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Abstract: In this work, we propose a Symmetric Kullback Leibler divergence (SKLD)-based
approach for optimal Design of Experiments (DOE) along with estimation of unspecified values
in the design of experiments data matrix. Using SKLD as optimality criteria as opposed to
various existing alphabetic optimality criteria, facilitates the incorporation of end-user desired
performance of estimates. For the case when experimental noise is Gaussian and uncorrelated,
the proposed approach results in a Mixed Integer Non-Linear Programming (MINLP) problem.
This problem is NP-hard to solve. Hence, a novel heuristic solution strategy is also proposed
which solves the proposed problem iteratively and sequentially. In particular, the MINLP
problem is split into two sub-problems: (i) Non-Linear Programming (NLP) problem: to estimate
optimal unspecified values, and (ii) Non-Linear Integer Programming (IP) problem: to obtain
optimal DOE. These two subproblems are solved sequentially and iteratively until convergence
is reached. The proposed solution strategy guarantees the decreasing behaviour of SKLD value.
The efficacy of the proposed solution strategy is tested on an illustrative example and a
Material synthesis problem, and performance is compared with Fedorov exchange algorithm,
Forward Greedy search algorithm, and some of the popular MINLP solvers available in GAMS
environment. Results demonstrate that the proposed solution approach outperforms most other
methods.
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1. INTRODUCTION

The Design of Experiments (DOE) problem has been
investigated since the early 19th century (Pukelsheim,
2006). It arises in numerous applications across diverse
disciplines such as agriculture, pharmaceutical, chemical
processing, manufacturing, and foods ((Velicheti et al.,
2022), (Yining et al., 2017)). These disciplines widely use
parameter-based models for modelling, optimization, and
control. The parameters of these models are estimated
using experimental data. In literature, a typical DOE
problem setting is to strategically select a small subset
of experiments from a given large pool of n experiments
(data points) to maximize the statistical efficiency of re-
gression (Montgomery (2017), Velicheti et al. (2022)). This
is needed since performing all n experiments is tedious
and economically infeasible. The problem of selection of
a subset of experiments is similar to problems arising
in other contexts, for instance, sensor placement design
(Joshi and Boyd, 2008), and feature selection (Velicheti
et al., 2022)).

In literature, the DOE problem is formulated as an op-
timization problem using various alphabetical optimality
criteria, such as A-, D-, E-, G-, V-, and T- optimality
criteria (Montgomery, 2017). These optimality criteria

may lead to different solutions of the Optimal Design
of Experiment (ODOE) problem for the Gaussian case.
It is not clear which optimal criteria should be then
used for ODOE. In the recent literature on sensor place-
ment design, information theory-based Kullback Leibler
Divergence (KLD) has been proposed. KLD incorporates
the user’s desired estimation performance (Prakash and
Bhushan (2023), Arjun and Jan (2024)).

In many situations, some of the values in the set of n
given experiments may be unspecified by the end-user. In
such a scenario, apart from selecting an appropriate sub-
set of experiments, the corresponding unspecified values
must also be estimated. In most existing literature, the
DOE and estimation of the unspecified value problems are
treated as separate problems. The alphabetic-optimality
criteria based DOE problems with all specified values have
been solved using different approaches such as Fedorov
exchange methods (Fedorov, 2013), Genetic algorithms
(Langner et al., 2003), and Mixed integer Convex methods
(Hendrych et al., 2023). In the machine learning domain,
various methods for estimation of missing values have been
proposed, for instance, surrogates imputation, k-nearest
neighbours imputation, and machine learning-based impu-
tation (Malarvizhi and Thanamani, 2012). These methods
use patterns and relationships with known (specified) data



to estimate the missing data (Rubin, 2004). However, these
may not be the best for estimation of unspecified values
in DOE context since the aim of DOE is to maximize effi-
ciency of regression and not any statistical similarity. The
recent work of Velicheti et al. (2022) considered coupled
problems of DOE and estimation of unspecified value using
A-optimality criteria in a maximum entropy principle-
based framework. To the best of our knowledge, there are
no other works which simultaneously tackle the problem
of DOE along with specification of unspecified values.

In the current work, we propose Symmetric Kullback
Leibler Divergence (SKLD) based DOE with unspecified
value estimation. This formulation allows the user to incor-
porate the desired performance of the estimates in the ob-
jective function. While this formulation can be used when
estimates are non-Gaussian, in the current work we restrict
to the Gaussian and uncorrelated experimental noise case.
The proposed formulation is a Mixed-integer Non-Linear
Programming (MINLP) problem. The proposed MINLP
problem is an NP-hard problem. Hence, in this work, we
propose a novel solution strategy to solve the proposed
formulation iteratively and sequentially. In particular, we
break the problem into two parts: (i) DOE, and (ii) un-
specified value estimation, and solve these problems se-
quentially till convergence while guaranteeing a decreasing
behaviour of objective function value (SKLD value) with
iterations. The efficacy of the proposed solution strategy
is tested on an illustrative example and a Material syn-
thesis data set (low-temperature microwave-assisted thin
film crystallization process). The results are compared
with some other methods: (i) Heuristic algorithms such
as (ia) Forward Greedy search, and (ib) Fedorov exchange
algorithms, as well as (ii) state-of-the-art popular MINLP
solvers in GAMS (using inbuilt solvers SBB and Alpha
ECP) (Bussieck and Meeraus, 2004).

The main contributions of the current work are:

• DOE with estimation of unspecified value is formu-
lated as minimization of symmetric KLD problem.
• A novel solution strategy is proposed for solving the
resulting MINLP formulation.
• The efficacy of the proposed novel solution strategy is
demonstrated by comparing performance with other
optimization approaches on: (i) an illustrative exam-
ple and (ii) a material synthesis problem.

The rest of the paper is organized as: Section (2) provides
relevant background. Section (3) presents our proposed
formulation. Section (4) proposes a solution strategy for
solving the resulting MINLP problem. Section (5) com-
pares proposed solution strategy with a few other imple-
mentations on case studies. Section (6) concludes the work.

2. RELEVANT BACKGROUND

2.1 Symmetric Kullback Leibler Divergence (SKLD)

Symmetric Kullback Leibler Divergence measures the sta-
tistical distance between two probability density functions
(pdf) (Kullback, 1997). Let z ∈ Rη be a continuous ran-
dom variable, and f(z), and g(z) be different pdfs of z.

Definition 1. SKLD, denoted as {Ks(g(z)||f(z))}, is de-
fined as (Arjun and Jan, 2024):

Ks(g(z)||f(z)) =
1

2

∫ ∞

−∞

{
g(z) ln

(
g(z)

f(z)

)
+

f(z) ln

(
f(z)

g(z)

)}
dz (1)

SKLD satisfies following properties (Arjun and Jan, 2024):

(1) Ks(g(z)||f(z)) ≥ 0 for all f(z) and g(z)
(2) Ks(g(z)||f(z)) = 0 if and only if f(z) = g(z)
(3) Ks(g(z)||f(z)) ≤ Ks(g(z)||r(z)) + Ks(r(z)||f(z)) for

all f(z), g(z) and r(z), where r(z) is another pdf.

For the case when random variables z follow Gaussian dis-
tribution, i.e. f(z) ≡ N (µf ,Σf ) and g(z) ≡ N (µg,Σg),
where µ and Σ are mean and covariance and N (.) repre-
sents Gaussian distribution, equation (1) simplifies to:

Ks(g(z)||f(z)) =
1

4

[
tr{ΣfΣ

−1
g }+ tr{ΣgΣ

−1
f }+

(µf − µg)
T [Σ−1

g +Σ−1
f ](µf − µg)− 2η

]
(2)

where, tr(.) represent the trace of matrix (.).

We next discuss the DOE problem with unspecified value
estimation in a linear regression setting.

2.2 Linear Regression and Design of Experiments

Parameter Estimation for Linear Regression Models

Linear regression models are widely used since they permit
simpler implementation and tractable solutions for DOE
(Langner et al. (2003), Ravi et al. (2016), Velicheti et al.
(2022)). A linear regression model in presence of unspeci-
fied values can be represented by:

y = X(m) β + ν (3)

Here β ∈ RN is the parameter-vector to be estimated,
data matrix X(m) ∈ Rn×N is such that ith row represents
ith experiment. Further, vector m ∈ Rp represents the
unspecified elements in data matrix X(m). The left hand
side vector y ∈ Rn will be the observed response when
experiments are performed corresponding to X(m). The
experimental noise (ν ∈ Rn) is assumed to follow a
Gaussian distribution with mean zero and known diagonal
covariance matrix Σν (i.e. ν ∼ N (0,Σν)). Diagonal
nature of Σν implies that experimental noise terms across
different experiments are independent.

In many situations, the user has some prior knowledge
about the parameters which can be expressed as:

β̃ = β + e (4)

where, β̃ is the prior estimate of β, and error e ∼
N (0,Σe). Augmenting equations (3) and (4), we get:

z = X̃β + f (5)

where, augmented experimental noise f ∼ N (0,Σf ) with

Σf =

[
Σe 0
0 Σν

]
. Further, augmented experimental ob-

servation (z ∈ R(n+N)) and augmented input data ma-

trix (X̃ ∈ R(n+N)×N ) is represented by z =

[
β̃
y

]
and

X̃ =

[
I

X(m)

]
, respectively. Considering equation (5), the

generalized least square estimate of (β) is obtained as,



β̂ = argmin
β
||Σf

−1
2 (z− X̃β)||22 = (X̃ TΣ−1

f X̃ )
−1X̃ TΣ−1

f z

(6)

The corresponding covariance of estimate (β̂) is given by:

cov(β̂) = (X̃ TΣ−1
f X̃ )

−1 = (Σ−1
e +X(m)TΣ−1

ν X(m))−1

(7)
where, cov(.) represents covariance.

Design of Experiments for Linear Regression Models

The Design of experiments problem is an optimization
problem in which r number of experiments are to be
selected from the given n number of experiments (r ≤ n).
Further, the unspecified values, if any, in the selected
r experiments also have to be estimated. This problem
is to be solved for an appropriate design criteria. Let
qi, i = 1, 2, ....n be binary variables defined as:

qi =

{
1 if ith experiment is selected

0 otherwise
(8)

Now, (Σ−1
ν ) in equation (7) can be re-written to reflect the

covariance of estimated parameters corresponding to the
selected experiments as:

Σ−1
ν = diag

({
qi
σ2
i

}
i=1,2,....n

)
(9)

where, diag(.) represents a diagonal matrix and σ2
i is the

variance of noise which will corrupt the ith experimental
observation. For ease of readability, in the rest of the
paper the DOE problem with no unspecified values will
be referred as DOE, while DOE problem with unspecified
values will be labeled as DOE-UV.

Remark 1. In literature, number of experiments selected
(r) is assumed to be greater than or equal to the number of
features (N) (i.e r ≥ N) (Velicheti et al., 2022). This will
ensure invertibility of X(m)TΣ−1

ν X(m). However, given
the prior information of the estimate as represented in
equation (4), the assumption of r ≥ N is not made in
the current work.

3. PROPOSED FORMULATION

In this work, we propose to formulate the DOE problem
in the presence of unspecified values for linear regression
models using SKLD optimality criteria. In the current
work, we assume the experimental noises to be Gaus-
sian and uncorrelated. The SKLD computes the distance
between two pdfs of a random variable (Section 2). In
the current work, we consider SKLD for the estimated
parameters with the two pdfs being: (i) design pdf of
estimates i.e. pdf corresponding to a particular combi-
nation of chosen r experiments with specifications of the
corresponding unspecified values, and (ii) reference pdf of
estimates i.e. pdf provided by the end-user. In the current
work, the reference pdf corresponds to selecting all exper-
iments (the best-case scenario) with no unspecified values.

Denote reference and design pdfs as f̃(β̂) ∼ N (0, Σ̃f ) and

g̃(β̂) ∼ N (0, Σ̃g) where, Σ̃f and Σ̃g are the reference and

design covariance of estimate β̂. The reference covariance

of estimate (β̂) is Σ̃f = (Σ−1
e + XT Σ̄

−1
ν X)−1 where,

Σ̄
−1
ν = diag

({
1
σ2
i

}
i=1,2,....n

)
. The DOE problem with

estimation of unspecified values is then formulated as:

Formulation 1.

min
q,m

1

4

[
tr{(Σ−1

e +XT (m)Σ−1
ν X(m))−1Σ̃

−1

f }+

tr{Σ̃f (Σ
−1
e +XT (m)Σ−1

ν X(m))} − 2N

]
s.t

∑
qi = r, lb ≤m ≤ ub

m ∈ Rp, qi ∈ {0, 1}, ∀ i = 1, 2, .., n

In the above, lb and ub are the lower and upper bounds
of respective unspecified values (m) in the data matrix
(X(m)). Solving the above problem will result in choice
of r experiments and the corresponding specifications of
unspecified values, such that the resulting density function
of the estimated parameters is as close as possible to
the reference density function. Formulation 1 is a Mixed
Integer Non-Linear Programming (MINLP) problem.

4. SOLUTION STRATEGY

In this section, we propose a novel approach to solve
the MINLP problem Formulation 1. The approach relies
on splitting the original problem Formulation 1 into two
subproblems as discussed next:

(1) Non-Linear programming (NLP) problem for estima-
tion of unspecified values (continuous variables) only,
given the chosen experiments (integer variables) as:

Formulation 2.

min
m̃Φ

L =
1

4

[
tr{(Σ−1

e +XT (m)Σ−1
ν X(m))−1Σ̃

−1

f }+

tr{Σ̃f (Σ
−1
e +XT (m)Σ−1

ν X(m))} − 2N

]
s.t lb ≤m ≤ ub, Σ−1

ν = Σ−1
Φ , m ∈ Rp

Formulation 2 is solved for a selected set of exper-
iments (Φ) where Σ−1

Φ is a known, diagonal matrix
defined as:

[Σ−1
Φ ]i,i =


1

σ2
i

if qi = 1

0 otherwise
(10)

The decision variables m̃Φ for Formulation 2 is the
vector of unspecified elements of X(m) corresponding
to Φ. Formulation 2 is an NLP problem.

(2) Non-Linear Integer Programming (IP) problem for
selecting r out of n experiments for a specified choice
of vector m. The resulting optimization Formulation,
labeled Optimum Design of Experiment (ODOE)
with known data matrix (X) is:

Formulation 3.

min
q

1

4

[
tr{(Σ−1

e +XT (m)Σ−1
ν X(m))−1Σ̃

−1

f }+

tr{Σ̃f (Σ
−1
e +XT (m)Σ−1

ν X(m))} − 2N

]
s.t

∑
qi = r, X(m) = X, qi ∈ {0, 1}, ∀ i = 1, ..n

The proposed solution approach requires sequential solv-
ing of NLP and IP problems as posed above. To facilitate
this, the IP problem (Formulation 3) is reformulated as
Mixed Integer Semidefinite Programming (MISDP) prob-
lem. This ensures that the integer relaxation of the IP
problem is convex in nature.



Theorem 1. The equivalent MISDP problem formulation
for IP problem Formulation 3 is:

Formulation 4.

min
q,U,H

J =
1

4

[
U + tr{Σ̃f (Σ

−1
e +XT (m)Σ−1

ν X(m)} − 2N

]
s.t

∑
qi = r, X(m) = X

tr{HΣ̃
−1

f } ≤ U, qi ∈ {0, 1}, ∀ i = 1, 2, .., n[
H I
I Σ−1

e +XT (m)Σ−1
ν X(m)

]
⪰ 0

where J is the objective function obtained by solving
Formulation 4 for a chosen m.
Proof: The proof is motivated from Arjun and Jan (2024).
Introducing auxiliary variables H and corresponding epi-
graph constraints (Boyd and Vandenberghe, 2004) to For-
mulation 3, leads to the following equivalent formulation:

Formulation 4.1.

min
q,U,H

1

4

[
U + tr{Σ̃f (Σ

−1
e +XT (m)Σ−1

ν X(m)} − 2N
]

s.t
∑

qi = r, X(m) = X

tr{HΣ̃
−1

f } ≤ U, qi ∈ {0, 1}, ∀ i = 1, 2, .., n

H = (Σ−1
e +XT (m)Σ−1

ν X(m))−1

Constraint H = (Σ−1
e + XT (m)Σ−1

ν X(m))−1 in above
formulation can be relaxed to

H ⪰ (Σ−1
e +XT (m)Σ−1

ν X(m))−1 (11)

This relaxation does not affect the optimal solution since
the relaxed constraint will be active at optimality. Fur-
ther, using Schur’s complement (Boyd and Vandenberghe,
2004), constraint (11) can be rewritten in a Linear ma-
trix inequality (LMI) form. This results in Formulation 4
thereby proving equivalence of Formulations 3 and 4.

The advantage of Formulation 4 is that since its integer
relaxation is convex, the formulation can be solved to
global optimality within any IP framework which relies
on solving the integer relaxed subproblems, such as in a
branch and bound framework.

The proposed solution approach involves fixing integer
variables q and continuous variables m in a sequential
manner. To fix q for a given m, the LMI in Formulation 4
is solved. However, to fix m for a given q, Formulation 2
is solved twice, once for the selected experiments (Φ) and
once for the remaining experiments (Ω \ Φ). It should be
noted that for a given choice of q solving Formulation 2
for the full m vector will not be able to uniquely fix the
components of m corresponding to experiments which are
not selected. Hence, we proposed solving Formulation 2
twice as indicated. The sequence of alternating between
m and q is continued iteratively till convergence.

The pseudo-code of the developed solution strategy solv-
ing the proposed DOE with unspecified values problem
(Formulation 1) is listed in Algorithm 1 (Algo. 1).

The inputs to Algo. 1 are problem specific information,
namely data matrix (X(m)), prior covariance matrix (Σe),
experimental noise variances ({σ2

i }i=1,2,...n), reference co-

variance (Σ̃f ), number of experiments to be selected (r),

Algorithm 1 : Sequential and iterative approach for DOE
with estimation of unspecified value

Input: X( m), Σe, {σ2
i }i=1,2,...n, Σ̃f , r, minital, iter

Output: Φ, J l, X

1: Ω = {1, 2, ..., n}
2: m0 ←minitial

3: X← X(m0)
4: [J 0, Φ0]←Solve Formulation 4
5: for l = 1 : iter do
6: Σ−1

ν ← Σ−1
Φl−1

7: [Ll, m̃Φl−1 ]← Solve Formulation 2
8: [L∗l, m̃(Ω\Φl−1)]← Solve Formulation 2

9: ml ← m̃Φl−1 ∪ m̃(Ω\Φl−1)

10: X← X(ml)
11: [J l, Φl]←Solve Formulation 4
12: if Φl ̸= Φl−1 then
13: continue
14: else
15: terminate
16: end if
17: end for

and optimization relevant information namely initial guess
(minital) for vector m, and maximum number of iterations
denoted by iter. The outputs of Algo. 1 are Optimal DOE
(Φ), Optimal SKLD value (J l), and data matrix with
estimates of unspecified values (X). In particular, in line 4
in Algo. 1 initial ODOE is obtained for given initial guess
of unspecified values (m0) by solving problem Formulation
4. The iterative procedure to solve both subproblems starts
from line 5. In line 7, the NLP problem Formulation 2 is
solved for a given experiment set (Φl−1) at lth iteration
such that the unspecified values correspond to only those
given experiments and only these unspecified values are
considered as decision variables for optimization. In line 8,
the NLP problem Formulation 2 is solved for the remaining
experiments (i.e. Ω\Φl−1) at lth iteration. The unspecified
values ml at lth iteration are updated from the solutions
obtained in lines 7 and 8 in line 9, while the MISDP
problem Formulation 4 for known data matrix is solved
in line 11. Line 12 checks if the DOE sets obtained from
lth and (l − 1)th iterations are same to either terminate
or continue the sequential solving of subproblems until
specified number of iterations (iter) are reached.

Theorem 2. Algo. 1 guarantees that SKLD value (objec-
tive function of Formulation 1) decreases with iterations.
Proof: Consider that iterations upto l − 1 have been
completed. Thus, optimal SKLD value (J l−1), optimal
selected experiments set (Φl−1), and vector ml−1 is avail-
able. The following steps are undertaken in Algo. 1 to
complete the next iteration:

(1) Formulation 2 (line 7 of Algo. 1) is solved to update
the elements of m corresponding to Φl−1. The opti-
mal SKLD value Ll resulting from this formulation
satisfies

Ll ≤ J l−1 (12)

since ml−1 is a feasible solution of Formulation 2 with
Φ = Φl−1.

(2) After obtaining m̃Φl−1 from Formulation 2, at the
next step (line 8 of Algo. 1) Formulation 2 is re-solved
to update the remaining part of vector m namely



m̃Ω\Φl−1 . At the end of this step we have the full

updated m vector as ml (line 9 of Algo. 1).
(3) The ml vector is now used in Formulation 4 to obtain

updated DOE Φl with corresponding SKLD value
being J l. This SKLD value cannot be higher than Ll

since Φ = Φl−1 is a feasible solution of Formulation 4
with the corresponding SKLD value being Ll. Thus,

J l ≤ Ll ≤ J l−1 (13)

where the right-most inequality follows from equation
(12).

This shows that the SKLD value decreases with iterations.

5. CASE STUDIES

We now apply the proposed SKLD-based DOE with esti-
mation of unspecified values approach as implemented in
Algo. 1 to two case studies: (i) Illustrative Example and (ii)
Material Synthesis (MS). In the current work, Formulation
2 (NLP) in Algo. 1 is solved using interior point optimiza-
tion (inbuilt function fmincon in MATLAB), while the
MISDP in Formulation 4 is solved using MOSEK solver in
MATLAB using YALMIP toolbox (MATLAB, 2025).

To benchmark performance of Algo. 1, we compare its
performance with the following methods:
(1) Fedorov exchange (FE) algorithm:
FE method has been used in literature (Yining et al., 2017)
to solve DOE problems with all specified values. It starts
with a randomly selected set of experiments. FE finds the
best experiment set by exchanging each index of randomly
selected experiment sets with the remaining experimental
sets until no exchange can give a better result than the
previous best result obtained by exchange. We adapt it to
solve the MINLP problem Formulation 3 similar to that
in Algo. 1. In particular, at lth iteration in Algo. 1, the set
Φl (line 11 in Algo. 1) is obtained by solving Formulation
3 using FE method with starting set being Φl−1. Since
the results are sensitive to the user-specified initial set (at
l = 0), we apply the FE approach for t-trial runs with
random choices for the initial set.
(2) Forward Greedy search (FGS) algorithm:
Adapted from sensor placement design literature (Prakash
and Bhushan, 2023), FGS starts with an empty set and
greedily selects an experiment to be conducted till r ex-
periments are selected. We extend this idea to solve the
DOE with unspecified values problem similar to Algo. 1.
In particular, we replace Formulation 4 for selecting the
set of experiments at the lth iteration in Algo. 1 with
Formulation 3 which is solved by FGS.
(3) Popular MINLP solvers:
In this work, the default solvers of GAMS, namely SBB
and Alpha ECP) (Bussieck and Meeraus, 2004) are con-
sidered to solve Formulation 1.

The results are presented for two scenarios (A) DOE and
(B) DOE-UV. For scenario (A) the results are compared
with FE and FGS algorithms, while for scenario (B) the
results are compared with FE, FGS, and popular MINLP
solvers. For the FE approach, t = 10 is considered.

Case study (I): Illustrative Example
Consider regression model (Table 1) as:

Y = X1β1 + X2β2 + X3β3 + ν (14)

where, Y is response vector, and X1,X2,X3 correspond
to columns of the X matrix. Thus, n = 5 and N = 3.
The corresponding unspecified values vector for scenario
B is m = {m1, m2, m3, m4, m5}. The data matrix

Table 1. Illustrative Example: Data matrix

# X1 X2 X3

1 3.4442 28.1680 7.3642
2 m1 52.5973 m2

3 1.3810 52.5973 m3

4 3.4442 m4 8.7923
5 m5 30.2500 7.3642

for scenario A is same as scenario B with known m =
{2.034, 5.024, 9.875, 35.347, 3.812} The corresponding
inverse covariance matrix of prior estimate Σe

−1 = 0.01 ∗
I5×5. The variance (σ2

i ) of experimental noise for the five
experiments are: 0.8649, 0.2468, 0.1865, 0.5263, 0.3826.
The considered percentage of unspecified data in the data
matrix is 33.33% (p = 5 elements of the data matrix).

The reference covariance (Σ̃f ) is computed with all 5
experiments with known data matrix as for scenario A.

(1) Scenario A (DOE): This scenario involves solution of
only the DOE problem. This was achieved by solving
Formulation 4 using MOSEK, and Formulation 3
for FE and FGS methods. Table 2 presents the
performance of these approaches. It was observed
that MOSEK outperformed FGS and FE methods
because MOSEK solves Formulation 4 whose integer
relaxation leads to a convex problem.

(2) Scenario B (DOE-UV): Table 3 presents the perfor-
mance of different methods. It was observed that
Algo. 1 and FE gave identical performance which was
better than FGS for all values of r. The performance
was also superior to popularly used MINLP solvers,
except for r = 2.

Remark 2. The advantage of being able to optimally fix
unspecified values along with selecting optimal experi-
ments is seen by comparing results from Tables 2 and 3.
In particular, it is observed that the experiments chosen
for various values of r are identical in columns 2 of the two
tables (Table 2: MOSEK, Table 3: Algo. 1). However, the
SKLD values in Table 2 are much higher lower than the
corresponding values in Table 3. The ability to select the
unspecified values in Table 3 results leads to design pdf
being much closer to the reference pdf.

Table 2. Illustrative Example: Scenario A

r MOSEK FGS FE

1
3961.1
[3]

3961.1
[3]

3961.1
[3]

2
795.5988
[2 4]

1292.5
[2 3]

1277.6
[1 5]

3
0.1182
[2 3 5]

0.1182
[2 3 5]

0.1182
[2 3 5]

4
0.0119
[2 3 4 5]

0.0119
[2 3 4 5]

0.0119
[2 3 4 5]

5
0
[1:5]

0
[1:5]

0
[1:5]

Case study (II): Material Synthesis (MS)
We now consider a Material Synthesis of low-temperature
microwave-assisted thin film crystallization case study to



Table 3. Illustrative Example: Scenario B

r Algo. 1 FGS FE Alpha ECP SBB

1
3616.1
[3]

3616.1
[3]

3616.1
[3]

14033.025
[1]

2470.5
[3]

2
550.16
[2 4]

555.62
[2 3]

550.16
[2 4]

529.181
[3 5]

529.181
[3 5]

3
0.0524
[2 3 5]

0.0524
[2 3 5]

0.0524
[2 3 5]

2.279
[1 4 5]

0.054
[2 3 5]

4
0.0011
[2 3 4 5]

0.0011
[2 3 4 5]

0.0011
[2 3 4 5]

0.586
[1 2 4 5]

0.003
[2 3 4 5]

5
0
[1:5]

0
[1:5]

0
[1:5]

0.002
[1:5]

0.033
[1:5]

Table 4. Material synthesis results

r Scenario SKLD Optimum DOE

1
A 832620 [1]
B 83336 [1]

17
A 0.1227

[1 3 6 8 11 16 22 26 28 30 32
33 34 37 40 42 45]

B 0.1129
[4 8 9 11 15 16 17 19 21 22 28

31 40 41 42 44 46]

demonstrate the utility of our proposed algorithm for
DOE-UV (Nakamura et al., 2017). The data set contains
103 experiments and 5 variables (Nakamura et al., 2017).
In the current study, we considered the first n = 50
experiments from that set in all the N = 5 variables.
These variables are (1) X1: Tri-Ethyl-Gallium (TEG)
volume ratio, (2) X2: Temperature (◦C), (3) X3: Heat to
a temperature in time (minute), (4) X4: Heat as soon as
possible (minute), and (5) X5: Constant Power (W). The
regression model used to predict the Percentage coverage
(Y ) of material is:

Y = β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ν (15)

We randomly generate experimental noise variance be-
tween 0 and 1 for the 50 experiments. The inverse
covariance matrix of prior estimate is assumed to be

Σe
−1 =0.01 ∗ I5×5. The reference covariance (Σ̃f ) is com-

puted with all 50 experiments. The considered percentage
of unspecified data is 6% (p = 15 elements of the data
matrix). Table 4 presents the SKLD values and ODOE for
r = 1 and r = 17 for both Scenarios A and B. From Table
4, it can be observed that the SKLD values decrease as
the number of experiments increases for both scenarios.
Additionally, the ODOE is different for r = 17. However,
Scenario B exhibits a lower SKLD value, indicating that
the corresponding DOE sets are closer to the reference.

6. CONCLUSION

In this work, we presented symmetric Kullback-Leibler-
Divergence based approach for solving problem of de-
sign of experiments with unspecified values in the data
matrix. The SKLD-based problem formulation allows in-
corporation of the user’s desired performance specifica-
tion in the design procedure. Additionally, we proposed
a novel solution strategy for solving the resulting MINLP
problem. This solution strategy sequentially solved NLP
and MISDP problems and guaranteed decreasing behavior
of objective function value. Results on two case studies
showed that the proposed solution approach performed
better than heuristic algorithms, and similar to SBB
solver in GAMS. SKLD-based DOE-UV problems for non-

Gaussian noise scenarios and nonlinear regression models
can be investigated in future.
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