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Abstract: Macroscopic modeling of bioprocesses is a common approach to derive dynamic predictors
suitable for process optimization and control. This study presents a data-driven methodology for
inferring reaction rates without resorting to the classical numerical differentiation of experimental data,
which is prone to errors in the presence of noise. The approach is based on the minimization of a
nonlinear least square criterion, which parameterizes the rates in terms of the temporal values. The
proposed method is appropriate for datasets with sparse measurements and few experimental replicates.
A use case considering protein production by mammalian cells is used to validate the proposed approach.
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1. INTRODUCTION

Macroscopic models describe the mass balance between macro-
scopic species in biological systems for process prediction, me-
dia optimization, and feeding control. Developing biologically
interpretable kinetics relies on enzyme-catalytic or modulation
effects, such as activations, inhibitions, and limitations. When
little prior knowledge of biological systems is available, con-
structing the kinetics as a product of individual modulation
phenomena is common (Grosfils et al., 2007; Richelle and
Bogaerts, 2015; Wang et al., 2020; Dewasme et al., 2023).
However, due to the nonlinear model structure, model identifi-
cation involving model selection and parameter estimation can
be challenging.

The first challenge is defining the number of macroscopic
reactions from the datasets, which could be subject to the test of
several candidate macroscopic reaction schemes. A well-known
data-driven method to identify macroscopic reaction schemes is
the Principal Component Analysis (PCA) (Bernard and Bastin,
2005), which can determine the number of reactions and the
stoichiometric relations between the compounds in a data-
driven way. An extension of this method, Maximum Likelihood
Principal Component Analysis (MLPCA), accounts for higher
levels of measurement noise (Mailier et al., 2012). Furthermore,
Pimentel et al. (2023b) used a data-driven methodology with
a robust algorithm for parallel implicit sparse identification to
deduce macroscopic reaction schemes, while in Pimentel et al.
(2024a), a new method using a low-rank matrix approximation
approach was developed, which infers the number of reactions
and its stoichiometry.

Apart from the number of reactions and their stoichiometric
relations, the next challenging aspect is determining the kinetic
laws, which have been mainly tackled either by empirically
defining and testing different candidate kinetic laws – such as
Monod (Monod, 1949) for substrate activation and Jerusalimski

(Jerusalimski and Engamberdiev, 1969) for inhibition – based
on the minimization of the fitting error of the model. This
approach is sensitive to parameter initialization as the optimiza-
tion problem is multimodal and possesses several local minima
(Wang et al., 2020; Dewasme et al., 2023). Another well-known
method consists of obtaining the reaction rate signals from
the process derivative measurements and using the logarithm
transformation to rewrite the problem into a linear identification
problem that reveals the process compound involved in the
activation and inhibition of the reaction rates (Grosfils et al.,
2007; Richelle and Bogaerts, 2015). One of the bottlenecks of
this approach is the need for numerical differentiation of the
measurement signals. It is well known that obtaining derivatives
from measurement datasets is an ill-posed, ad-hoc problem,
and the solutions are susceptible to noise in the measurements
(van Breugel et al., 2020). In addition, numerical differentia-
tion tools do not allow the consideration of constraints such
as the positivity of the concentrations in biosystems (if these
concentrations were reconstructed by integrating the calculated
derivatives), or additional prior knowledge. Moreover, the com-
putation of the derivatives is obtained solely by considering one
reactant/product time series at a time. To overcome obtaining
derivatives from measurement for sparse and noisy datasets,
Hebing et al. (2020) presented a method for selecting small
sets of elementary modes and estimating reaction rates from
noisy concentration measurements. The approach uses the sums
of squared residual function with a regularization term that
increases the robustness against noisy measurements.

In the spirit of Hebing et al. (2020), this work presents a robust
method to extract biological kinetic rate evolutions from noisy
and sparse datasets, with the original feature of a multicriteria
cost function, which includes basic knowledge about the pro-
cess, such as biologically inspired information, noise charac-
teristics, and occurrence (or exclusion) of different biochemical
reactions. This procedure is illustrated with the case study of



a protein production process from mammalian cell cultures,
considering a metabolic shift to lactate consumption.

The methodology can generally be used to first define the time
evolution of the kinetic rates and, in a second step, to estimate
the parameters of kinetic laws based on the extracted informa-
tion on the rate evolutions. The methodology considers the prior
knowledge of the stoichiometric matrix, which, as mentioned
above, can be achieved in various ways, such as PCA. More-
over, in addition to the estimation of the reaction rate profiles,
the approach provides the estimation of the derivatives of the
measurement aftermath.

This paper is organized as follows. Section 2 presents the model
of the protein production by mammalian cells considering
lactate shift. Section 3 presents the proposed approach, as well
as some numerical results considering different measurement
noise levels, and a possible approach to scalability to larger
datasets. Section 4 presents the conclusion and future work.

2. PROTEIN PRODUCTION CONSIDERING LACTATE
SHIFT

The proposed methodology is developed and illustrated in the
context of a protein production process based on the cultivation
of mammalian cells, which predominantly use glucose as a
primary carbon source and produce lactate as a byproduct.
However, lactate accumulation is usually not recommended
since it inhibits cell growth and protein (the product of interest)
production. Moreover, at high lactate levels combined with
low glycolysis (the main substrate consumption pathway) rates,
cells are likely to adjust their metabolism, shifting to lactate
consumption. This process was modeled based on experimental
data in (Pimentel et al., 2023a) and can be represented by the
following three reactions:

k31G+Gn
ϕ1−→ k11Xv + k51L+ k61P (1a)

k52L
ϕ2−→ Xv (1b)

k13Xv
ϕ3−→ Xd + k63P (1c)

where Xv, Xd , G, Gn, L and P are the concentrations of viable
biomass, dead biomass, glucose, glutamine, lactate, and pro-
teins, respectively. The first reaction considers substrate con-
sumption (glycolysis) to produce biomass and byproducts at
a rate ϕ1. The second reaction describes lactate consumption,
producing viable biomass, governed by a rate ϕ2. The third
reaction represents viable biomass decay, leading to the pro-
duction of dead biomass and the release of proteins into the
medium. Applying mass balance to (1) yields the following
ordinary differential equation system:

dXv

dt
= k11ϕ1 +ϕ2 − k13ϕ3, (2a)

dXd

dt
= ϕ3, (2b)

dG
dt

=−k31ϕ1, (2c)

dGn
dt

=−ϕ1, (2d)

dL
dt

= k51ϕ1 − k52ϕ2, (2e)

dP
dt

= k61ϕ1 + k63ϕ3, (2f)

where the reaction rates are defined as:

ϕ1 = µmax,1
Gn

(KGn +Gn)
G

(KG +G)
Xv, (3a)

ϕ2 = µmax,2
L

(KL +L)
KGI

(KGI +G)
Xv, (3b)

ϕ3 = µdmax
KGnd

(KGnd +Gn)
Xv, (3c)

KGn, KG, KL are the half-saturation parameters, µmax,1, µmax,2,
and µdmax the maximum reaction rate parameters, and KGI and
KGnd the inhibition parameters. The reaction rate ϕ1 is driven
by two Monod factors activated by glucose and glutamine.
Likewise, ϕ2 stands for the selective consumption of lactate
activated by lactate and inhibited by glucose (considered as
the primary and preferred substrate). ϕ3 models the biomass
death rate inhibited by the presence of glutamine, which is the
primary nitrogen source of the cell, ensuring its viability.

The model described in this section is used as a process emu-
lator to generate synthetic data with various sampling rates and
noise levels. The specific parameter values are listed in Table 1.

3. ROBUST ESTIMATION OF REACTION RATE TIME
EVOLUTIONS

As discussed in the introduction section, the method considers
the knowledge of the stoichiometric matrix K ∈ RN×M , which
can be determined in various ways, including a classical PCA.
The main objective of the procedure is to estimate the time
evolution of the reaction rates using the measurements of the
species concentrations without resorting to explicit differentia-
tion but rather by minimizing a multicriteria cost function.

3.1 Multicriteria optimization

The proposed method is based on the minimization of a cost
function J

θ = argmin
θ

J(θ) : θ̄ < θ < θ, (4)

to estimate the values of unknown parameters θ under upper
and lower bound constraints.

The cost function J can contain several criteria relative to
the distance between model predictions and the corresponding
measurements, the smoothness of the time trajectory of the
reaction rates, and biologically inspired penalties such as, for
instance, penalties on the occurrence of some specific rates. In
our case study, the cost function could take the following form:

J (θ) =
n

∑
k=0

(ξm,k − ξ̂k)
⊤ ·Q · (ξm,k − ξ̂k)︸ ︷︷ ︸

Maximum Likelihood Cost Function

+

n−1

∑
k=0

(ϕ̂k+1 − ϕ̂k)
⊤ ·R · (ϕ̂k+1 − ϕ̂k)︸ ︷︷ ︸

Smoothness Cost

+ (5)

n

∑
k=0

(ϕ̂1,k · ϕ̂2,k)
⊤ ·W · (ϕ̂1,k · ϕ̂2,k),︸ ︷︷ ︸

Biologically Inspired Cost

where ξm,k is the process measurement vector at time k, Q is
the covariance matrix of the measurement errors and R and W
are penalty matrices. In our case study, the last term in the cost
function rejects the cooccurrence of ϕ1 and ϕ2, i.e., it expresses



Table 1. Parameters to generate simulation data.

Parameter Velues Parameter Values Parameter Values
µmax,1 [g/(109Cells d))] 0.46 Kgnd [g/L] 0.002 KL [g/L] 1.20
µmax,2 [g/(109Cells d))] 0.40 k11 [(109Cells/g)] 6.80 KGI [g/L] 0.80
µdmax [d−1] 0.03 k31 [g/g] 18.0 k61 [mg/g] 107.80
KG [g/L] 1.10 k51 [g/g] 10.70 k63 [mg/g] 2.90
KGn [g/L] 0.25 k52 [g/g] 1.20

that the production and consumption of lactate are unlikely to
coincide.

On a more practical aspect, the Matlab fmincon optimizer is
selected to solve the constrained minimization problem (4)
where θ is lower-bounded by zero to ensure the parameter
positiveness and no upper bound is defined. The optimizer
uses the solution obtained by an explicit Euler method of the
discretized macroscopic process model

ξ̂k+1 = ξ̂k +Kϕ(ξ̂k,ϑ)dt, (6)

where ξ̂k is the vector of discretized state (compound) esti-
mates, ϕ(ξ̂k,ϑ) is the reaction rate vector with ϑ the parameters
of the rate kinetics, and dt is the time step interval.

3.2 Rare measurements

When only a small dataset is available, it is proposed to estimate
the values of the reaction rates at each instant, yielding n×M
values to estimate, where M is the number of reactions and n
is the number of measurements. More precisely, the unknown
parameter vector is defined as

θ =
[
ξ̂
⊤
0 ϕ̂

⊤
1 ϕ̂

⊤
2 · · · ϕ̂

⊤
M

]
, (7)

where the vector ξ̂0 ∈ RN×1
+ contains the initial concentration

values (even if these concentrations are initially measured,
they are corrupted by noise and a good practice consists in
estimating their most likely values), and the vectors ϕ̂i ∈ Rn×1

+
contains the time evolution of each reaction rate.

In order to illustrate the approach, a batch culture simula-
tion is performed considering independent and identically dis-
tributed (IID) Gaussian noise ε ∼ (0,σ2) corrupting all the
measurements. The imposed standard deviations σ are 0.1 ×
106cells/ml, 0.0167×106cells/ml, 0.2 g/l, 0.01 g/l, 0.1 g/l, and
1.0 µg/ml for viable biomass Xv, dead biomass Xd , glucose
G, glutamine Gn, lactate L, and proteins P, respectively. Four
measurements are collected per day (dt = 0.25 days) for each
process compound in a batch process of 7 days. The estima-
tions of the reaction rates are obtained by solving (4) with the
following decision vector
θ = [Xv,0 Xd,0 G0 Gn,0 L0 P0 ϕ̂1,1×n ϕ̂2,1×n ϕ̂3,1×n] .

(8)
The penalty matrices are set as Q = diag(σ2

i )
−1,

R = diag([1000 100 100]), and W = 1000. The rate-selection
penalty weighted by W considers that the first biochemical
reaction (1a) can not co-occur with reaction (1b), i.e., the
consumption of lactate only occurs when glucose (and, in turn,
glycolysis) is low. The tuning of W , therefore, depends on the
biological a priori knowledge of the user and the confidence in
the metabolic shift occurrence.

Figure 1 presents the concentration fitting where error bars
(corresponding to 95 % confidence intervals) are displayed for
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Fig. 1. Simulation restults. Error bars are the batch measure-
ments, and dark gray dashed lines are the state estimations.

each measurement. The dark gray dashed lines represent the
estimation of the process compounds. Figure 2 shows the three
reaction rate estimate trajectories. Even though scarce data is
available, the method provides estimates with a fair accuracy
level for the three reaction rate profiles since the root mean
squared errors (RMSE) are 0.012, 0.026, and 0.005 for reaction
rates 1, 2, and 3, respectively.

3.3 Robustness analysis

To test the robustness of the approach when facing data scarcity,
data collection with a larger sampling interval is considered,
e.g., one measurement per day (dt = 1 day). Three experimental
replicates (nr = 3) with different noise realizations are gener-
ated. The same metric as the one considered in (Hebing et al.,
2020) is selected, where the average reconstruction error

ϕ̄ie =
1
nr

∑ |ϕ̂i −ϕi|, i = 1,2,3 (9)

of reaction rates considering different levels of noise is com-
puted.

Table 2 presents the average reconstruction errors for different
noise levels. The same penalty matrices R = diag([10 3 1000])
and Q = diag

(
σ2

i
)−1 were set for all cases (σ2

i is the corre-
sponding noise variance) except for the noise-free case where
R = diag([0.1 0.02 1.0]) and Q = diag

(
max(ξm,i)

2
)−1. Despite



Table 2. Robustness analysis: Average reconstruction error ϕ̄ie at different levels of simulated measure-
ment noise.

0%∗ 2.5% 5% 7.5% 10% 12.5% 15% 20% 30%
ϕ̄1e 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
ϕ̄2e 0.04 0.09 0.1 0.1 0.1 0.1 0.1 0.1 0.2
ϕ̄3e 0.003 0.005 0.005 0.005 0.004 0.004 0.004 0.005 0.007
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Fig. 2. Simulation restults. Light gray solid lines are the ground
truth, and dark gray dashed lines are the reaction rate
estimations.

the increasing noise levels, the average reconstruction errors
remain at the same orders of magnitude. It should be noticed
that in (Hebing et al., 2020), the values obtained for the average
reconstruction error are around 0.06.

Figure 3 shows the reconstruction of the concentrations for the
case with a noise variance of 15%, while Figure 4 shows the
fitting of the reaction rate estimates. The proposed method also
delivers the confidence intervals of the reaction rate estimation,
contributing to better assessing the accuracy of the estimated
rates.

3.4 Scalability for larger datasets

Increasing the dataset size improves the accuracy of the solution
of problem (4). However, it also increases the computational
burden as the number of decision variables increases. This
observation suggests using an alternative strategy where the
size of θ is not directly proportional to the amount of data
under consideration. To this end, a piecewise cubic Hermite
polynomial is chosen, which approaches the rates by finite
elements with a local basis of low-order polynomials.

The interpolating function is defined as

g(x) =
(Nnd+1)(p+1)−1

∑
i=0

aixi, (10)
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Fig. 3. Example of measurements with a 15% noise level.
The light gray solid lines represent the three replicates,
while the dark gray dashed lines show the direct validation
results based on the average estimates.

where p is the desired derivative order, up to pth at node Nnd .
Considering this representation, it is possible to piecewise the
trajectories of ϕ̂ j in e-elements, considering a two-data point
cubic Hermite interpolation function and its first derivative.
Thus, p = 1 and Nnd +1 = 2 ⇒ (p+1)(Nnd +1) = 3, resulting
in a cubic interpolating function as:

g(ei)(x) = a(ei)
0 φ0(x)+a(ei)

1 φ1(x)+a(ei)
p,0 ψ0(x)+a(ei)

p,1 ψ1(x),
(11)

where (ei) is the number of i elements of ϕ̂ defined by the user.
The Hermite basis functions are defined as:

φ0(x) = 2x3 −3x2 +1, (12)

φ1(x) =−2x3 +3x2, (13)

ψ0(x) = x3 −2x2 + x, (14)

ψ1(x) = x3 − x2. (15)

Consequently, for the estimate considering only the first deriva-
tive approximation, each node in the element ei has two Her-
mite basis functions: the first associated with the function value
of the node zero (12), and the second with the first derivative
of node zero, (14). Equivalently, node one has two Hermite
basis functions (13) and (15). The parametrization considers the
interpolated function’s value and slope (possibly constrained,
Vande Wouwer et al. (2014)), ensuring C1 continuity.
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Fig. 5. Representation of the Hermite basis functions.

Figure 5 shows the properties of the Hermite basis functions.
The plot on the top shows that φ0(x) starts with a unitary
value φ0(0) = 1 and ends with zero φ0(1) = 0. Likewise, φ1(x)
exhibits a mirror behavior, resulting in a smooth transition when
more than one element is interconnected to interpolate a desired
function. As for the derivative, ψ0(x) is zero at the beginning
and the end of the interval, i.e., ψ0(0) = ψ0(1) = 0. As ex-
pected, ψ1(x) has a complementary behavior, guaranteeing a
smooth transition between sections.

The proposed approach solves the minimization problem (4) to
find the coefficients of the Hermite interpolating function (11)
for a predefined number of elements e. The size of vector θ
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Fig. 6. Proposed method with the Hermite basis functions
results. Error bars are the measurements, and the dark gray
dashed line is the state estimation

is drastically reduced since it has four parameters for the first
element and two additional parameters for each subsequent e-
element. The bounding conditions between elements i and i+
1 ensure function continuity, i.e., for i = 1, a(e2)

0 = a(e1)
1 and

a(e2)
p,0 = a(e1)

p,1 . The decision vector θ for the indirect method,
therefore reads

θ =
[
ξ̂
⊤
0 a(e1)

0 a(e1)
p,0 a(e1)

1 a(e1)
p,1︸ ︷︷ ︸

element 1

a(e2)
1 a(e2)

p,1︸ ︷︷ ︸
element 2

· · ·

· · · a(ei)
1 a(ei)

p,1︸ ︷︷ ︸
element i

] .(16)

To illustrate the application of this new parametrization, the
measurements are now considered to be collected every 15
minutes (ts ≈ 0.01 days). The penalty matrices are set as Q =
diag(σ2

i )
−1, R = diag([10 2 100])×103, and W = 1000. If the

first approach was considered, the minimization problem would
involve a θ vector of 2022 parameters, which is a very hard
problem. The second approach considers interpolating Hermite
polynomials over 30 elements, resulting in 62 parameters per
reaction rate, or a total of 192 parameters, plus the identification
of the state’s initial conditions. Using fmincon and restricting
the solutions to be positive, the results displayed in Figure 6
are obtained, with RMSEs of 0.011, 0.018, and 0.002 for the
respective estimations of reaction rates 1, 2, and 3.

While the RMSE value of ϕ1 almost remains equivalent, with
a slight improvement of 4.5%, ϕ2 and ϕ3 estimations are im-
proved by 40%, and 160 %, respectively. Since more measure-
ments are available, these improvements were expected. Fur-
thermore, both approaches show reaction rate trajectories with
minimal noise amplitudes, as the noise in the measurements is
effectively filtered by the smoothness term of (5).



Basically, the proposed method provides the reaction rate time
evolutions with their associated confidence intervals consider-
ing datasets characterized by possibly scarce and noisy mea-
surements. This scenario is common in the pharmaceutical in-
dustry, where small-scale wet laboratory experiments are con-
ducted to identify specific manufacturing conditions supported
by a model. The proposed method is a complementary tool
that can help to further define a kinetic model structure by
assimilating the estimates to well-known Monod, Haldane, or
Contois Laws, to mention a few. Another possibility is to use
sparse identification tools as proposed in Pimentel et al. (2024b)
or the general rate parametrization approach of Richelle and
Bogaerts (2015) to unveil the underlying kinetic structures.

4. CONCLUSION

This paper presents an approach for estimating the time trajec-
tories of the reaction rates without resorting to a differentiation
of the time trajectories of the extracellular component con-
centrations. To this end, a nonlinear minimization problem is
solved based on a multicriteria cost function that considers the
prediction error, smoothness constraints on the rate evolutions,
as well as biological constraints inspired by prior knowledge
about the reaction mechanisms. This tool is a brick in the
modeling pipeline that can ease the further derivation of the
kinetic rate structure, using one of the many published results
in this area.
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