the ”process” is new for every drilling
operation. Most relevant to the present work, therefore,
are the model-based methods. Within this category, it is
common to design a bank of observers (Zhang (2000)),
which may be based on Kalman filters, such as for ex-
ample in Jiang et al. (2020). The individual faults are
incorporated into separate models for which observers are
designed that estimate process states and predict process
outputs. The difference between the outputs predicted by
the observers and the actual process outputs, referred to as
residuals, are then analyzed for statistical changes, which
then identify the faults. The observers and the statistical

change detection algorithm must be carefully designed.
An example of an application of this method to drilling
can be found in Willersrud et al. (2015). A drawback of
the results in Willersrud et al. (2015) is that they rely on
measurements taken down-hole the well, which are rarely
available in practice. In the present work, we rely on top-
side measurements taken at the rig, only.

Rapid growth of data collection and data-based techniques
has driven significant research in Deep Learning (DL),
making it a viable alternative to traditional methods for
many applications. Improvements in DL have resulted in
the increase of prediction accuracy, achievement of ex-
plainability, and reduction of training time and memory
utilization (Alzubaidi et al. (2021)). Multitask Learning
(MTL) and Physics-Informed Neural Networks (PINNs)
are techniques that can enhance generalization perfor-
mance and data efficiency. PINNs improve the data ef-
ficiency of a Machine Learning (ML) algorithm (Raissi
et al. (2019)) by incorporating mathematical models that
help the NN encode underlying physics that should hold
true. Data can be combined with physics priors in this
manner, or the physics prior may entirely replace process
measurement data. The latter is the attractive option for
drilling operations since historic field data is not available
in this case.



MTL NNs (Caruana (1997)) are types of NNs that are
being trained for multiple separate prediction tasks, using
a set of shared and task-specialized parameters. As a Deep
Neural Network (DNN), analysis of convergence guaran-
tees and appropriateness for the parameter estimation
scheme is not applicable, making it suitable for quicker
and less specialized implementation. MTL is still in an
early stage of testing on FDD problems. The current work
serves as a starting point for investigating the application
of MTL and PINNs for FDD.

In numerous DL training cases, there are prediction tasks
that are inter-related through a latent/unknown mecha-
nism which can be encoded in a MTL Network. Learning
each training task separately with separate NNs would
not only require calculation the forward passes of shared
features as many times as the separate task-networks,
but they would also miss encoding the common features
leading to poorer generalization. For example, this is the
case of the application in Wang et al. (2021), where vi-
bration signals in rolling bearings are taken into account,
thus enriching the information encoded in the shared fea-
tures. MTL can offer enhancement of learning performance
through the application of auxiliary tasks. This is the case
of Amyar et al. (2020), wherein the COVID classification
task is added to enhance feature representation of the main
tasks. In addition, MTL can be useful in cases wherein the
sensor information is not as rich as required for successful
Single Task Learning (STL), as stressed in Wang et al.
(2021).

In the present work, the input training data was generated
using a steady-state drilling hydraulics model, therefore
we consider it a type of PINN. Producing time-series
and leveraging automatic differentiation is a subsequent
goal for continuation of this work. The PINN approach
resembles the model-based approach in the sense that
separate models for each fault are required to provide the
training data (”Physics Information”). Observer design is
not explicitly needed, since feature representations of the
various models can be shared in the NN. What is more, the
statistical assessment of residuals in the case of design bank
of observers is in principle incorporated into and learned
by the NN. We considered three (3) different flow-related
faults, which are described at the beginning of Section 3.

Despite not being mentioned in analytic overviews with
respect to NN variants and FDD applications such as Qiu
et al. (2023), a few publications on Drilling FDD using
NNs and PINNs exist. For example, in Jeong et al. (2020)
and Jan et al. (2022), Convolutional NNs are applied, in
order to learn the faults given multi-channel time series as
inputs. Jeong et al. (2020) and Jan et al. (2022) focus solely
on the Washout Fault Detection and are the only published
works that apply PINNs and MTL for Drilling applications
up to our knowledge. Specifically, in Jan et al. (2022), the
different tasks are the classification task, and the task of
Physical Constraints. However, the Physics Prior involved
in the estimation is conditioned to a specific parametric
model, which limits the generality of the NN.

Using a slight variation of the typical MTL architecture,
we were able to train a DNN that can diagnose the faults
with a high level of accuracy, both in the training set,
validation sets, and relatively low training time (around

20 minutes) for 800 epochs. This was achieved through
intense overparameterization, large NN depths, and the
leveraging of last-layer, hard parameter sharing MTL. Up
to our knowledge, this work introduces the first MTL-
PINN algorithm for Fault-Diagnosis of multiple different
drilling faults. What is more, the algorithm is data efficient
in that it requires only topside pump pressure and return
flow measurements with only 300 training datapoints and
achieves high generalization performance. This is a clear
advantage compared to existing solutions that require
more measurements across the drillstring.

2. FDD WITH PINN

The process we consider has input u ∈ RDu and output
x ∈ RDx , which are both measured at every time t. At any
time, one of T different faults may occur in the process,
affecting the relationship between u and x. Every fault
τ ∈ {1, . . . , T} can be characterized by dτ ∈ RDτ , referred
to as the diagnostics of the fault. In the application under
study, the values are Dx = 2, Du = 3, D1 = D2 = 2,
and D3 = 1. Among the τ indices, one corresponds to the
fault-free state, in which the process is considered to be
operating under nominal conditions. We assume that we
have at our disposal mathematical models describing the
relationship between the input and the output, given the
diagnostics. In other words, it is assumed that the models

x = fτ (u, dτ ), τ ∈ 1, . . . , T (1)

are available. We assume further, that for fixed dτ , dτ can
be determined uniquely from a set of sufficiently varying
outputs xi, obtained by varying the input u in a pre-
determined way ui, all for i ∈ {1, . . . ,M}. The main
idea of the paper is to train a MTL-PINN to predict
the diagnostics, given such a set of outputs from the
process. Several potential configurations of the NN can be
considered, and three options are sketched in Figure 1.
We distinguish in particular between a-priori-detection
(Figure 1-a)) and simultaneous detection (Figure 1 b-c).
In the former case, the prediction of type of fault, that is
the index τ , is provided by a separate classification NN,
while in the latter case, it is incorporated into the network
for the diagnostics. Quite often, detecting the type of fault
is feasible with less variation in the data than what is
required for predicting the diagnostics. Since varying the
input to the process for collecting varying output data is
associated with a cost, it is desirable to only do so after
the occurrence of a fault has been detected, and avoid
disturbing the process when it operates normally. This is
the case in the drilling application, which motivates this
work and is presented in the next section, and therefore
we focus on the a-priori configuration of Figure 1-a) in the
following.

It is assumed that no real data is available from the process
under faulty operation, and only the models of (1) can
be used for the NN training. For this reason, the concept
of PINNs is employed, incorporating the models of the
various faults into the loss function. Thus, we train the
MTL-PINN using the loss function



L =

T∑
τ=1

wτ

∑
d∼Dτ

Lτ (d̂, d), d̂ = fτ
o (fsh(xτ )) (2)

where xτ = [fτ (u1, d), . . . , fτ (uM , d)]T , fsh(·) denotes the
network evaluation producing shared feature representa-
tions, fτ

o (·) denotes the task-specific network evaluation
producing dτ from the shared feature representations and
Dτ = [0, 1]Dτ ⊂ RDτ . The notation d ∼ Dτ indicates
uniform sampling of d from Dτ . The first summation in (2)
renders the problem a MTL problem, with task weights wτ

that can be optionally dictated by a scheduling algorithm.

Lτ (d̂, d) is the functional form of the loss term for each

task (for example the MSE functional, Lτ (d̂, d) = |d̂ −
d|2/|Dτ |). Notice that the effect of fτ

o is that the loss term
for each task is calculated by deactivating (masking) the
other terms, which constitutes a slight modification from
the typical last-layer MTL NN.

NN NN

b)a)

("1-h")

NN
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("1-h")

Fig. 1. Alternative designs for Fault Detection schemes.
1-h: ”one hot encoding”

3. APPLICATION TO DRILLING

The drilling process is sketched below. Measured quantities
are denoted with the superscript: m and the faults given in
red font. Drilling fluid (”mud”) is pumped through the drill
string towards the drill bit, and then returns through the
annulus into the Fluid Handling System (FHS), where it is
cleaned and circulated back into the well. The pump rate
qp is the input to the process (u = qp), resulting in a pump
pressure pp and return flow qr as outputs (x = [pp, qr]).
The relationship between the input and output depends
on whether a fault has occurred. The FHS is assumed open
to the atmosphere on the annulus side, so the pressure at
that boundary is 1 bar. Managed Pressure Drilling (MPD)
can easily be accommodated provided pressure at the inlet
of the MPD choke and flow rate of the backpressure pump
are measured.

A Washout happens
when the flow shortcuts
from the drillstring to
the annulus due to a
crack or hole in the
string. Its diagnostics
are crack location and
size, denoted as zWO and
CWO. Mud loss occurs
when there is a leakage
of mud from the well
into the reservoir. The
diagnostics of a mud loss
are reservoir pressure and
a so-called production
index, denoted as pr and
kI .

Pack-off is a partial or complete blocking of the recir-
culation flow. It is related to insufficient cleaning so that
cuttings remain in the well. The diagnostic of a pack-off is
the pressure drop across it. More details on the formulation
of the Faults is given in the Appendix.

All diagnostics are normalized in the interval [0, 1]. The
relationships between input and output subject to these
three types of faults are given in Appendix A. Here,
we will simply refer to them as f1, f2, f3 for Washout,
Mud Loss and Pack-Off, respectively. The diagnostics of
the faults can be determined given measurements from
at least two different inputs. We select three different
inputs, that is M = 3. Therefore, the input to the PINN

is [x1, x2, x3] = [p
(1)
p , q

(1)
r , p

(2)
p , q

(2)
r , p

(3)
p , q

(3)
r ]T obtained for

[u1, u2, u3] = [q
(1)
p , q

(2)
p , q

(3)
p ]T = [0.6, 1, 1.4]T · 103 l/min.

Correspondingly, the outputs of the PINN are d1 ∈
[0, 1]2, d2 ∈ [0, 1]2, d3 ∈ [0, 1], which are the normalized
diagnostics for the three individual type of faults. These
definitions are in line with the network structure shown
in Figure 1-a. The type of fault is easily identified during
drilling ahead, motivating for using network structure of
Figure 1-a rather than b-c. For mud loss, one will observe
that the return flow decreases and becomes less than the
pump flow. In the event of a wash out, the return flow
remains the same while the pump pressure decreases, and
for pack-off, the return flow remains the same while the
pump pressure increases.

We used a fully connected feedforward NN which was
trained according to the parameters in Table 1. Since
real data for testing is not available, synthetic input data
xτ was generated using the models (1) with diagnos-

tics dτ drawn uniformly from Dτ . The predictions d̂τ =
fτ
o (fsh(xτ )) provided by evaluating the PINN were sub-
sequently compared with dτ . In other words, the testing
used noise-free data generated from the same models as
those used for training.

Table 1. Training parameters

Parameter Value

Batch type Full batch
Number of data-
points

{Normal: 1, Washout: 100, Packoff: 100,
Mud loss: 100}

NN structure [6, 50, 45, 40, 35, 30, 25, 8]

Activation func-
tions

GELU

Loss function MSE
MTL training
strategies tested

Cosine-Regularization (Suteu and Guo
(2019)), Gradient Normalization (Chen
et al. (2017))

Hardware NVIDIA RTX A2000 Laptop GPU (cuda)
with PyTorch

Enriching data through transformation: The Mud-
loss training dataset required transformation, because the
original data was not rich enough and the optimizer would
get trapped into local minima of high training error, even
when trained without the other tasks (Figure 2). Given
a sufficiently dense training dataset, the samples can be
transformed using interpolated data from a data-grid of
the transformed data, and then used as inputs for training
the NN. This renders inference non-trivial, since it is
important to know which Fault is active (Detection) and



Fig. 2. Mud loss scatterplots for randomly generated
(simulated) validation data. Notice the kI predictions
after training (without the other tasks) without the
transformation.

that the training data was sufficiently rich in order to
create a representative data grid for interpolation.

The Mud-loss data was numerically transformed through
the derivative of the function that computes the inputs.
The transformation type is described by: f ′

new(x) =
G(f ′(x)). Numerous forms for the function G were
attempted, and simply by setting G(·) =

√
·, the

curvature of the data would become ”richer”, thus
making the learning problem better conditioned. The
3D curves of the transformation are depicted in Fig-
ure 3. Specifically, the dataset (kI , pr, pp(kI , pr)) (Ap-
pendix A.2) was transformed by conditioning the new

function (ptrp ): ∂ptrp /∂kI =
√
|∂pp/∂kI |. Through (trape-

zoidal) integration, we obtained the transformed data-grid:
(kI , pr, p

tr
p (kI , pr)). Then, to generate the training data, we

simply used this data-grid and performed linear interpo-
lation. Admittedly, this introduces the need for a dense
dataset, such that the interpolation result is sufficiently
close to the correct function.

Gradient manipulation-based training strategies
for MTL. We explored popular MTL training algorithms
in order to increase the accuracy and training speed of
the NN. Since (up to our knowledge) this work constitutes
the first attempt to perform MTL for Fault Diagnosis in
Drilling, it is a natural question to pursue this goal. The
MTL training strategies utilized for this work can be found
in Table 1.

4. RESULTS AND DISCUSSION

Using the training parameters from Table 1, we have suc-
cessfully trained a DNN to perform Fault Diagnosis. We
utilized state-of-the-art MTL training strategies such as
the Cosine Regularization algorithm (CosReg) (Suteu and
Guo (2019)) and Gradient Normalization (GradNorm)
(Chen et al. (2017)). The list below enumerates key ob-
servations from our simulations.

(1) DNN, AdamW, exponential Learning Rate.
High accuracy result, both in training dataset and
randomly generated validation sets.

(2) DNN, AdamW, exponential Learning Rate +
CosReg. Result slightly better than in 1. However,
the improvement does not justify the addition of the
α hyperparameter and the increase in training time.

(3) DNN, AdamW, exponential Learning Rate +
GradNorm. Algorithm does not converge to a sat-
isfactory solution. Adjusting the other NN hyperpa-

rameters was not tested, since results were already
satisfactory without further tuning.

(4) DNN, AdamHD, exponential Learning Rate.
AdamHD often leads to a lower training error, as it
adapts to the current training speed. However, this
approach increases training time due to an additional
backpropagation step. The training error dynamics
are highly sensitive to the tuning of the β hyper-
parameter (Baydin et al. (2017)), particularly with
ReLU-like activation functions, requiring a small β
value. This resulted in slower training than with the
standard exponential learning rate.

As can be seen in Figure 4 at the subplots corresponding
to the case of transformed Mud Loss data (the accompa-
nying colorbars represent the CWO values), the prediction
accuracy is particularly high (the points in the scatterplot
are closely approaching the 1-1 line), with a few expected
and acceptable deviations. Localization becomes challeng-
ing for small values of CWO since zWO becomes highly
sensitive w.r.t. CWO in those value regions. In a sense,
the uncertainty/variance in the location estimate increases
as it tends towards the case of no washout (alternatively
zero pump flow rate) where the location probability distri-
bution is completely uniform. Utilization of CosReg only
slightly improved the prediction accuracy for each task,
presumably due to the fact that the task weights are
naturally tending towards orthogonalization.

Effect of transformation. The transformation function
led to a faster and more accurate learning for the Mud-
loss fault compared to the other two Faults. However,
including the Mud-loss fault into the learning problem
leads to slower learning and slightly less accurate results
for the other two tasks compared to when training them
without including Mud-loss, especially for the Washout
task (Figure 4). The poor results from Figure 2 can be
somewhat surprising at first glance, given that a NN
performs nonlinear transformations of the input data.
On the other hand, it is widely known that certain pre-
training transformations are important and can result in
performance improvements (Shi (2000)).

5. CONCLUSIONS AND FUTURE WORK

Through this work, we have developed a PINN-MTL that
is able to perform accurate diagnosis of each fault by only
utilizing a single NN with a modification of the typical
MTL architecture. It provided the first step towards using
singular NNs that can cover a broader spectrum of faults,
and in future work, problem-specific parameters. The lack
of significant improvements in accuracy, training time, or
network parameter efficiency through the utilization of
task-gradient related MTL training methods compared
to vanilla MTL training was surprising, given the docu-
mented benefits and thorough tests of such methods in
the literature.

A natural extension of this work would be to include data
generated by different well characteristics (such as friction
characteristics and drillstring lengths) and develop an ap-
propriate NN architecture. Since PINNs are powerful when
it comes to learning from time series, a natural extension
of the current work would be to incorporate time-series



(a) Transformed: angle 1 (b) Transformed: angle 2 (c) Untransformed: angle 1 (d) Untransformed: angle 2

Fig. 3. qp = 600 l/min, qp = 1000 l/min, qp = 1400 l/min. Mud-loss dataset transformation. The x and y axes
represent the diagnostic variables of mud-loss and the z-axis the output of pp (see Appendix A.2). Notice how the
curvature in the transformed case is ”richer”.

Fig. 4. Scatterplots for randomly generated data. The separate figures pertain to diagnostic variables (see Appendix for
their meaning), and ”CR: ON” means that the CosReg algorithm was used. All the diagnostic variables are scaled
to be in [0,1].

data, which can help eliminate the need of switching to
a different flow operation point, thus further automating
and accelerating the process. To render the developed
algorithm more practical, elaborate testing using state-of-
the-art drilling simulators can be carried out. In addition,
the success of the transformation applied in the Mud Loss

data leads to the natural question; ”can we train a NN
to learn how to optimally transform the input data?”. Up
to our knowledge, there is no existing work applying this
idea. Injecting noise is an interesting challenge, since the
algorithm would have to avoid random noise amplification.
Finally, it became evident that more efficient learning



rate schedulers can significantly reduce the training time,
rendering this direction a reasonable continuation of the
current work.

Appendix A. DRILLING MODEL EQUATIONS

The pressure losses in the system are

∆ppipe(l, q) = l(ap · q2 + bp · q + cp)

∆panl(l, q) = l(aa · q2 + ba · q + ca)

∆pbit(q) = ρ (q/cbit)
2

(A.1)

where l is length, q is flow, ρ is density of the mud,
and cbit characterizes the bit. The coefficients related to
viscous drag, ap, bp, cp, aa, ba, ca, are assumed known but
could potentially be learned by the network based on
measurements from the process. Next, we provide the
models for the three types of faults.

A.1 Washout

We model the washout as

qWO = CWO

√
∆pz/ρ (A.2)

where CWO is a constant characterizing the crack or hole
in the pipe, and ∆pz is the pressure difference between
the pipe and annulus at the location zWO ∈ (0, L) of the
washout. That is,

∆pz = ∆ppipe(qp − qWO, L− zWO)−∆pbit(qp − qWO)

−∆pann(qp − qWO, L− zWO). (A.3)

The pump pressure is given by

pp = patm +∆pann(qp, zWO) + ∆pz +∆ppipe(qp, zWO),
(A.4)

and the return flow is qr = qp. The diagnostics of the
washout are z and CWO.

A.2 Mud loss

We model the mud loss as

qml = kI(pbit − pr), (A.5)

where pr is the reservoir pressure, kI is a constant related
to the permeability of the reservoir, and pbit is the pressure
at the bottom of the well. That is

pbit = patm +∆pann(qp − qml, L). (A.6)

The pump pressure is in this case given by

pp = pbit +∆pbit(qp) + ∆ppipe(qp, L), (A.7)

and the return flow is qr = qp − qml. The diagnostics of
the mud loss are kI and pr.

A.3 Pack-off

The pressure loss across the pack-off is modeled as

∆ppo = ρ · q2p/C2
PO (A.8)

where CPO is a constant characterizing the restriction in
the annulus due to the pack-off. The pump pressure is in
this case given by

pp = patm +∆pann(qp, L) + ∆ppo
+∆pbit(qp) + ∆ppipe(qp, L), (A.9)

and the return flow is qr = qp. The diagnostic of the pack-
off is CPO.
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