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Abstract: This paper considers the problem of designing predictive control laws for nonlinear
auto-regressive exogenous (NARX) models based on measured input-output data without
explicitly identifying the model parameters. We explore the case when outputs are corrupted
by additive measurement noise. An upper bound on the optimal value function for the robust
case is derived, and the mismatch between the predicted and actual output is also theoretically
studied. The recursive feasibility and practical stability of the robust data-driven predictive
control (DDPC) scheme are guaranteed. The simulation results finally quantify the effectiveness
of the proposed method with the experimental data gathered from a powder compaction process
performed on a rotary tablet press.
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1. INTRODUCTION

The nonlinear auto-regressive exogenous (NARX) repre-
sentation is widely used to model and simulate different
applications (Billings, 2013). Besides, due to the advance-
ment of sensor technology and computational tools, data-
driven schemes in systems and control have recently gained
considerable attention, see, for example, Markovsky and
Rapisarda (2008); De Persis and Tesi (2020); van Waarde
et al. (2022); Coulson et al. (2019); Mishra et al. (2022);
Berberich et al. (2021); Baros et al. (2022); Pan et al.
(2022); Hiremath et al. (2022); Markovsky and Dörfler
(2021); Yin et al. (2021); Mishra et al. (2023). In this pa-
per, we design a data-driven predictive controller (DDPC)
for NARX models in the presence of additive measurement
noise. To tackle this problem, we invoke an extension
(see, (Mishra et al., 2021, Theorem 1)) of a result from
the behavioral system theory known as the fundamental
lemma, which was developed by Willems and co-workers
(Willems et al., 2005, Theorem 1). This result provides
sufficient conditions when the space of all input-output
trajectories of a deterministic linear time-invariant (LTI)
system coincides with the column space of the Hankel
matrix built from a persistently exciting (PE) measured
input-output trajectory. With this general overview, we
survey some of the previous research works to explain the
motivations behind our proposed method and to present
its main contributions with respect to the existing results.
1 This work was funded by the German Research Foundation (DFG)
– GZ: BA 5511/9-1 and TH 1817/8-1.

Recent attention has been directed towards the idea of de-
signing control laws for unknown systems based on input-
output data. The data-driven output matching problem for
LTI systems has been solved in Markovsky and Rapisarda
(2008). Data-driven stabilizing controllers for LTI systems
have been synthesized in De Persis and Tesi (2020); van
Waarde et al. (2022). Data-driven observers for LTI sys-
tems have been designed in Mishra et al. (2022); Turan and
Ferrari-Trecate (2022). Data-driven stabilizer controllers
are also derived in recent years for different classes of
nonlinear systems (Bisoffi et al., 2020; Luppi et al., 2022;
Guo et al., 2022; Strässer et al., 2021; De Persis et al.,
2023). The fundamental lemma, however, was used in
Coulson et al. (2019) to design predictive controllers. More
precisely, an algorithm known as DeePC (data-enabled
predictive control) was developed in Coulson et al. (2019)
to solve a predictive control problem based on measured
data. The aforementioned work received significant at-
tention from researchers in different fields and has been
extended in several directions. For example, theoretical
guarantees related to recursive feasibility, closed-loop sta-
bility, and robustness for LTI systems have been studied
in Berberich et al. (2021). Another version of DeePC has
been proposed, called ODeePC (Online DeePC), where
online measurements are adapted to capture the real-time
behavior of time-varying systems in Baros et al. (2022). It
has also been extended to stochastic systems by developing
appropriate fundamental lemma-like results (Pan et al.,
2022; Hiremath et al., 2022). Note that the fundamental
lemma (Willems et al., 2005, Theorem 1) provides only suf-



ficient conditions to parametrize the set of all input-output
trajectories based on a single persistently exciting trajec-
tory. However, recently, necessary and sufficient conditions
for the fundamental lemma have been given in (Mishra and
Markovsky, 2021, Theorem 4). For an overview, we refer
to a recent survey Markovsky and Dörfler (2021).
Since the fundamental lemma is concerned with deter-
ministic LTI systems, DeePC was basically developed for
the same class of systems. However, the dynamics of al-
most all real systems are intrinsically nonlinear including
considerable uncertain terms caused by different internal
or environmental forces and factors Krstic et al. (1995).
Therefore, it is a relevant subject to extend DDPC meth-
ods beyond the deterministic LTI case. An extension of
Willems’ fundamental lemma to a class of discrete-time
feedback linearizable nonlinear systems is studied in Al-
salti et al. (2023), thus providing a data-based represen-
tation of their input-output trajectories. The problem of
simulation and predictive control based on noise-free data
for polynomial NARX models are investigated in Mishra
et al. (2021) and in Azarbahram et al. (2024), respectively.
It has been shown empirically, without guarantees, that
DeePC algorithm in Coulson et al. (2019) also works
for simple nonlinear systems with measurement noise by
using some regularizers and slack variables. However, a
comprehensive algorithm with theoretical guarantees that
directly targets the DDPC of NARX models, among many
other classes of nonlinear dynamics/models, is yet to be
addressed.
This motivates us to represent our contributions as follows.
We formulate for the first time a DDPC problem for a
class of NARX models. This is a topic of interest since
these models can cover wide-ranging real-world scenarios
and applications that include nonlinearity in input-output
representation. We introduce the robust DDPC method
to handle the corrupted output measurements. We first
show that the optimal value function in this case is upper-
bounded. In order to study the recursive feasibility and
practical stability of the robust scenario, the mismatch
between the predicted and actual output is also shown to
be upper-bounded. The practical stability of the origin is
finally studied.
The remaining article is organized as follows. Section II
presents the formulation of the problem, including nota-
tion and preliminaries. The main results are then discussed
in Section III. The simulation results are illustrated in
Section IV. Finally, Section V concludes the paper.

2. PRELIMINARIES AND PROBLEM STATEMENT

The notation used throughout the article is reported in
the footnote. 2 Consider the following NARX model
2 To denote the sets of reals, non-negative reals, positive reals, non-
negative integers, and positive integers, we use R, R0+, R+, N, and
N+, respectively. For I ⊆ R0+, let NI = N ∩ I. The set of real
p×q matrices is denoted by Rp×q . For any matrix A, AT denotes its
transpose. Additionally, A† stands for the pseudo-inverse of matrix
A. Furthermore, 0q and 1q are respectively vectors of all zero/one
entries of dimension q. The i-th power of any vector κ ∈ Rq , denoted
as κi, is defined as the i-th power of each of its components. For
matrices A1 ∈ Rp1×q , A2 ∈ Rp2×q , . . . , Ar ∈ Rpr×q , we define
Col(A1, A2, . . . , Ar) = [AT

1 , AT
2 , . . . , AT

r ]T. A typical offline time

y(k) =
ρ1∑

i1=1

l1∑
ι1=1

αi1ι1yi1
(k−ι1) +

ρ2∑
i2=1

l2∑
ι2=1

βi2ι2ui2
(k−ι2), (1)

where αi1ι1 and βi2ι2 are unknown real scalars for all
possible i1, i2, ι1 and ι2. Furthermore, y(k) ∈ R is the
measured output and u(k) ∈ R is the control input. The
positive predefined scalars ρ1, ρ2, l1 and l2 stand for the
powers and delays of the measured output and control
input, respectively. Besides, yi1(k − ι1) and ui2(k − ι2)
also stand, respectively, for the i1-th and i2-th powers of
delayed measured output (w.r.t., ι1) and delayed control
input (w.r.t., ι2). Let Λi1 = [αi11, . . . , αi1l1 ]T, and Bi2 =
[βi21, . . . , βi2l2 ]T. Then, we define the following vectors

ξi1(k) = [yi1(k − 1), yi1(k − 2), . . . , yi1(k − l1)]T,

ηi2(k) = [ui2(k − 1), ui2(k − 2), . . . , ui2(k − l2)]T. (2)
Given (2), the NARX model (1) is rewritten as

y(k) =
ρ1∑

i1=1
ΛT

i1
ξi1(k) +

ρ2∑
i2=1

BT
i2

ηi2(k). (3)

Our goal is to design a predictive scheme for the NARX
model (3) subject to user-specified input and output
constraints. This can be expressed in the context of a finite
horizon optimal control problem (OCP) as

J∗
L(η(k), ξ(k)) = min

ū(k),ȳ(k)

L−1∑
µ=0

γ(ūµ(k), ȳµ(k)), (4a)

s.t.

ȳµ(k) =
ρ1∑

i1=1
ΛT

i1
ξ̄i1

µ (k) +
ρ2∑

i2=1
BT

i2
η̄i2

µ (k), (4b)

ξ̄i1
0 (k) = ξi1(k), η̄i2

0 (k) = ηi2(k), (4c)
ȳµ(k) ∈ Y, ∀µ ∈ N[0,L−1], (4d)
ūµ(k) ∈ U , ∀µ ∈ N[0,L−1]. (4e)

In this setting, ū∗(k) = (ū∗
0(k), . . . , ū∗

L−1(k)) is the optimal
control in case of an admissible feasible solution to the
OCP. It is worth pointing out that an l-step predictive
control scheme is developed in this paper, i.e., from ū∗(k),
{ū∗

0(k), . . . , ū∗
l−1(k)} and it’s corresponding powers for

η̄i2∗(k), i2 = 2, . . . , ρ2 is applied to the actual system (3).
Accordingly, the horizon is then shifted l samples before
the next iteration while making l measurements after ap-
plying the optimal control sequence {ū∗

0(k), . . . , ū∗
l−1(k)}.

The stage cost γ(ū(k), ȳ(k)) which penalizes the distance
of predicted inputs and outputs w.r.t the desired equilib-
rium (us, ys) is defined as

γ(ūµ(k), ȳµ(k)) = |ȳµ(k) − ys|2 + |ūµ(k) − us|2.

Although the model predictive control problem (4a)-(4e)
is now completely defined, the constraint in (4b) makes
this problem impossible to solve since we do not have the
parameters of the model for the evolution of system in
open loop optimization at each iteration. Therefore, our
series {κd(k)}N−1

k=0 ∈ (Rq)N is called the historical data where the
subscript d stands for data. Furthermore, for any trajectory κ :
N[a,b] → Rq we may use κ[a,b] to denote Col(κ(a),κ(a+1), . . . ,κ(b))
where a, b ∈ N. Finally, we recall the persistency of excitation.
Persistency of excitation (Willems et al., 2005): A q-variate time
series κ := (κ(0),κ(2), · · · ,κ(N − 1)) is called PE of order L ∈ N
if the Hankel matrix HL(κ) with L-block rows is full row rank, i.e.,
rank(HL(κ)) = qL.



main goal in this paper is to re-define this model-based
OCP in the form of DDPC which only uses input-output
data in open-loop prediction stage.

3. MAIN RESULTS

The key idea to continue with is to replace the constraint
in (4b) by a non-parametric representation of model that
is derived purely from data Mishra et al. (2021). Let
ξd = Col(ξd, . . . , ξρ

d), and ηd = Col(ηd, . . . , ηρ
d) be defined

over the typical offline time series {ξi1
d (k), ηi2

d (k)}N−1
k=0 ∈

(Rl1+l2)N for all i1 = 1, . . . , ρ1 and i2 = 1, . . . , ρ2 based
on the historical data. By considering L1 = L + 1, we
also define HL1(ξd) = Col(HL1(ξd), . . . , HL1(ξρ1

d )), and
HL1(ηd) = Col(HL1(ηd), . . . , HL1(ηρ2

d )). The data-driven
non-parametric representation of NARX models of the
form (3) is given in what follows.
Lemma 1: (Mishra et al., 2021, Theorem 1) Suppose
that the offline time series {ηd, ξd} is PE of order L1.
Let ξ[−1,L−1](k) = Col(ξ[−1,L−1](k), . . . , ξρ1

[−1,L−1](k)), and
η[−1,L−1](k) = Col(η[−1,L−1](k), . . . , ηρ2

[−1,L−1](k)). Then,
y[0,L](k) is a trajectory of (3) w.r.t., ξ[−1,L−1](k) and
η[−1,L−1](k), if and only if ∃ g ∈ RN−L1+1 such thatη[−1,L−1](k)

ξ[−1,L−1](k)
y[0,L](k)

 =
[HL1(ηd)

HL1(ξd)
HL1(yd)

]
g(k) ≡ Hξη g(k). (5)

For ease of notation, in the rest of this paper we consider
the NARX model (3) with ρ1 = ρ2 = ρ and l1 = l2 = l.
This is quite a reasonable assumption since it is possible
to add arbitrary extra powers and delays to input-output
pairs with zero coefficients in the NARX model (1) to
provide the same order for the purpose of theoretical
analysis.
Now we are in the position to re-define the nominal model-
based OCP (4a)-(4e) in the form of a DDPC problem
which only uses data in open-loop prediction stage as
follows

J∗
L(η(k), ξ(k)) = min

ū(k),ȳ(k),g(k)

L−1∑
µ=0

γ(ūµ(k), ȳµ(k)), (6a)

s.t.
ȳµ(k) ∈ Y, ∀µ ∈ N[0,L−1], (6b)
ūµ(k) ∈ U , ∀µ ∈ N[0,L−1], (6c)η̄[−1,L−1](k)
ξ̄[−1,L−1](k)

ȳ[0,L](k)

 =
[HL1(ηd)

HL1(ξd)
HL1(yd)

]
g(k), (6d)

ξ̄i
[−1](k) = ξi(k), η̄i

[−1](k) = ηi(k), (6e)
ξ̄i

[L−1](k) = yi
s1l, η̄i

[L−1](k) = ui
s1l, (6f)

∀i = 1, . . . , ρ.

We realize that the constraint (4b) is now replaced with
(6d). This provides a non-parametric representation of
model purely from data that gives any trajectory of model
(3) starting from y(0) according to Lemma 1. The initial
conditions for each iteration is set according to constraint
(6e). The terminal equality constraint (6f) implies that the
output and input of the system has reached to the desired
equilibrium (ys, us) at the last open-loop optimization
stage.

In real-time applications, outputs of the system are subject
to measurement noise and thus are inaccurate. Then, the
data-dependent Hankel matrix does not span the system’s
trajectory space, and equation (5) does not precisely
represent the model anymore. Therefore, the optimization
problem (6a)-(6f) needs to be upgraded to account for
inaccurate predictions. Otherwise, it may be infeasible
or lead to system’s instability. We consider model (1)
with additive output noise for offline collected data as
well as online measurements, i.e., ỹ(k) = y(k) + ϵ(k) and
ỹd(k) = yd(k) + ϵd(k). The noises at sample time k are
denoted by ϵ(k) and ϵd(k) for online measurements and
offline data, respectively. In order to build vectors ξ̃i(k)
and ξ̃i

d(k), we assume that ỹi(k) ≈ yi(k) + ϵi(k) and
ỹi

d(k) ≈ yi
d(k) + ϵi

d(k) for all i = 2, . . . , ρ. Note that, the
assumption ỹi(k) ≈ yi(k)+ϵi(k) and ỹi

d(k) ≈ yi
d(k)+ϵi

d(k)
for all i = 2, . . . , ρ is a bit conservative because we are
ignoring here the cross-terms. However, the key rationale
behind this approximation is that we have the perturbed
data in the noisy scenario. Notably, this approximation
does not undermine the validity of the recursive feasibility
and stability results, as the system behavior remains
consistent under the bounded noise assumption. Thus, this
assumption made here is merely to simplify the exposition.
Next, we define ξ̃i(k) = [ỹi(k−1), ỹi(k−2), . . . , ỹi(k−l)]T.
To handle the noisy measurements in the DDPC scheme,
we need to re-design the equality constraint derived by
the fundamental lemma in (6d). This must be a relaxed
version of (6d) by adding some slack variables to the
predicted outputs. The relaxation parameters are as a
result compensated in the cost function. More precisely,
the cost function in (6a) should also be modified. By
leveraging the idea in Berberich et al. (2021), for a given
initial input-output pair (η(k), ξ̃(k)) and a sequence of N -
length offline data for which {ηd, ξ̃d} is PE of order L1,
we propose a robust modification for the DDPC problem
in (6a)-(6f) as follows

J∗
L(η(k), ξ̃(k)) = min

ū(k),ȳ(k),g(k)
σ[i](k),i=1,...,ρ

L−1∑
µ=0

γ(ūµ(k), ȳµ(k))

+
ρ∑

i=1
λi∥σ[i](k)∥2

2 + ϕϵ̄∥g(k)∥2
2, (7a)

s.t.
ȳµ(k) ∈ Y, ∀µ ∈ N[0,L−1], (7b)
ūµ(k) ∈ U , ∀µ ∈ N[0,L−1], (7c)

η̄[−1,L−1](k)
[ξ̄1(k) + σ[1](k)][−1,L−1]
[ξ̄2(k) + σ[2](k)][−1,L−1]

...
[ξ̄ρ(k) + σ[ρ](k)][−1,L−1]

[ȳ(k) + σ
[1]
[1](k)][0,L]


=



HL1(ηd)
HL1(ξ̃1

d)
HL1(ξ̃2

d)
...

HL1(ξ̃ρ
d)

HL1(ỹd)


g(k), (7d)

ξ̄i
[−1](k) = ξ̃i(k), η̄i

[−1](k) = ηi(k), (7e)
ξ̄i

[L−1](k) = yi
s1l, η̄i

[L−1](k) = ui
s1l, (7f)

∥σ[i]
µ (k)∥∞ ≤ ϵ̄(1 + ∥g(k)∥1), ∀µ ∈ N[0,L−1], (7g)

∀ i = 1, . . . , ρ.



Let ϵi(k) = Col(ϵi(k − 1), . . . , ϵi(k − l)) for i = 1, . . . , ρ.
We point out here that no assumptions are made on the
nature of noise however, it is required to be bounded, i.e.,
|ϵi(k)| ≤ ϵ̄ and |ϵi

d(k)| ≤ ϵ̄ with some positive constant
ϵ̄. Notably, under the premise of small perturbations (less
than 1), we can have a common noise bound for all powers.
Accordingly, for all i = 1, . . . , ρ, we have ∥ϵi(k)∥∞ ≤ ϵ̄
and ∥ϵi

d(k)∥∞ ≤ ϵ̄. We observe that the slack variables
σ[i](k) ∈ Rl for i = 1, . . . , ρ are introduced in (7d) as
a modified version of (6d). We have to note that the
superscript notation [i] for σ[i](k) does not stand for the i-
th power of σ(k) and is in fact a vector including l elements
that corresponds to different powers of ξ̄i(k). These slack
variables are bounded by new constraints compared to
nominal DDPC scheme as we can see from (7g). We need
this constraint later to establish an upper bound for the
Lyapunov function and also in the recursive feasibility
analysis of (7a). We also note that the cost function
is modified by adding regularization terms for g(k) and
σ[i](k), respectively by weights ϵ̄ϕ and λi for i = 1, . . . , ρ.
It indicates that the regularization of g(k) depends on
the noise level. Compared to the nominal DDPC scheme,
ξ̄i

[−1](k) is now initialized after each iteration with ξ̃i(k)
according to (7e) for the robust problem formulation.
The final point to notice is the representation of Hankel
matrices in (7d) which is defined over noisy offline data ξ̃d.
Remark 1: The optimization problem formulated in this
work is nonconvex due to the nonlinear terms in the
Fundamental Lemma developed in (6d) and (7d). Another
source of nonconvexity is (7g). Nonconvex problems gener-
ally pose challenges in finding globally optimal solutions,
as they may contain multiple local minima. A convexifi-
cation of this problem is beyond the scope of this paper.
In this work, we employed the “CasADi” framework to
solve the nonconvex predictive control problem (Anders-
son et al., 2019). “CasADi” provides symbolic differentia-
tion and optimization routines that enable the formulation
and solution of nonconvex problems using interior-point
or SQP (Sequential Quadratic Programming) methods.
While these methods are not guaranteed to find the global
optimum for nonconvex problems, they are well-suited for
efficiently finding locally optimal solutions. To ensure the
quality and feasibility of the obtained solutions in the
simulation results, the problem was carefully initialized,
and multiple runs with different initial conditions were
performed to check for consistency in the results. The
use of warm-starting techniques further helped to speed
up convergence and improve solution quality. Additionally,
the practical performance of the control algorithm was val-
idated through extensive simulations, which demonstrated
robustness and satisfaction of constraints across all tested
scenarios.
We introduce the vectors ξ(k) = Col(ξ(k), . . . , ξρ(k)), and
η(k) = Col(η(k), . . . , ηρ(k)). We then define two block
column vectors over the past available input-output pairs
at any sample time k according to the vectors defined in
(2) as follows

θ(k) =
[
η(k)
ξ(k)

]
∈ R2ρl, ϑ(k) =

[
η(k)
ξ(k)

]
∈ R2l. (8)

The function VL(ϑ(k)) is defined as the optimal value func-
tion of the form VL(ϑ(k)) = J∗

L(η(k), ξ(k)) = J∗
L(ϑ(k)).

Throughout this paper, we consider (us, ys) = (0, 0) for
the stability analysis. The optimal value function in (7a)
is a function of past control inputs as well as noisy
measured outputs denoted by J∗

L(η(k), ξ̃(k)) while the L-
step cost function JL(η(k), ξ̃(k), g(k), σ[i](k)) is equal to∑L−1

µ=0 γ(ūµ(k), ȳµ(k))+
∑ρ

i=1 λi∥σ[i](k)∥2
2+ϕϵ̄∥g(k)∥2

2. We
see that the optimal value function depends on g∗(k). This
results in the dependence of J∗

L(η(k), ξ̃(k)) on the past
noisy measurements by (7e). Therefore, we have to find a
new upper bound on the optimal value function. Similar to
(8), we define a block column vector over the past available
control input and noisy output pairs at any sample time
k as follows

ϑ̃(k) =
[
η(k)
ξ̃(k)

]
=

[
η(k)

ξ(k) + ϵ(k)

]
∈ R2l. (9)

The function VL(ϑ̃) is defined as the optimal value function
that is J∗

L(η(k), ξ̃(k)) = J∗
L(ϑ̃(k)). The upper bound on the

optimal value function VL(ϑ̃(k)) is derived in what follows.
We have to note that the lower bound of VL(ϑ̃(k)) is trivial.

Lemma 2: Suppose that the sequence of data {ηd, ξ̃d}
is PE of order L1. Then, there exist positive constants
c1, c2, and δ such that for any ϑ(k) ∈ Bδ with Bδ =
{ϑ(k) | ∥ϑ(k)∥2 ≤ δ}, we have

VL(ϑ̃(k)) ≤ c1∥ϑ(k)∥2
2c2. (10)

One of the main concerns in investigating the recursive
feasibility and practical stability of our proposed robust
DDPC scheme is the unavoidable mismatch between pre-
dicted output ȳ∗(k) after applying the optimal control
ū∗(k) and the actual output ŷ(k). In what follows, we
study how this value is bounded in terms of the optimizer
of (7a)-(7g), i.e., g∗(k), and σ∗[i](k) for all i = 1, . . . , ρ. We
first define the following

ξ̆i
[−1,L−1](k) = ξ̂i

[−1,L−1](k) − HL1(ξi
d)g∗(k). (11)

We say that ξ̆i
[−1,L−1](k) is an output trajectory of the

model with initial condition ξ̆i
[−1](k) = −σ

∗[i]
[−1](k) +

H1(ϵi
d)g∗(k) − ϵi(k). It is obvious that y̆i

[−1,L−1](k) is de-
fined as the first element of each block row in ξ̆i

[−1,L−1](k),
denoted by ξ̆i

1�[−1,L−1](k). Additionally, from (7d) we have

ξ̄∗i
[−1,L−1](k) = −σ

∗[i]
[−1,L−1](k) + HL1(ξi

d)g∗(k)
+ HL1(ϵi

d)g∗(k). (12)
According to (7a)-(7g), we observe that HL1(ξi

d)g∗(k) is
a trajectory of model (3) with initial output condition
ξ̃i

[−1](k)+σ
∗[i]
[−1](k)−H1(ϵi

d)g∗(k). We have to point out that
ξ̃i

1�[−1](k) is ỹi(k − 1). Now, we can find an upper bound
on the mismatch between the predicted output ȳ∗(k), after
applying the optimal control ū∗(k), and the actual output
ŷ(k).
Lemma 3: The l∞ norm of the difference between the i-
th power of the predicted output ȳ∗i

µ (k), ∀µ ∈ N[0,L−1] and
the actual output µ sample time ahead, i.e., ŷi(k + µ) is
upper bounded for all i = 1, . . . , ρ as follows

∥ŷi(k + µ) − ȳ∗i
µ (k)∥∞ ≤ |cµ|

(
ϵ̄(1 + ∥g∗(k)∥1)

+ |σ∗[i]
1�[−1](k)|

)
+ ϵ̄∥g∗(k)∥1 + ∥σ∗[i]

µ (k)∥∞. (13)
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Fig. 1. Experimental data gathered from a powder com-
paction process performed on a rotary tablet press.

Theorem 1: Suppose that there exists g(k) ∈ RN−L1+1

such that (7d) holds and additionally assume that the
OCP (7a)-(7g) is feasible at a given sample time k with
VL(ϑ̃(k)) = J∗

L(ϑ̃(k)) < Ω for a positive constant Ω. Then,
there exists ϵ̄0 such that for all ϵ̄ < ϵ̄0, the robust DDPC
formulation (7a)-(7g) is feasible at time k + l.
Lemma 4: The l2 norm of the difference between the i-th
power of the predicted output ȳ∗i

µ (k), ∀µ ∈ N[0,L−1] and
the actual output µ sample time ahead, i.e., ŷi(k + µ) is
upper bounded for all i = 1, . . . , ρ as follows

∥ŷi(k + µ) − ȳ∗i
µ (k)∥2

2 ≤ |cµ|2
(
4∥σ

∗[i]
1�[−1](k)∥2

2

+ 8ϵ̄2 + 8ϵ̄2 cϵ

l
∥g∗(k)∥2

2
)

+ 4ϵ̄2 cϵ

l
∥g∗(k)∥2

2

+ 4∥σ∗[i]
µ (k)∥2

2. (14)

Theorem 2: Suppose that there exists g(k) ∈ RN−L1+1

such that (7d) holds and additionally assume that the
OCP (7a)-(7g) is feasible at a given initial sample time
k with VL(ϑ̃(k)) = J∗

L(ϑ̃(k)) < Ω for any Ω > 0.
Suppose that in the cost function, the weights ϕ and λi

for i = 1, . . . , d are lower-upper bounded as ϕm ≤ ϕ ≤ ϕM

and λm ≤ λi ≤ λM , for some existing positive constants
ϕm, ϕM , λm and λM . For some positive constant h̄g we
also have hg ϵ̄ ≤ h̄g. Then, the origin is practically stable
for l-step implementation of robust DDPC in (7a)-(7g).

4. SIMULATION RESULTS

In this section, we show the effectiveness of our proposed
robust DDPC method in terms of experimental data
gathered from the powder compaction process. We define
the predicted input-output pairs {ūµ(k), ȳµ(k)} (to build
their power vectors correspondingly), σ[i](k) ∈ Rl for
i = 1, . . . , ρ, and vector g(k) as the decision variables
at each iteration to solve the optimization problems. The
initial conditions for input-output pairs are also defined
as the parameters of the problem to be updated at the
beginning of each iteration.
Powder compaction performed on a rotary tablet press
is a dry granulation method to transfer powder materi-
als consisting of several components (drug, lubricant and
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Fig. 2. The control inputs and tracking performance.

other excipients) into compacts (tablets). This process is
usually integrated in a multi-stage manufacturing line for
the product design (Kleinebudde et al., 2017). Moreover,
product quality indices refer to the dose, hardness, disinte-
gration, and dissolution of the tablets. These attributes are
maintained during processing by adaptation of the subse-
quent unit operations in the rotary tablet press. Feeding,
blending and filling are executed continuously and deter-
mine the chemical composition. Compression and ejection,
on the other hand, are performed semi-continuously and
determine the mechanical properties of the compacts (e.g.
hardness). The interconnection of the five process steps,
i.e., feeding, blending, filling, compression and ejection
leads to a complex control task. Here, the efficiency of
our proposed robust DDPC method is evaluated based
on a set of real data gathered from a powder compaction
process performed on a rotary tablet press. The process
is MIMO and the inputs are lower punch position (LPP),
punch distance (PD), turret speed, impeller speed, and
screw speed. The outputs are on the other hand weight,
porosity, lubrication, and weight fraction. We collected
N = 180 samples of input-output data shown in Fig. 1,
that corresponds to a part of the whole process i.e., com-
pression with two inputs (u1: LPP in mm, u2: PD in mm)
and two outputs (y1: weight in mg, y2: porosity in [0, 1]).
As we observe from Fig. 1, we mounted a small noise to
maintain the PE condition for the gathered input data. We
also notice fluctuations in the gathered output data which
is caused by measurement noise. Accordingly, we chose an
unknown two-input two-output ARX model with l1, l2 = 3
and the sequence of data is subsequently constructed to
build the Hankel matrices and formulate the fundamental
lemma in (7d). The constraints for the output values are
y1 min = 0 mg, y1 max = 300 mg, y2 min = 0, y2 max = 1.
The inputs are also constrained between 0 and 9.2 mm. For
the online optimization problem, a pair of predefined time-
varying reference trajectories is considered for the tracking
performance (i.e., r1 and r2) and the prediction horizon
is L = 5. The final results after applying the algorithm
are shown in Fig. 2, where we can see the set points are
appropriately adjusted to keep the tracking according to
the reference trajectories to be tracked by the rotatory
tablet press process.



5. CONCLUSION

This work is concerned with the problem of DDPC for
NARX models based on measured input-output data cor-
rupted by additive measurement noise. The theoretical
guarantees are given for the upper bound on the optimal
value function, the bounded mismatch between the pre-
dicted and actual output, and the recursive feasibility and
practical stability of the proposed robust DDPC scheme.
The effectiveness of the proposed method is shown in terms
of simulations with the powder compaction process.
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Data-driven control of nonlinear systems: Beyond poly-
nomial dynamics. In 2021 60th IEEE Conference
on Decision and Control (CDC), 4344–4351. doi:
10.1109/CDC45484.2021.9683211.

Turan, M.S. and Ferrari-Trecate, G. (2022). Data-
driven unknown-input observers and state estimation.
IEEE Control Systems Letters, 6, 1424–1429. doi:
10.1109/LCSYS.2021.3102821.

van Waarde, H.J., Camlibel, M.K., and Mesbahi, M.
(2022). From noisy data to feedback controllers: Non-
conservative design via a matrix s-lemma. IEEE Trans-
actions on Automatic Control, 67(1), 162–175. doi:
10.1109/TAC.2020.3047577.

Willems, J.C., Rapisarda, P., Markovsky, I., and De
Moor, B.L. (2005). A note on persistency of excita-
tion. Systems & Control Letters, 54(4), 325–329. doi:
https://doi.org/10.1016/j.sysconle.2004.09.003.

Yin, M., Iannelli, A., and Smith, R.S. (2021). Maximum
likelihood estimation in data-driven modeling and con-
trol. IEEE Transactions on Automatic Control, 68(1),
317–328.


