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Abstract: In this work, we propose a novel martingale-based distributionally robust regression
(MDRR) approach to system identification of uncertain dynamical systems. Under data
uncertainty, the ridge regression offers a useful remedy, which can be interpreted as a min-
max problem through the lens of distributionally robust optimization. However, ignoring the
specific structural properties, RR amounts to robustifying against unrealistic perturbations with
evident dynamics and thus leads to over-conservatism. By considering the Hankel structure of
uncertainty and incorporating martingale constraints into the Wasserstein ambiguity set, the
realistic data perturbation pattern can be effectively captured, and this helps to considerably
alleviate the conservatism. The induced min-max problem is solved by a subgradient-based
algorithm. Empirical results on both simulation and real-world datasets validate the effectiveness
of MDRR, showcasing its out-performance over generic regression models and ease of parameter
calibration.
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1. INTRODUCTION

System identification (SID) seeks to build mathematical
models of dynamic systems from observed input and
output data (Ljung, 1999). It has been widely adopted
as a data-driven strategy across various fields including
control design (Huang and Kadali, 2008), fault detection
(Ding, 2008), and so on. The success of SID lies in
that the dynamic information of a system is carried
by its input and output signals. However, the observed
data are inevitably subject to uncertainty, primarily due
to the noise or disturbance during the data collection
process, and this can compromise the efficacy of SID. For
example, it was evidenced in Lyandres et al. (2010) that
conducting multiple identification experiments may yield
rather different results.

As a foundational prototype of SID, the least squares
(LS) method derives parameter estimates by minimizing
the squared errors between measured and predicted out-
puts. It inherently assumes that the errors as a source
of uncertainty are independent and identically distributed
(i.i.d.) with constant variance, which is the prerequisite for
unbiasedness and consistency of LS estimates. Despite its
simplicity and asymptotic properties, LS has some flaws,
especially when tackling noisy data or highly correlated
input variables. In these scenarios, LS may suffer from
overfitting, which compromises model performance on un-
seen data. Regularization techniques offer a useful rem-
edy to alleviate these issues and improve model stability.
A prevalent option is the ridge regression (RR), which
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extends LS by adding an ℓ2-regularizer to the objective
function.

Many recent works have established that the regularization
amounts to robustification under certain conditions (Bert-
simas and Copenhaver, 2018). The distributionally robust
optimization (DRO) paradigm (Rahimian and Mehrotra,
2022; Boskos et al., 2020), a promising direction in op-
erations research, has provided deep insights into con-
ventional regularization techniques (Li et al., 2022; Chen
and Paschalidis, 2018). That is, a regularized problem can
be typically interpreted as robustifying against adversar-
ial perturbations within the observed data. This can be
formulated into a min-max optimization problem aimed
at minimizing the loss function over model parameters
while an adversary maximizes the negative impact of
distributional shifts by probing worst-case distributions.
Li et al. (2022) showcased that the generic RR enjoys
distributional robustness in the sense of optimal transport
with constraints on conditional expectations.

Unlike ordinary LS based on the i.i.d. assumption, the
regressor matrix in SID exhibits a Hankel structure. Thus,
unrealistic cases of perturbations are considered by tra-
ditional regularization methods, including those having
evident dynamics, and this can induce conservatism. To
address this, we propose a novel regularized regression
method for the SID of uncertain dynamic systems from
a new DRO viewpoint. The proposed approach, which is
called martingale-based distributionally robust regression
(MDRR), considers both the Hankel structure of uncer-
tainty and admissible perturbations without evident dy-
namics, thereby yielding reduced conservatism of generic



regularizers such as RR. To be specific, adding martingale
constraints is helpful for excluding perturbations with evi-
dent dynamics and thus better characterizing the true data
distribution. In this way, the out-of-sample generalization
performance may be improved. Nevertheless, the induced
min-max optimization problem is more complex than that
of RR and no longer admits a convex reformulation. Thus,
a tailored subgradient-based algorithm is developed. Using
data collected from a simulated closed-loop system and a
real-world glass furnace system, we showcase the superior
performance of MDRR in handling complicated noise-
corruptions in dynamic data and desirable generalization
capability. Besides, as compared to the conventional RR,
our MDRR shows better insensitivity to the choice of
hyper-parameters.

The remainder of this article unfolds as follows. Section
2 revisits the foundational notions of conventional (regu-
larized) LS identification methods and Wasserstein DRO.
Section 3 presents the formulation of MDRR. Two case
studies on a simulated closed-loop system and a glass
furnace are investigated in Section 4, followed by final
conclusions.

Notations: We consider the Euclidean space Rn, with Eu-
clidean norm ∥·∥. Let P(Rn) be the space of (Borel) prob-
ability measures over Rn. Given a sequence {u(k)}Nk=1 ∈
Rd, u(k:l) denotes the restriction of u to the interval

[k, l] as col(u(k),u(k + 1), · · · ,u(l)) = [u(k)⊤ u(k +
1)⊤ · · · u(l)⊤]⊤, and u(l:−1:k) denotes the restriction of
u to the interval [k, l] in reverse order as col(u(l),u(l −
1), · · · ,u(k)) = [u(l)⊤ u(l − 1)⊤ · · · u(k)⊤]⊤. For any
data matrix or vector, we denote its uncertain version by
adding a tilde symbol above it, i.e., ũ, ỹ or H̃.

2. PRELIMINARIES

In this section, we recall some basics of LS identification
of auto-regressive with extra inputs (ARX) models, regu-
larized LS, and DRO.

2.1 LS identification of ARX models

We consider a discrete-time linear time-invariant (LTI)
single-input single-output (SISO) dynamic system (Ljung,
1999):

A(z−1)y(k) = B(z−1)u(k) + v(k), (1)

where u(k), y(k) are observable input and output signals
at time step k, respectively. v(k) denotes the process noise.
A(z−1) and B(z−1) can be described as follows:{

A(z−1) = 1 + a1z
−1 + a2z

−2 + · · ·+ anaz
−na

B(z−1) = b1z
−1 + b2z

−2 + · · ·+ bnb
z−nb ,

(2)

where na and nb denote the dynamic order of the system.
When v(k) is a white noise process, the system described
by (1) becomes an auto-regressive with exogenous inputs
(ARX) model. To identify (2) from data, we first rewrite
(1) into an LS form:

y(k) = h⊤(k)θ + v(k), (3)

where θ = [a⊤(1:na)
, b⊤(1:nb)

]⊤ ∈ Rna+nb represents the pa-

rameter vector, h(k) = [−y⊤(k−1:−1:k−na)
, u⊤

(k−1:−1:k−nb)
]⊤ ∈

Rna+nb represents the regression vector including known

data at time k. The vector form of (3) with data length L
is given by:

yL = HLθ + vL, (4)
where yL = z(1:L), vL = v(1:L), and

HL =

 h⊤(1)
...

h⊤(L)

 =

 −y⊤(0:−1:1−na)
u⊤
(0:−1:1−nb)

...
...

−y⊤(L−1:−1:L−na)
u⊤
(L−1:−1:L−nb)


=: [HyL

,HuL
]

(5)
where both HyL

and HuL
have Hankel structures. The

quadratic function is typically chosen as the cost function
in the ordinary LS identification:

J(θ) = ∥yL −HLθ∥22. (6)

Minimizing (6) then yields the LS solution:

θ̂LS = (H⊤
LHL)

−1H⊤
L yL. (7)

2.2 Regularized LS identification

In practice, both input and output data are subject to
noise corruption, expressed as:{

ỹ(k) = y(k) + ξy(k)

ũ(k) = u(k) + ξu(k),
(8)

where ξ(k) := col(ξy(k), ξu(k)) ∼ Qk is the joint obser-
vational error vector at time k. In the presence of noise
corruption, it gives rise to noisy observations ỹL and
ũL. The joint observational error vector ξL := ξ(1:L) is
governed by the Cartesian product of the individual error
distribution at each time step, described as:

Q := Q1 ×Q2 × · · · ×QL ⊂ P(R2L). (9)

Hence, the regression matrix HL involves uncertainty as
well, giving rise to the noise-corrupted regression matrix
H̃L and thus unsatisfactory LS estimation performance
with large variance. As an effective remedy, regularization
has been widely adopted to robustify against observational
errors. In SID, a prevalent option of regularized LS re-
gression is RR (Hoerl and Kennard, 1970), which adds a
regularizer in the form of squared ℓ2-norm of θ to shrink
the coefficients and prevent overfitting:

J(θ) = ∥ỹL − H̃Lθ∥22 + λ∥θ∥22. (10)

Here, the ridge parameter λ > 0 controls the trade-off
between minimizing the fitting error and penalizing large
values of coefficients. Minimizing (10) yields a closed-form
solution of RR:

θ̂ridge = (H̃⊤
L H̃L + λI)−1H̃⊤

L ỹL. (11)

2.3 Basics of Wasserstein DRO and distributionally robust
interpretation of RR

Definition 1. (Wasserstein Distance, Kantorovich and Ru-
binshtein (1958)) For any p ∈ [1,+∞), the type-p Wasser-
stein distance between two probability distributions Q1

and Q2 supported on Rn is defined as:

Wp(Q1,Q2)

=

(
inf

π∈Π(Q1,Q2)

∫
Rn×Rn

∥ξ1 − ξ2∥pπ(dξ1,dξ2)
) 1

p

,
(12)

where Π(Q1,Q2) represents the set of all joint distributions
of ξ1 ∈ Rn and ξ2 ∈ Rn whose marginals are Q1 and Q2,
respectively.



Letting p = 2, the type-2 Wasserstein ambiguity set is
defined as (Shafieezadeh Abadeh et al., 2018):

Dρ(P0) :=
{
Q ∈ P(Rn) :W2

2 (Q,P0) ≤ ρ
}
, (13)

where P0 is a prescribed nominal distribution, and ρ is
the Wasserstein radius characterizing the maximal level of
adversarial perturbations.

Consider minimizing an objective EQ [l(x, ξ)], where x is
the decision variable, ξ is the uncertainty governed by an
unknown distribution Q, and l(·, ·) denotes a particular
function. The Wasserstein ambiguity set Dρ(P0) provides
a description of the ambiguity in Q by imposing some
perturbations on the nominal distribution P0. Based on
this, a min-max optimization problem is formulated in
DRO:

inf
θ

sup
Q∈Dρ(P0)

EQ [l(θ, ξ)] . (14)

A key merit of DRO is that the resultant solution enjoys
distributional robustness with the radius ρ suitably chosen.
That is, a satisfactory performance is ensured even when
there exists some deviations between the true distribution
and P0.

Indeed, the conventional RR mentioned previously admits
an alternative min-max reformulation through the lens of
DRO. The input and output signals are assumed to be
uncertain and governed by an independent and identical
distribution, i.e., Q1 = Q2 = · · · = QL =: P. The
distribution P resembles the empirical distribution P̂ ≜
1
L

∑L
k=1 δ(y(k),h⊤(k)), where δ(y(k),h⊤(k)) denotes the Dirac

measure at the kth sample (y(k),h⊤(k)). On this basis, the
regularized problem (10) is tantamount to the following
min-max optimization problem (Li et al., 2022):

inf
θ

sup
P

EP

[
(ỹ − h̃⊤θ)2

]
s.t. EP[(ỹ, h̃

⊤)|(y,h⊤)] = (y,h⊤),

P ∈ Dλ(P̂).

(15)

where the conditional expectation constraint ensures that
the perturbed data have the same mean value as the
empirical distribution but are likely to exhibit a different
variance. However, (15) fails to take into account the
Hankel structure as well as the underlying dynamics of
uncertainty.

3. MARTINGALE-BASED DISTRIBUTIONALLY
ROBUST REGULARIZER

3.1 Problem formulation

Indeed, (8) indicates that in the presence of observational
errors in inputs and outputs, the noise term ξHL

added to
HL has a Hankel structure:

H̃L = HL + ξHL

= HL +


−ξy⊤(0:−1:1−na)

ξu
⊤
(0:−1:1−nb)

...
...

−ξy⊤(L−1:−1:L−na)
ξu

⊤
(L−1:−1:L−nb)

 .

(16)
The Hankel structure results in a lower freedom of un-
certainty than that is assumed by RR in (15). Taking
the Hankel structure into consideration, we formulate the

following min-max optimization problem to robustify the
identified systems against noise corruptions in HL:

inf
θ

sup
Q∈M

EQ
[
∥yL −HLθ∥22

]
= inf

θ
sup
Q∈M

EQ

[
∥(ỹL − ξyL

)− (H̃L − ξHL
)θ∥22

]
,

(17)

where M is an ambiguity set used to describe the in-
exact distribution Q of ξL. Based on the Hankel struc-
ture, we further incorporate martingale constraints into
a Wasserstein ambiguity set, ensuring that the imposed
perturbations do not carry evident dynamic patterns. In
the following, we first provide a detailed definition of the
ambiguity setM, which serves as the core of MDRR, and
then proceed to address the solution to (17).

3.2 Wasserstein with martingale ambiguity set

To construct the ambiguity setM, we first introduce the
definition of martingale difference processes.

Definition 2. (Martingale Difference Process) A sequence
of random variables {vk}k≥0 is said to be a martingale
difference process if E[vk|Fk−1] = 0, where Fk−1 is the
filtration at time k− 1. A filtration {Fk}k≥0 is an increas-
ing sequence of σ-algebras, representing the accumulated
information up to time k.

The following result is a consequence of the tower property
and the fundamental property of martingale difference
processes.

Lemma 3. Given two martingale difference processes
{v1(k)} and {v2(k)}, it holds that E [v1(i)v1(j)] = 0 and
E [v1(i)v2(j)] = 0, i ̸= j.

By definition, a martingale difference process accounts for
temporal dependencies, but its conditional expectation
being zero ensures the non-existence of predictable pat-
terns in the first-order moment; in other words, there is
no systematic trend on average. The martingale difference
process with a finite second moment can be regarded as
a relaxation of the white noise process, which itself is a
specific type of martingale difference.

In this work, we adopt the martingale difference assump-
tion to relax the conventional i.i.d. assumption implicitly
made by RR. More precisely, in (15), the perturbations im-
posed across all Qk’s are identical. Thus, the perturbation
added to Q = Q1 × · · · ×QL embodies evident dynamics.
This is indeed unrealistic, because such dynamics may not
be effectively described by the parameterization θ and thus
cause over-conservatism. In contrast, our approach allows
Qk to be dependent on Q1, · · · ,Qk−1. Therefore, in stark
contrast to (13), we propose to construct the ambiguity set
by considering temporal dependency through additional
martingale constraints:

Mρ(P0) :=

Q ∈ P(R2L) :

EQ [ξ(k) | Fk−1] = 0
L∑

k=1

W2
2 (Qk,P0) ≤ ρ

Q = Q1 × · · · ×QL

 . (18)

Considering the Hankel structure and the martingale
constraints altogether imposes more assumptions on the
dynamics of perturbations, thereby effectively excluding
those exhibiting evident dynamics.



Owing to the presence of martingale constraints EQ [ξ(k) | Fk−1] =
0, the min-max problem (17) based on (18) is challenging
to solve. Thus, we further make some simplifying assump-
tions and present a decomposition strategy to reformulate
Mρ(P0). It is assumed that both {ξy(k)} is a martingale
difference processes resembling a Gaussian white noise
process {ϵ(k)}, and {ξu(k)} coincides with another white
noise process ζ(k). Defining η(k) := ξy(k)− ϵ(k), we have:{

ξy(k) := ϵ(k) + η(k)

ξu(k) := ζ(k).
(19)

where ϵ(k) ∼ N (0, σ2
ϵ ) is independent of ζ(k) ∼ N (0, σ2

ζ ),

and the variances σ2
ϵ and σ2

ζ serve as tunable hyper-
parameters in our proposal. Since the sum or difference of
two martingale difference processes remains a martingale
difference sequence, {η(k)} is also a martingale difference.
It then suffices to characterize the maximal level of per-
turbations using the variance information of {η(k)}, which
leads to the following reformulation of (18):

M′
ρ(P0) =


π ∈P(R2L)× P(R2L) :

Eπ[(ϵ(k), η(k), ζ(k)) | Fk−1] = 0
L∑

k=1

Eπ[∥η(k)∥22] ≤ ρ, π(ϵ,ζ) = P0

 .

(20)

3.3 Worst-case distribution

Having defined the ambiguity set, we then formulate the
min-max problem (17) of MDRR as:

inf
θ

sup
π∈M′

ρ(P0)

Eπ

[
∥(ỹL − ξyL

)− (H̃L − ξHL
)θ∥22

]
= inf

θ

{
∥ỹL − H̃Lθ∥22 + sup

π∈M′
ρ(P0)

Eπ

[
∥ξyL

− ξHL
θ∥22

]}
.

(21)
When expanding the expectation, all cross terms vanish
because both Eπ [ξyL

] and Eπ [ξHL
] are zero, due to the

martingale property and the tower property of conditional
expectations.

We proceed by discussing how to effectively solve (21) for
the parameter θ of MDRR. For a given θ, the related
worst-case distribution can be identified by solving the
inner maximization problem:

sup
π∈M′

ρ(P0)

h(π,θ) := sup
π∈M′

ρ(P0)

Eπ

[
∥ξyL

− ξHL
θ∥22

]
. (22)

Theorem 4. (Worst-Case Distribution) For θ ̸= 0, one of
the optimal solutions to (22) has the form:

η̂θ(k) =


(
ck(θ)− λ̂

)−1

(dk(θ)ζ(k)− ck(θ)ϵ(k)) , k ∈ K

0, otherwise

(23)
where K = {1−min(na, nb), · · · , L− 1} is a set of indices,
and 

ck(θ) := 1 +

na∑
i=max(1,1−k)

θ2i

dk(θ) :=

min(na,nb)∑
i=max(1,1−k)

θiθna+i.

(24)

For λ > 1+
∑na

i=1 θ
2
i , λ̂ is the unique solution of the equality
L∑

k=1

Eπ[∥η̂θ(k)∥22] = ρ. (25)

Sketch of Proof. Thanks to the similarity in the struc-
tural form of the squared ℓ2-norm of the problem to that
in Lotidis et al. (2023), we borrow the idea of the latter to
make the proof, which mainly builds upon the duality the-
ory. We begin by expanding (22) and simplify it to isolate
the terms involving η(k). Next, we derive its dual problem
and find a primal-dual optimal pair. Finally, strong duality
can be readily verified, which completes the proof.

The worst-case distribution π̂θ, parameterized by θ, has
its first marginal distribution corresponding to the law of
(ϵ, ζ), i.e., P0, and its second marginal corresponding to
the law of (ϵ+ η̂, ζ). Thus, the worst-case distribution can
be characterized using the distribution of η̂ as well. A key
observation from Theorem 4 is that η̂ depends on ϵ and

ζ. At time step k, ξ̂y(k) can be expressed as:

ξ̂y(k) = ϵ(k) + η̂θ(k)

=
(
ck(θ)− λ̂

)−1 [
dk(θ)ζ(k)− λ̂ϵ(k)

]
.

(26)

The worst-case distribution is governed by three tuning

parameters ρ, σ2
ϵ , and σ2

ζ . The parameter ρ influences λ̂,

thereby adjusting the proportion of ξ̂yL
affected by ϵ and

ζ, which are characterized by σ2
ϵ , and σ2

ζ , respectively. In

some cases, the inputs are known to be certain, so σ2
ζ

can be set to zero. For σ2
ϵ , a rough estimation is given

by the sample variance of the fitting error of LS, i.e.,

σ2
ϵ = ∥ỹL − H̃Lθ̂LS∥22/L.

3.4 Solving the min-max problem

Due to the martingale constraints in (20), the problem
under MDRR admits neither a convex reformulation nor
a closed-form solution like (11). Hence, a subgradient
descent algorithm (Nesterov, 2013) is developed. The crux
to handle this min-max problem lies in computing the
subgradient for a given θ′. This turns out to be related
to the worst-case distribution π̂θ′ given by Theorem 4.

For simplicity, we rewrite the objective function of the
outer minimization problem as:

f(θ) := ∥ỹL − H̃Lθ∥22 + Eπ̂θ′

[
∥ξyL

− ξHL
θ∥22

]
. (27)

The function f(θ) is a convex, finite-valued, yet non-
smooth function (Lotidis et al., 2023). The following
proposition provides a subgradient oracle for f(·).
Proposition 5. (Nesterov, 2013) Given θ′, and the cor-
responding worst-case distribution π̂θ′ ∈ M′

ρ(P0) and
defining

g := 2(H̃⊤
L H̃L)θ

′ − 2H̃⊤
L ỹL +∇h(π̂θ′ ,θ) |θ=θ′ , (28)

it holds that g ∈ ∂f(θ′).

The whole procedure for SID with MDRR is summarized
in Algorithm 1. For non-smooth problems, the norm of
the subgradient, ∥g∥2, only carries a limited amount of
information. Thus, the subgradient oracle uses the nor-
malized direction g/∥g∥2 instead. In addition, the rate



of convergence of the subgradient method is O(t−1/2),
where t denotes the iteration number. This rate depends
on the optimal step size selection strategy, with step size
proportional to 1/

√
t (Nesterov, 2013).

Algorithm 1 MDRR for SID of ARX Models

Input: The uncertain data ỹL and H̃L, iteration step
size γt ∝ 1/

√
t, Wasserstein distance ρ > 0, variance

σ2
ζ of ζ(k), variance σ2

ϵ of ϵ(k):

1: Obtain the LS estimate θ̂LS as per (7) and use θ̂LS as

the initial values in the iterative process, i.e., θ1 = θ̂LS;
2: while Not convergent do
3: Get η̂θt

, according to Theorem 4;
4: Compute gt, as stated by Proposition 5;
5: Set θt+1 ← θt − γtgt/∥gt∥2;
6: t = t+ 1;
7: end while
8: Return θ̂MDRR

4. CASE STUDIES

In this section, we validate our MDRR method using
data collected from a simulated closed-loop system and a
realistic glass furnace system. Its performance is compared
against RR in (11) and standard LS in (7) as references.

4.1 A simulated closed-loop system

Consider the following closed-loop system, in which the
open-loop system is described by:

z(k)− 0.35z(k − 1) + 0.65z(k − 2)

= 1.10u(k − 1)− 0.70u(k − 2) + e1(k),
(29)

and the feedback controller is given by

u(k) = 1.00u(k−1)−0.50z(k)+0.20z(k−1)+e2(k), (30)

where {e1(k), e2(k)} are set to be i.i.d. and uniformly
distributed over the interval [−0.1, 0.1] and [−0.05, 0.05],
respectively. Based on the above settings, an input-output
trajectory of length L = 492 is generated as the observed
data. This dataset is used to fit an ARX model, with
the order selected as (na, nb) = (2, 2). To evaluate the
prediction performance of the three methods, we generate
a test trajectory of length Ltest = 300. In this simulation
case, we assume that there is no error in input variables
u(k) by setting σ2

ζ = 0. Fig. 1 depicts the test errors of
different methods using varying parameter values in this
simulated closed-loop system.

Due to feedback control, there exist dependencies between
inputs, outputs, and past input variables, complicating the
identification process. As shown in Fig. 1, by tuning ρ, RR
can achieve performance improvement compared to LS.
It enforces the coefficients of highly correlated variables
toward smaller values, thereby distributing their influence
more evenly and reducing interdependence among them.
However, overly large ρ values cause RR to over-shrink the
estimate, masking meaningful relationships and degrading
performance. In contrast, MDRR consistently outperforms
RR. For any σ2

ϵ , the optimal estimate obtained by MDRR
achieves a lower global prediction error than RR. The
intuitive reason, we believe, is that RR ignores the spe-
cific structure of the regression matrix, leading to the

Fig. 1. Profiles of prediction error on test data with
increasing ρ and σ2

ϵ in closed-loop system

inclusion of unrealistic distributions. By introducing mar-
tingale constraints, MDRR considers perturbations with-
out evident dynamics, effectively mitigating conservatism.
Another important observation from Fig. 1 is that the
prediction error of MDRR varies more smoothly than that
of RR, suggesting that our proposal is less sensitive to the
choice of tuning, and thus enjoys ease of hyper-parameter
calibration.

4.2 Robust identification of a real-world glass furnace

We further assess the performance of MDRR on a real-
world dataset collected from a glass furnace system. This
system consists of three inputs (i1, i2, i3) —two burners
and one ventilator—and six outputs (o1, o2, o3, o4, o5, o6),
which are temperature measurements from sensors posi-
tioned across a furnace cross-section (De Moor et al., 1997;
Van Overschee and De Moor, 1994). In this case, we seek
to predict the temperature of one position (o3). Given
that the temperature at different positions in this glass
furnace system exhibits correlation, we use not only all
three inputs but also the remaining five outputs as input
features. The associated choice of model orders is detailed
in Table 1.

Table 1. Parameter Setup

Input Features Target Variable

Var. [i1, i2, i3, o1, o2, o4, o5, o6] o3
Order [2,2,2,1,1,1,1,1] 2

The train trajectory consists of 1000 data points, while
the other 247 are reserved as the test trajectory to evaluate
the prediction performance of three estimates. Considering
that five temperature sensor readings are input features
as well, we set σ2

ζ equals to σ2
ϵ . Fig. 2 illustrates how

prediction error varies with increasing ρ and varying σ2
ϵ

(σ2
ζ ) across different methods in the glass furnace system.

In this real-world case, observational errors are unavoid-
able. Additionally, the temperature readings from any
sensor in a glass furnace can be inferred from the other five
due to their relative positions, resulting in collinearity that
indicates evident dynamics in uncertainty. Fig. 2 exhibits
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Fig. 2. Profiles of prediction error on test data with
increasing ρ and σ2

ϵ in a glass furnace system

the superior performance of MDRR as compared to LS
and RR. Using a carefully calibrated ρ, RR outperforms
LS. Nevertheless, MDRR attains enhanced performance
across a range of ρ and σ2

ϵ . The experimental results
demonstrate that martingale constraints enable MDRR to
hedge against only perturbations without evident dynam-
ics. Moreover, it is noteworthy that, as shown in Fig. 2b,
even for sufficiently large ρ, (e.g. 1000), MDRR continues
to achieve performance improvement. This highlights its
insensitivity against the choice of hyper-parameters.

5. CONCLUSION

In this work, we proposed a new regression approach to
SID of dynamic systems from a martingale distributional
robustness perspective. Our proposed MDRR relaxes i.i.d.
assumption and integrates martingale constraints into a
Wasserstein ambiguity set, ensuring that the perturbations
imposed do not encode evident patterns and alleviating
conservatism. Due to the complexity of the induced ambi-
guity set, we also presented a subgradient-based algorithm
addressing the non-smoothness of the DRO problem. Ex-
periments on simulations and a real-world glass furnace
system highlighted the performance improvement of our
proposed approach over (regularized) LS methods, partic-
ularly in the presence of data collinearity. Besides, MDRR

shows lower sensitivity against the choice of parameters
and thus enjoys ease of manipulating the robustness.
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