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Abstract: Chromatographic separation processes are essential for achieving high-purity products in 

industries such as pharmaceuticals and biotechnology, where complex mixtures such as monoclonal 

antibodies require precise purification. These processes, such as the twin-column Multicolumn 

Countercurrent Solvent Gradient Purification (MCSGP), are typically described by nonlinear partial 

differential and algebraic equations, leading to high computational demands that limit their feasibility for 

real-time optimization. In this work, we develop a hybrid modeling approach that combines artificial neural 

networks (ANNs) with process knowledge to capture the nonlinear dynamics of the twin-column MCSGP 

system efficiently. By retaining the mechanistic separation isotherm while eliminating the need for spatial 

discretization, the model reduces computational effort substantially, achieving cyclic steady state (CSS) 

predictions in a fraction of the time required by the respective high-fidelity model. The hybrid model is 

integrated within a Bayesian optimization (BO) framework to maximize process yield while meeting 

stringent product purity requirements. A comparative analysis with both data-driven and high-fidelity 

models demonstrates that the hybrid model provides a computationally efficient, accurate alternative 

suitable for real-time applications in continuous chromatography. 

Keywords: machine learning, artificial intelligence, artificial neural networks, data-driven models, hybrid 

models, optimization, computing and systems engineering. 

 

1. INTRODUCTION 

Chromatographic separation processes play a pivotal role 

across various industries, particularly within pharmaceuticals 

and biotechnology, where they are commonly employed for 

the purification of complex mixtures such as monoclonal 

antibodies, peptides, and small molecules (Di Stefano et al., 

2012; Pinto et al., 2015). These processes are essential for 

achieving the high levels of product purity required to meet 

stringent regulatory and quality standards (Müller-Späth et al., 

2013). However, the intricate dynamics of chromatographic 

separations - characterized by nonlinear adsorption behavior, 

mass transfer limitations, and complex fluid interactions - pose 

considerable challenges for process optimization and control 

(Papathanasiou & Kontoravdi, 2020). Limited access to real-

time process analytical technologies (PATs) further 

complicates the task, as it restricts the ability to monitor and 

adjust critical variables on-line, during process operation 

(Asnin, 2016). As a result, the drive for efficient, real-time 

optimization of chromatographic processes has become a 

central focus, with the potential to substantially impact both 

process productivity and economic viability. 

Mechanistic models have traditionally been the primary 

approach for capturing the detailed behavior of 

chromatographic processes (Kumar et al., 2021). These 

models, grounded in fundamental principles, use Partial 

Differential and Algebraic Equations (PDAEs) to represent 

mass transfer, adsorption, and fluid dynamics accurately (De 

Luca et al., 2020). However, the high computational cost of 

solving PDAEs often limits these models' applicability in real-

time optimization frameworks, where rapid decision-making 

is essential (Daoutidis et al., 2024). Consequently, there is 

growing interest in developing alternative modeling 

approaches that can reduce computational complexity without 

compromising predictive accuracy, especially for dynamic 

process scenarios (Osberghaus et al., 2012). 

In this context, data-driven and hybrid modeling approaches 

have emerged as promising alternatives (Silva et al., 2024; 

Wang et al., 2017). Purely data-driven models can 

approximate process behaviors directly from historical and 

simulated process data, yielding computational efficiency 

suited for optimization tasks (Michalopoulou & 

Papathanasiou, 2024; Webb et al., 2009). Nevertheless, data-

driven models typically rely on correlations within a defined 

training range, which can limit their robustness and accuracy 

when extrapolating beyond this range, particularly in 

nonlinear, multicomponent systems like chromatographic 

separations (Mouellef et al., 2023). Hybrid models, on the 

other hand, integrate mechanistic insights, often through 

selected equations or process characteristics, with the 

computational flexibility of data-driven techniques 

(Narayanan et al., 2021). By combining the fidelity of 

mechanistic models with the adaptability of data-driven 

methods, hybrid models can retain critical process dynamics 

while achieving significant reductions in computational 



 

 

     

 

demands (Joshi et al., 2017). This integration makes hybrid 

models especially suitable for real-time process optimization, 

where computational efficiency and adaptability to variable 

conditions are paramount (Ding et al., 2023). 

This paper focuses on the implementation of data-driven and 

hybrid models in the optimization of the twin-column 

Multicolumn Countercurrent Solvent Gradient Purification 

(MCSGP) process. Widely used for monoclonal antibody 

purification, the MCSGP process exemplifies the complexities 

involved in chromatographic separation systems. A hybrid 

model of the process is developed that leverages mechanistic 

knowledge to preserve key process characteristics while 

reducing computational demands through data-driven 

elements. The developed model is implemented in a process 

optimization framework to maximize process yield and ensure 

high product purity, addressing core performance metrics in 

chromatography. Its performance is compared to a previously 

published data-driven model of the process (Michalopoulou & 

Papathanasiou, 2024), allowing for an in-depth analysis of 

computational efficiency, predictive accuracy, and 

optimization capability. Through this comparative analysis, 

we evaluate the performance of the hybrid model against the 

fully data-driven model and assess their respective capabilities 

in real-time optimization.  

2. CASE STUDY: TWIN-COLUMN MCSGP 

We focus on the twin-column MCSGP process, a critical 

purification step in monoclonal antibody (mAb) production. 

Originally developed by Aumann & Morbidelli (2007), the 

MCSGP process is a semicontinuous ion-exchange 

chromatography technique featuring two identical columns 

that alternate between isolated batch mode (B phases) and 

interconnected operation (I phases). This configuration 

facilitates the continuous separation of a complex three-

component mixture introduced in the feed (F) - comprising 

weak impurities (W), the target product (P), and strong 

impurities (S) - by leveraging a modifier (M) gradient that 

adjusts the charge on the chromatographic medium to enhance 

separation specificity.  

 

Figure 1: Schematic overview of a cycle of the twin-column 

MCSGP process.  

The MCSGP process is executed through four distinct process 

steps (Figure 1), which are carried out in a synchronized, 

alternating manner across the two columns. This alternating 

sequence allows each column to cycle through these four steps, 

achieving continuous operation at cyclic steady state (CSS) by 

recycling partially separated streams and adapting the modifier 

gradient to enable high-purity separation.  

3. METHODOLOGY 

3.1 High-Fidelity Process Model and Complexity Analysis 

To simulate the MCSGP process, a high-fidelity model 

developed by (Müller-Späth et al., 2008) is used. The 

experimentally validated model (Müller-Späth et al., 2010), 

employs a detailed lumped kinetics framework, with a 

competitive Bi-Langmuir isotherm, to describe species 

concentrations in both liquid and solid phases along the 

column length. Represented as a one-dimensional system, the 

model utilizes spatial discretization with 50 discretization 

points, leading to a system of over 3,300 variables and more 

than 4,000 differential and algebraic equations. A total of 11 

process cycles are required for the model to reach CSS, which 

adds significant computational burden. For a detailed 

description of the model and the equations that comprise it, the 

reader is referred to Papathanasiou et al. (2016).  

The main source of computational complexity and cost in the 

high-fidelity model arises from the need to discretize the 

partial differential equations describing the liquid (1) and solid 

(2) phase concentrations in the spatial and temporal domains.  
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𝜕𝑞(𝑧, 𝑡)𝑖,ℎ

𝜕𝑡
=  𝑘𝑖  (𝑞∗(𝑐(𝑧, 𝑡)𝑖,ℎ) − 𝑞(𝑧, 𝑡)𝑖,ℎ) (2) 

where, t is the time, z the column length, i the components in 

order of elution - (1) modifier, (2) weak impurities, (3) 

product, and (4) strong impurities - and h the column index. 

𝑐(𝑧, 𝑡)𝑖,ℎ, 𝑞(𝑧, 𝑡)𝑖,ℎ and  𝑞∗(𝑐(𝑧, 𝑡)𝑖,ℎ) are the liquid, solid and 

solid equilibrium phase concentrations of component i in 

column h respectively. 𝐴𝑐𝑜𝑙  and 𝑄ℎ are the column cross-

section and the volumetric flowrate of column h, while 𝜀𝑖 and 

𝑘𝑖 are the column porosity and the lumped mass transfer 

coefficient of component i respectively. 

This spatial discretization requirement adds a high number of 

variables and equations, which increases simulation time and 

limits the model’s feasibility for real-time applications. 

Previous work (Michalopoulou & Papathanasiou, 2024) has 

addressed this challenge by developing data-driven models to 

eliminate spatial discretization and, consequently, the need for 

complex partial differential-algebraic equations (PDAEs) in 

the model formulation. Following this approach, the hybrid 

model aims to eliminate the spatial discretization of the partial 

differential equations while retaining essential mechanistic 

knowledge about the separation process to ensure predictive 

accuracy. 



 

 

     

 

The primary question in developing the hybrid model, 

therefore, is determining what critical information can be 

preserved to maintain an accurate representation of the 

separation process without relying on spatial discretization. To 

achieve this, the hybrid model retains the separation isotherm 

(3), a fundamental element that governs the adsorption 

dynamics of solutes within the chromatographic columns. By 

preserving the separation isotherm in the hybrid framework, 

the model can capture key adsorption and competition 

behaviors between species, ensuring that the essential 

dynamics of the MCSGP process are represented without the 

computational overhead associated with full spatial 

discretization. 

𝑞∗(𝑐(𝑧, 𝑡)𝑖,ℎ) =
𝑐𝑖,ℎ ∙  𝐻𝑖,ℎ
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where, 𝐻𝑖,ℎ
𝐼  and 𝐻𝑖,ℎ

𝐼𝐼  the Henry constants, and 𝑞𝑖,ℎ
𝐼  and 𝑞𝑖,ℎ

𝐼𝐼  are 

the saturation capacities, of component i in column h, for the 

adsorption sites 1 and 2 respectively.  

3.2 Hybrid Model Structure 

Based on the complexity analysis and the objective of reducing 

computational cost, a hybrid model is developed to eliminate 

spatial discretization while retaining essential process 

information. The model aims to capture the dynamics of the 

MCSGP process at CSS, thus requiring only a single-cycle 

simulation to predict system behavior without the need for 

multiple cycle repetitions. To maintain accurate separation 

characteristics without spatial discretization, the hybrid model 

incorporates the separation isotherm, which governs 

competitive adsorption dynamics and captures essential 

system interactions.  

To accomplish this, the hybrid model integrates the 

mechanistic knowledge with an artificial neural network 

(ANN), trained to predict the outlet liquid phase 

concentrations of the separation species, based on key 

operating conditions such as flowrates, feed composition, and 

initial modifier concentration (Figure 2). In addition to these 

fixed process conditions, the ANN receives as inputs at each 

timestep (t) the inlet concentrations of the modifier and 

separation species, as well as the solid-phase equilibrium 

concentrations from the previous timestep (t-dt). This 

approach allows the ANN to approximate concentration 

profiles per timestep while eliminating the need for spatial 

discretization and performing calculations only at the column 

outlet. By including these equilibrium concentrations as 

inputs, the ANN captures essential adsorption dynamics and 

competitive interactions that are integral to accurately 

predicting outlet concentrations at CSS. With this setup, the 

hybrid model relies only on experimentally determined 

constants and coefficients, and the embedded isotherm, 

allowing it to achieve predictive accuracy with significantly 

reduced complexity. 

 

Figure 2: Schematic overview of the structure of the hybrid 

model. 

3.3 Synthetic Data Generation 

To train the ANN component of the hybrid model, synthetic 

data are generated using the high-fidelity model, simulating 

the MCSGP system across a range of operating conditions. 

Nine key input variables that include the flowrates, feed 

composition, and modifier concentrations, are varied using a 

quasi-random Sobol sequence to sample the input space within 

the validation range of the high-fidelity model (Michalopoulou 

& Papathanasiou, 2024). Each simulation is conducted until 

CSS, at which point an entire cycle monitored, yielding 27,200 

data points across 400 process cycles. This dataset includes 

both inlet and outlet liquid phase concentrations, along with 

solid phase equilibrium concentrations, providing a 

comprehensive basis for ANN training.  

3.4 Process Optimization Framework 

To evaluate the hybrid model’s utility in optimizing the 

MCSGP process, it is embedded within a process optimization 

framework designed to maximize process yield (4) while 

meeting a product purity (5) threshold of 98% (Müller-Späth 

et al., 2013). Bayesian Optimization (BO) is employed to 

adjust the flowrates across the different phases of the MCSGP 

system, which directly impact the process yield and purity. 

𝑌𝑗 =  
𝐶𝑎𝑣𝑃,𝑠,𝑗

𝐶𝑃
𝑓𝑒𝑒𝑑

 
(4) 

𝑃𝑢𝑟𝑎𝑣,𝑗 =  
𝐶𝑎𝑣𝑃,𝑠,𝑗

𝐶𝑎𝑣𝑊,𝑠,𝑗 + 𝐶𝑎𝑣𝑃,𝑠,𝑗 +  𝐶𝑎𝑣𝑆,𝑠,𝑗  
(5) 

where, j is the cycle index, s is the outlet stream, 𝐶𝑃
𝑓𝑒𝑒𝑑

 is the 

product concentration in the feed stream introduced to the 

system, and 𝐶𝑎𝑣𝑖,𝑠,𝑗 is the average concentration of component 

i in stream s during cycle j. The optimization problem is 

formulated as follows: 

min
𝑄

(F = −𝑌𝑗)  

s.t. 0.1 ≤ QB ≤ 1 

      0.1 ≤ QI1 ≤ 1 

      0.1 ≤ QI2 ≤ 1 

𝑃𝑢𝑟𝑎𝑣,𝑗  ≥ 98% 



 

 

     

 

where, QB the flowrates implemented during the batch phases 

B1 and B2 of the MCSGP operation, and QI1 and QI2 the 

flowrates implemented during the interconnected phases I1 

and I2 of the process operation respectively (Müller-Späth et 

al., 2008).  
 

4. RESULTS AND DISCUSSION 

4.1 Hybrid Model Validation 

A hybrid model of the MCSGP process is developed based on 

the presented methodology. The ANN integrated in the model 

is trained using the ReLU (Rectified Linear Unit) activation 

function and BO with early stopping is employed to tune its 

hyperparameters, resulting in a network of 3 hidden layers, 98 

neurons per layer and a learning rate of 8.04∙10-3. The resulting 

hybrid model is validated by comparing its CSS predictions to 

those of the high-fidelity model across a range of operating 

conditions. Both interpolation and extrapolation accuracy are 

evaluated to assess the hybrid model’s reliability within the 

trained input space of the operating conditions and its 

performance when applied beyond the direct training range. 

Ten new sets of input data are generated using the high-fidelity 

process model, half withing the training bounds of the hybrid 

model to test interpolation and the other half outside the 

bounds to test extrapolation. Two performance metrics are 

used to evaluate the accuracy of the model; the root mean 

squared error (RMSE) and the mean absolute percentage error 

(MAPE). Further to that, the metrics are used to assess the 

model accuracy for one entire process cycle at CSS, as well as 

specifically during the product collection window, wherein the 

key performance indicators (KPIs) of the process - the product 

purity and process yield - are calculated. Results, presented in 

Table 1, show that the hybrid model closely matches the high-

fidelity predictions for key concentration profiles in both 

interpolation and extrapolation scenarios, with average error 

percentages remaining within acceptable bounds for practical 

applications. 

Table 1: Interpolation and extrapolation performance of the 

hybrid model during one process cycle at CSS and during the 

product collection window.  

 Metric Interpolation Extrapolation 

Process Cycle 

at CSS 

RMSE (mg/ml) 0.019 0.044 

MAPE (%) 4.0 9.0 

Product 

Collection  

RMSE (mg/ml) 0.007 0.038 

MAPE (%) 2.0 7.0 

In addition to prediction accuracy, the computational 

efficiency of the hybrid model was evaluated by comparing the 

time required for a single-cycle CSS prediction with that of the 

high-fidelity model. As a result, the hybrid model achieved a 

97% reduction in computational time, requiring only a fraction 

of the processing time needed by the high-fidelity model to 

reach and maintain CSS. This efficiency stems from the hybrid 

model’s elimination of spatial discretization and complex 

partial differential equation solutions, enabling a direct CSS 

prediction with minimal computational overhead.  

4.2 Process Optimization 

Following validation, the hybrid model is implemented within 

a process optimization framework to determine optimal 

flowrate settings while maintaining the feed composition and 

the initial modifier concentration at nominal values. For a 

comprehensive comparison, optimization is also conducted 

using a fully data-driven model developed using the same 

amount of data (Michalopoulou & Papathanasiou, 2024) and 

the high-fidelity model of the process. The optimized flowrate 

settings identified by each model are then implemented in the 

high-fidelity model to assess the resulting process yield and 

product purity, enabling a direct comparison of optimization 

effectiveness across the three models.  

Each optimization is performed within a fixed timeframe of 

one hour to evaluate how effectively each model can identify 

optimal operating conditions under a realistic constraint for 

online implementation. Given that a process cycle has a 

duration that exceeds one hour, this approach ensures that the 

optimization can be conducted within a single cycle to 

determine the optimal flowrates for the subsequent process 

cycle. Under this framework, the number of iterations each 

model completes within the allocated time varies significantly 

due to differences in computational complexity. The high-

fidelity model completes 30 iterations, while the hybrid model 

performs approximately 600 iterations, and the data-driven 

model achieves almost 3600 iterations. To assess how well the 

models approximate the actual optimal operating conditions, a 

separate optimization was performed using the high-fidelity 

process model, where computational time was not restricted. 

This true optimum serves as a benchmark for evaluating the 

effectiveness of the surrogate models. The resulting optimal 

flowrate settings and corresponding KPIs are summarized in 

Table 2. 

Table 2: Optimal flowrates identified during the time-

constrained process optimization performed by the three 

models of the process - high-fidelity, hybrid and data driven - 

and resulting KPIs calculated by the high-fidelity model, along 

with the true optimum calculated by the high-fidelity model.  

 
Data-

Driven 
Hybrid 

High-

Fidelity 

True 

Optimum 

QB (mL/min) 0.84 0.96 1 0.87 

QI1 (mL/min) 0.69 0.65 0.61 0.71 

QI2 (mL/min) 0.24 0.24 0.24 0.24 

Purity (%) 98 98 98 98 

Yield (%) 79 82 78 86 

During the optimization, the algorithm adjusts the three key 

flowrates within a range of 0.1–1 mL/min, allowing for a broad 

exploration of the parameter space. Despite completing 

significantly fewer iterations than the data-driven model, the 

hybrid model achieved the highest process yield (82%), 

outperforming both the data-driven model (79%) and the high-

fidelity model (78%), while still maintaining the required 

product purity of 98%. Importantly, both the hybrid and data-

driven models identified conditions that are closer to the true 

optimum compared to the one-hour high-fidelity optimization. 



 

 

     

 

The high-fidelity model, despite being the most accurate 

representation of the process, was unable to explore enough of 

the parameter space in just 30 iterations, leading to a 

suboptimal yield. The data-driven model, despite completing 

the highest number of iterations, did not benefit from 

mechanistic insights, resulting in a slightly lower yield than the 

hybrid model. These results highlight the ability of the hybrid 

model to efficiently navigate the optimization space and 

identify operating conditions that maximize yield within the 

given time constraint while remaining closely aligned with the 

true optimum. The resulting elution profiles for the three 

components of the separation based on the optimal flowrates 

identified by each model are presented in Figure 3. 

 

Figure 3: Comparison of the optimal elution profiles of the 

three separation species - weak impurities (blue), product 

(red), and strong impurities (green) - as optimized by the high-

fidelity, hybrid and data driven models, and calculated at CSS 

using the high-fidelity process model. The product collection 

window is highlighted in purple. 

The elution profiles in Figure 3 illustrate the concentration 

trajectories of the weak impurities, product, and strong 

impurities at CSS, as calculated using the optimal flowrates 

identified by each model. A notable difference is observed in 

the weak impurities, where the high-fidelity model exhibits an 

accumulation of these species in the system, a behavior that is 

significantly reduced in both the hybrid and data-driven 

models. This accumulation suggests that the high-fidelity 

model’s optimization, due to its limited iterations, was unable 

to fully refine flowrate adjustments to improve impurity 

clearance. Conversely, the hybrid and data-driven models 

effectively reduced impurity retention. 

Most importantly, the elution profiles obtained using the 

hybrid and data-driven models are more closely aligned with 

the true optimum than those produced by the high-fidelity 

model under time constraint (Figure 3). This confirms that 

both surrogate models are not only computationally efficient 

but also highly effective in identifying near-optimal conditions 

in a fraction of the time required for the timewise 

unconstrained high-fidelity optimization. As such, they can be 

used in applications requiring quick and reliable predictions. 

5. CONCUSIONS AND OUTLOOK 

In this work, a hybrid model was developed and validated for 

the twin-column Multicolumn Countercurrent Solvent 

Gradient Purification (MCSGP) process, with the goal of 

achieving efficient and accurate process optimization. The 

hybrid model combined mechanistic knowledge, through the 

separation isotherm, with data-driven elements, via artificial 

neural networks (ANNs), allowing it to predict cyclic steady 

state (CSS) behavior directly without spatial discretization. 

The model was embedded in a Bayesian optimization (BO) 

setup to determine optimal flowrate settings, and its 

performance was compared with that of a fully data-driven 

model and of a high-fidelity model of the process. The model 

demonstrated increased computational efficiency and 

robustness, establishing it as a viable alternative to high-

fidelity modeling for real-time applications. 

The comparative analysis between the hybrid, data-driven, and 

high-fidelity models illustrated the strengths of the hybrid 

approach in reducing computational complexity while 

retaining high accuracy. The hybrid model achieved high 

accuracy when compared to the high-fidelity model, capturing 

essential dynamics with an accuracy of over 96% in 

interpolation and 91% in extrapolation throughout the process 

cycle and a substantial reduction of 97% in computational cost 

and simulation time requirements. Thus, the hybrid model’s 

performance highlighted its suitability for online applications, 

where the balance between predictive accuracy and 

computational efficiency is critical. 

In terms of process optimization, the results demonstrated that 

the hybrid model can offer a practical solution for applications 

requiring real-time adjustments, as it delivered accurate 

predictions while maintaining computational efficiency. The 

hybrid model outperformed the time-constrained high-fidelity 

optimization, as well as the data-driven optimization, 

achieving a higher yield (82%) while closely approximating 

the true optimum (86%). By integrating mechanistic insights 

with data-driven adaptability, the hybrid model efficiently 

explored the parameter space, identifying optimal conditions 

faster and more accurately than the high-fidelity and fully data-

driven models respectively. Its ability to achieve near-optimal 

performance within the duration of a single process cycle 

makes it particularly valuable for continuous operation, where 

real-time optimization is required to dynamically adjust 

flowrates and maximize product recovery while maintaining 

strict purity standards. 

Future work could explore the application of transfer learning 

to extend the hybrid model’s applicability to similar 

chromatographic processes, reducing the need for extensive 

retraining when adapting to new systems. This approach would 

leverage the knowledge embedded in the current model to 

accelerate the development of predictive models for other 

separation processes with analogous dynamics. Additionally, 

integrating reinforcement learning (RL) could enhance the 

framework’s ability to achieve closed-loop process control. By 

employing RL agents trained to optimize operational 

parameters in response to real-time feedback, the system could 

dynamically adjust flowrates and other critical variables to 

maintain product purity and yield under fluctuating feed 



 

 

     

 

compositions or operational disturbances. These extensions 

could solidify the hybrid model’s role as a powerful, 

computationally efficient solution for advanced process 

control in chromatography and similar applications. 
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