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Abstract: Stiction in control valves, among other problems, presents a formidable challenge
in industrial control loops, often resulting in suboptimal system performance. Given its
significant impact, stiction detection has become a crucial aspect of controller performance
monitoring. While machine learning-based methods for stiction detection have gained traction,
this paper investigates the effectiveness of Inception Networks and Inception-Residual Networks
as potential enhancements to the previously proposed CNN method. The results highlight that
these adjustments improve accuracy, from 75.3% to 79.45%, using the same training dataset,
effectively capturing variations overlooked by other methods. The application of real industrial
data highlights the improvements offered by the proposed framework.
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1. INTRODUCTION

The performance of industrial control loops is pivotal for
ensuring the optimal operation of any industrial enterprise.
Any degradation in performance can lead to economic and
environmental consequences. Thus, automated monitoring
of control loop performance plays a vital role in sustaining
the desired operational standards. Control loop perfor-
mance monitoring (CPM) is instrumental in identifying
and rectifying issues such as oscillations, non-linearities,
external disturbances, and other common problems en-
countered in process control loops (Bounoua et al., 2022).

Stiction, derived from static friction, has been reported
to be the prevalent cause of performance deterioration in
industrial control loops. Several sources have documented
the detrimental effects of stiction, highlighting the impor-
tance of implementing effective monitoring and mitigation
strategies (Horch, 2007; Bacci di Capaci and Scali, 2018;
Bounoua et al., 2022; Choudhury et al., 2004). Stiction
occurs due to elevated static friction within the valve,
causing it to stick in one position. As the control signal
increases to overcome static friction, the valve suddenly
jumps to a new position (slip phase), where it may stick
again. This phenomenon is also exhibited during changes
in the valve motion direction. Such a stick-slip behavior
is typically represented by a distinct shape in the plot
of controller output (OP) vs valve position (manipulated
variable or MV) as shown in Figure 1. The detailed descrip-
tion can be seen in Bounoua et al. (2022); Horch (2007);
Shoukat Choudhury et al. (2005).

Stiction detection has garnered considerable attention
from the research community and both model-based
(Srinivasan et al., 2005; Jelali, 2008; Karra and Karim,
2009) and data-driven approaches have been proposed.
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Fig. 1. Stiction phenomenon: Valve position (MV) vs
controller output (OP)

Among these, Data-driven methods, in particular, have
gained prominence due to their reliance solely on recorded
data. These methods encompass a variety of techniques,
including pattern recognition, time series analysis, decom-
position techniques, and waveform shape analysis.

Pattern recognition and waveform shape analysis tech-
niques have been explored because stiction-induced oscil-
lations exhibit characteristic patterns in the waveforms of
controller output, valve position, control error, and process
measurement (process variable or PV) signals. Notable
works in this area include identifying asymmetry in error



signals (Singhal and Salsbury, 2005), fitting data to pre-
defined shapes (Rengaswamy et al., 2001; Rossi and Scali,
2004), analyzing the shape of PV-OP plots (Yamashita,
2006; Scali and Ghelardoni, 2008; Kano et al., 2004; Ya-
mashita, 2004).

Given the widespread adoption of machine learning tools
across various domains, their applicability in detecting
stiction has also been investigated. Recently, Akavalappil
et al. (2023) introduced the 1-D convolutional neural net-
work (CNN) for stiction detection using PV, and OP data.
Henry et al. (2020, 2021) used a combination of AlexNet
convolutional neural network (CNN) and principle compo-
nent analysis (PCA) for stiction detection. Additionally, a
simple artificial neural network (ANN) is used by Dambros
et al. (2019b) for pattern recognition of PV-OP plots.
Kamaruddin et al. (2020) proposed a butterfly shape-
based detection (BSD) CNN, which derives a butterfly
shape from PV/OP data, employing Stenman’s stiction
model.

In Bounoua et al. (2023), we utilized the Poincaré plot
derived from OP data as an input for the stiction detection
method employing a convolutional neural network (CNN).
This approach achieved an accuracy of 75.3% while offer-
ing the advantage of utilizing only a single variable. In the
current study, we extend this concept to explore the effi-
cacy of the Inception Network and the Inception-Residual
Network for stiction detection by leveraging the Poincaré
plot. Our findings reveal that the Inception-based network,
known for its computational efficiency, outperforms tradi-
tional CNNs. Furthermore, it’s essential to acknowledge
the challenges associated with obtaining comprehensive
data from real-world plants. Analyzing the performance of
these machine learning techniques on limited datasets is
particularly relevant, as acquiring data that encompasses
all possible scenarios from actual plants proves to be quite
challenging.

The structure of the paper is as follows: Section 2 provides
an overview of the adopted Inception Network, while Sec-
tion 3 delves into the specifics of the employed framework.
The results of the proposed framework are discussed in
Section 4, followed by the concluding remarks in Section
5.

2. HYBRID RESIDUAL EMBEDDED INCEPTION
NETWORK (RESINCEPNET)

Convolutional Neural Networks (CNNs) have been at the
forefront of advancements in deep learning, particularly in
image processing and computer vision tasks. The inception
module and residual connections are two pivotal archi-
tectures that have significantly contributed to these ad-
vancements. The proposed technique combines these two
architectures to enhance feature extraction and facilitate
the training of deeper networks. The detailed architecture
is shown in Figure 2.

2.1 Inception Module

The inception module employs parallel convolutional oper-
ations with different kernel sizes to capture information at
various scales. The operations within the inception module
can be represented mathematically as follows:

1x1 Convolution
C1x1(X) = σ(W1x1 ∗X + b1x1) (1)

3x3 Convolution
C3x3(X) = σ(W3x3 ∗X + b3x3) (2)

5x5 Convolution
C5x5(X) = σ(W5x5 ∗X + b5x5) (3)

Where X is the input tensor, W represents the weights of

Fig. 2. Detailed Architecture of Proposed ResIncepNet
Model

the convolutional filters, b is the bias, and σ denotes the
ReLU activation function.

The outputs of these parallel operations, including max
pooling, are concatenated along the channel dimension:

Oinception = Concatenate
([

C1×1(X), C3×3(X),

C5×5(X),MaxPool(X)
]) (4)

2.2 Residual Inception Block

The residual inception block introduces a shortcut connec-
tion that adds the input of the block to its output:

R(X) = σ(Wr ∗X + br) (5)

Where ∗ is the convolution operator. The final output of
the block is:

Oresidual = Oinception +R(X) (6)

This approach allows the network to learn identity map-
pings efficiently while benefiting from the inception mod-
ule’s feature extraction capabilities.



The residual connections in the Residual Inception Block
were chosen to help the model learn better by making
it easier for information to pass through layers without
getting lost. This connection skips over some layers and
directly adds the original input back to the output after
those layers. By doing this, the gradient—the small up-
dates that help the model learn—can flow back through
the network more smoothly. This setup prevents the model
from getting stuck in a situation where learning slows down
as layers get deeper. In short, residual connections keep
information flowing and help the model learn faster and
more accurately.

2.3 Hyperparameters of the Proposed Model

The model’s architecture is built around a convolutional
structure with residual inception blocks designed for clas-
sification. It begins with an input image size of 100× 100
pixels in grayscale (1 channel). The initial convolutional
layer has 128 filters with a kernel size of 3 × 3 and uses
the ReLU activation function, followed by MaxPooling to
reduce spatial dimensions. The core of the model lies in two
residual inception blocks, each configured with 16 filters
across three types of convolution kernels: 1× 1, 3× 3, and
5×5, providing multi-scale feature extraction, with a resid-
ual connection to enhance gradient flow. These blocks use
ReLU activations, and a dropout rate of 0.5 is applied after
the second block to reduce overfitting. The network is then
flattened and connected to a fully connected layer with
128 units, followed by a final softmax layer with 2 units
for binary classification. The model is optimized using the
Adam optimizer with a learning rate of 0.0001, a sparse
categorical cross-entropy loss function (with logits), and
accuracy as the evaluation metric, trained over 20 epochs.
These hyperparameters (given in Table 1) are selected via
grid search to balance model complexity, training stability,
and accuracy.

Table 1. Hyperparameters and Settings of the
Model

Hyperparameter Value

Initial Convolution Activation ReLU
Pooling Type MaxPooling

Inception Module Filter Channels 16
Inception Module Kernels (1,1), (3,3), (5,5)

Inception Activation ReLU
Residual Connection Activation ReLU

Convolution Filters 128
Convolution Kernel (3, 3)

Dropout Rate 0.5
Fully Connected Layer Units 128

Output Layer Units 2
Output Activation Softmax

Optimizer Adam
Learning Rate 0.0001

3. FRAMEWORK

The framework employed in this study is adopted from
Bounoua et al. (2023) to enable a fair comparison with the
conventional CNNs performance. The detailed procedure
is illustrated in Figure 3, while this section outlines the
crucial steps involved in implementing the framework.
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Fig. 3. Flowchart of the proposed ResIncepNet-based stic-
tion detection framework

3.1 Data Scaling

Since the time series data (OP data) originates from differ-
ent control loops with differing scales and measurements,
it becomes imperative to scale this data appropriately
to ensure the correct functioning of the neural network
despite these variations. Thus, the time series data x is
normalized to fall within the range of [0, 1] using the
following relation (Bounoua et al., 2023):

xrescaled =

[
x −min(x)

max(x)−min(x)

]
(7)

The normalized data, thus obtained, is used to generate a
Poincaré plot as discussed in the subsequent section.

3.2 Poincaré plot

The Poincaré plot, with its roots in chaos theory, serves
as a powerful tool for visualizing and analyzing the dy-
namics of time series data. By representing each sample
as a function of the preceding one, it uncovers patterns
and correlations that may not be captured by traditional
analysis methods. This plot provides valuable insights into
the underlying structure and behavior of complex sys-
tems across various domains, including physiology, neuro-
science, and engineering.(Satti et al., 2019; Bounoua et al.,
2023; Golińska, 2013).

The Poincaré plot is constructed by creating a scatter plot
from the reconstructed phase space X, of a time series
x = {x1, x2, . . . , xN} ∈ RN , with embedding dimension 2
and time lag τ = 1 given by:

X =


x1 x2

x2 x3

x3 x4

...
...

xN−1 xN

 (8)

The quantitative analysis of the Poincaré plot often in-
volves fitting an ellipse to it and then calculating the



standard deviations SD1 and SD2 along the minor and
major axes, respectively.

The Poincaré plot is constructed from the scaled data in
this study.

3.3 Gridded Poincaré Plot

The Poincaré plot, given in Section 3.2, is further refined
into a gridded Poincaré plot by segmenting the graph into
a 64x64 grid, achieved through evenly spaced horizontal
and vertical grids (Yan et al., 2019). This segmentation al-
lows more effective pattern and trend identification which
may not be visible otherwise. The gridded Poincaré plot
represented as an image, is then fed to the Hybrid Residual
EMbedded Inception Network for stiction detection.

The preference for the gridded Poincaré plots is due to
their ability to reveal distinctive patterns in data from
stiction-affected control loops. To illustrate, Figures 4 and
5 depict both traditional and gridded Poincaré plots for
OP data from two industrial loops—one with stiction
and the other without. In the presence of stiction, an
elliptical pattern is quite obvious, whereas the plot for the
non-stiction scenario lacks such a distinctive shape. This
segmentation enhances pattern recognition and facilitates
clearer differentiation between stiction and non-stiction
cases.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60

10

20

30

40

50

60

(a)

(b)

Fig. 4. The Poincaré plots generated from OP data for
stiction case (a) Poincaré plot (b) gridded Poincaré
plot (image)

4. RESULTS AND DISCUSSION

4.1 Training Data

Ideally, training any machine learning model for stiction
detection should involve utilizing industrial data that en-
compasses a wide range of operating conditions. How-
ever, obtaining such comprehensive data is often chal-
lenging due to industrial stakeholders’ various consider-
ations (Dambros et al., 2019a; Bounoua et al., 2023).
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Fig. 5. The Poincaré plots generated from OP data for no
stiction case (a) Poincaré plot (b) gridded Poincaré
plot (image)

Thus, simulation data emerges as the only viable alterna-
tive. Consequently, a simulation model, implemented by
Bounoua et al. (2023), is used. This model encompasses a
single input and single output system, integrating stiction
models sourced from the works of Shoukat Choudhury
et al. (2005); Kano et al. (2004), to generate the required
training data. The simulation data conditions mirror those
utilized in Bounoua et al. (2023), ensuring a fair compar-
ison between inception-based methods and conventional
CNNs.

A total of 1000 datasets were generated, encompassing
both stiction and non-stiction cases. To train the pro-
posed model, the simulated data was divided into training,
validation, and testing datasets with ratios of 60%, 20%,
and 20%, respectively. The ResIncepNet Model underwent
extensive training to fine-tune its performance optimally.
Figures 6 and 7 illustrate the training and validation loss,
as well as the training and validation accuracies, providing
valuable insight into the model’s learning dynamics over
time. These figures demonstrate a clear trend of decreas-
ing loss and increasing accuracy with the progression of
epochs, indicating effective learning and convergence of the
model. The close alignment between training and valida-
tion metrics indicates that the ResIncepNet model struck a
desirable balance, minimizing overfitting while maximizing
its generalization ability on unseen data. This preparatory
phase was crucial in ensuring the robustness and reliability
of ResIncepNet for stiction detection in industrial control
systems.

4.2 Industrial Case Study Results

After extensive training, the proposed model underwent
testing on previously unseen industrial data for stiction
detection. The Industrial Case Study, sourced from Jelali
and Huang (2010), consists of 73 control loop datasets
spanning various industrial processes.



Fig. 6. Training and Validation Accuracy vs Epochs on
Simulation Data for ResIncepNet

Fig. 7. Training and Validation Loss vs Epochs on Simu-
lation Data for ResIncepNet

The results presented in Table 2 offer a comprehensive
comparison of the three competing techniques for stic-
tion detection in industrial control valves: ResInception
Networks (ResIncepNet), Inception Networks (IncepNet),
and the previously studied Convolutional Neural Network
with specialized stiction convolution layers (SConvNet).
The confusion matrix of the proposed model is also shown
in Figure 8. The performance metrics used for comparison
include accuracy, precision, recall, and the F1-score, which
collectively provide a robust framework for assessing the
effectiveness of each method in detecting the stiction.

Accuracy is the most intuitive performance metric, rep-
resenting the overall correctness of the model across all
classes. In this case, ResIncepNet leads with an accuracy of
79.45%, closely followed by IncepNet at 78.08%, and SCon-
vNet at 75.30% (given in Table 2). The higher accuracy
of ResIncepNet suggests its superior ability to correctly
identify both the presence and absence of stiction in the
control valves, indicating a more balanced performance
across different operational scenarios.

Table 2. Evaluation Matrix Comparison of
Competing Techniques for Stiction Detection

Method Accuracy Precision Recall F1-Score
ResIncepNet 79.45% 76.47% 78.79% 77.61%

IncepNet 78.08% 75.76% 75.76% 75.76%
SConvNet 75.30% 71.43% 75.76% 73.53%

Precision measures the model’s accuracy in predicting
positive instances (stiction detected) among all positive
predictions made, while recall (sensitivity) assesses the
model’s ability to find all actual positive instances. ResIn-

Fig. 8. Confusion Matrix of the Proposed ResIncepNet
Model

cepNet achieves the highest precision at 76.47% and the
highest recall at 78.79%, indicating not only its reliability
in confirming cases of stiction but also its competence
in detecting the majority of actual stiction cases. These
metrics suggest that ResIncepNet maintains a favorable
balance between reducing false positives (misidentifying
normal operation as stiction) and minimizing false nega-
tives (overlooking actual cases of stiction).

The F1-score is a harmonic mean of precision and re-
call, providing a single metric to measure the balance
between them. It is particularly useful when the cost of
false positives and false negatives is similar or when the
class distribution is imbalanced. ResIncepNet leads with
an F1-score of 77.61%, followed by IncepNet at 75.76%,
and SConvNet at 73.53%. The superior F1-score of ResIn-
cepNet further confirms its effectiveness as a balanced and
robust technique for stiction detection, excelling in both
aspects of precision and recall.

The performance metrics highlight the advantages of lever-
aging advanced neural network architectures like ResIn-
cepNet for stiction detection. The improved accuracy and
balanced precision-recall performance of ResIncepNet can
be attributed to its sophisticated architecture that com-
bines the benefits of Inception modules with residual con-
nections. This design enables it to extract and leverage
complex features from control valve data, which are essen-
tial for accurately identifying stiction. Furthermore, the
residual connections help mitigate the vanishing gradient
problem, allowing deeper network architectures without
compromising training effectiveness.

In comparison, IncepNet also demonstrates commendable
performance, surpassing SConvNet in all metrics. This
indicates the inherent advantage of the Inception architec-
ture in capturing multi-scale information, which is crucial
for detecting stiction patterns that may vary significantly
in their temporal characteristics.

5. CONCLUSIONS

In this paper, an improved stiction detection scheme based
on hybrid residual embedded inception module networks



(ResIncepNet) has been presented. The proposed scheme
demonstrates a significant improvement in accuracy com-
pared to the CNN-based approach used in the previous
work. The incorporation of residual connections and in-
ception modules leads to better feature extraction, en-
abling the model to capture variations that are missed by
other methods. Moreover, the evaluation of the proposed
scheme, conducted through various performance metrics
such as accuracy, precision, recall, and the F1-score, em-
phasizes the superiority of the approach in stiction de-
tection. Future work will focus on further refining the
model architecture, exploring its applicability in different
industrial settings, and investigating its potential for real-
time implementation in industrial control systems.
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